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We solve the inhomogeneous Kummer differential equation of the form xy′′ + (β − x)y′ − αy =∑∞
m=0 amx

m and apply this result to the proof of a local Hyers-Ulam stability of the Kummer
differential equation in a special class of analytic functions.

1. Introduction

Assume that X and Y are a topological vector space and a normed space, respectively, and
that I is an open subset ofX. If for any function f : I → Y satisfying the differential inequality

∥
∥
∥an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · · + a1(x)y′(x) + a0(x)y(x) + h(x)

∥
∥
∥ ≤ ε (1.1)

for all x ∈ I and for some ε ≥ 0, there exists a solution f0 : I → Y of the differential equation

an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · · + a1(x)y′(x) + a0(x)y(x) + h(x) = 0 (1.2)

such that ‖f(x)−f0(x)‖ ≤ K(ε) for any x ∈ I, whereK(ε) depends on ε only, then we say that
the above differential equation satisfies the Hyers-Ulam stability (or the local Hyers-Ulam
stability if the domain I is not the whole space X). We may apply this terminology for other
differential equations. For more detailed definition of the Hyers-Ulam stability, refer to [1–6].

Obłoza seems to be the first author who has investigated the Hyers-Ulam stability of
linear differential equations (see [7, 8]). Here, we will introduce a result of Alsina and Ger
(see [9]). If a differentiable function f : I → R is a solution of the differential inequality
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|y′(x) − y(x)| ≤ ε, where I is an open subinterval of R, then there exists a solution f0 : I → R

of the differential equation y′(x) = y(x) such that |f(x) − f0(x)| ≤ 3ε for any x ∈ I.
This result of Alsina and Ger has been generalized by Takahasi et al.. They proved

in [10] that the Hyers-Ulam stability holds true for the Banach space valued differential
equation y′(x) = λy(x) (see also [11]).

Using the conventional power series method, the author [12] investigated the general
solution of the inhomogeneous Legendre differential equation of the form

(
1 − x2

)
y′′(x) − 2xy′(x) + p

(
p + 1

)
y(x) =

∞∑

m=0

amx
m (1.3)

under some specific conditions, where p is a real number and the convergence radius of the
power series is positive. Moreover, he applied this result to prove that every analytic function
can be approximated in a neighborhood of 0 by the Legendre function with an error bound
expressed by C(x2/(1 − x2)) (see [13–16]).

In Section 2 of this paper, employing power series method, we will determine the
general solution of the inhomogeneous Kummer (differential) equation

xy′′(x) +
(
β − x

)
y′(x) − αy(x) =

∞∑

m=0

amx
m, (1.4)

where α and β are constants and the coefficients am of the power series are given such that the
radius of convergence is ρ > 0, whose value is in general permitted to be infinite. Moreover,
using the idea from [12, 13, 15], we will prove the Hyers-Ulam stability of the Kummer’s
equation in a class of special analytic functions (see the class CK in Section 3).

In this paper, N0 and Z denote the set of all nonnegative integers and the set of all
integers, respectively. For each real number α, we use the notation 	α
 to denote the ceiling of
α, that is, the least integer not less than α.

2. General Solution of (1.4)

The Kummer (differential) equation

xy′′(x) +
(
β − x

)
y′(x) − αy(x) = 0, (2.1)

which is also called the confluent hypergeometric differential equation, appears frequently in
practical problems and applications. The Kummer’s equation (2.1) has a regular singularity
at x = 0 and an irregular singularity at ∞. A power series solution of (2.1) is given by

M
(
α, β, x

)
=

∞∑

m=0

(α)m
m!
(
β
)
m

xm, (2.2)

where (α)m is the factorial function defined by (α)0 = 1 and (α)m = α(α+1)(α+2) · · · (α+m−1)
for allm ∈ N. The above power series solution is called the Kummer function or the confluent
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hypergeometric function. We know that if neither α nor β is a nonpositive integer, then the
power series for M(α, β, x) converges for all values of x.

Let us define

U
(
α, β, x

)
=

π

sin βπ

[
M
(
α, β, x

)

Γ
(
1 + α − β

)
Γ
(
β
) − x1−βM

(
1 + α − β, 2 − β, x

)

Γ(α)Γ
(
2 − β

)

]

. (2.3)

We know that if β /= 1 then M(α, β, x) and U(α, β, x) are independent solutions of the
Kummer’s equation (2.1). When β > 1, U(α, β, x) is not defined at x = 0 because of the
factor x1−β in the above definition of U(α, β, x).

By considering this fact, we define

Iρ =

⎧
⎨

⎩

(−ρ, ρ), (
for β < 1

)
,

(−ρ, 0) ∪ (0, ρ), (for β > 1
)
,

(2.4)

for any 0 < ρ ≤ ∞. It should be remarked that if β /∈Z and both α and 1 + α − β are not
nonpositive integers, then M(α, β, x) and U(α, β, x) converge for all x ∈ I∞ (see [17, Section
13.1.3]).

Theorem 2.1. Let α and β be real constants such that β /∈Z and neither α nor 1+α−β is a nonpositive
integer. Assume that the radius of convergence of the power series

∑∞
m=0 amx

m is ρ > 0 and that there
exists a real number μ ≥ 0 with

∣
∣
∣
∣
∣

(m − 1)!
(
β
)
mam

(α)m+1

∣
∣
∣
∣
∣
≤ μ

∣
∣
∣
∣
∣

m−1∑

i=0

i!
(
β
)
iai

(α)i+1

∣
∣
∣
∣
∣

(2.5)

for all sufficiently large integers m. Let us define ρ0 = min{ρ, 1/μ} and 1/0 = ∞. Then, every
solution y : Iρ0 → C of the inhomogeneous Kummer’s equation (1.4) can be represented by

y(x) = yh(x) +
∞∑

m=1

m−1∑

i=0

i!(α)m
(
β
)
iai

m!(α)i+1
(
β
)
m

xm, (2.6)

where yh(x) is a solution of the Kummer’s equation (2.1).

Proof. Assume that a function y : Iρ0 → C is given by (2.6). We first prove that the function
yp(x), defined by y(x) − yh(x), satisfies the inhomogeneous Kummer’s equation (1.4). Since

y′
p(x) =

∞∑

m=1

m−1∑

i=0

i!(α)m
(
β
)
iai

(m − 1)!(α)i+1
(
β
)
m

xm−1 =
∞∑

m=0

m∑

i=0

i!(α)m+1
(
β
)
iai

m!(α)i+1
(
β
)
m+1

xm,

y′′
p(x) =

∞∑

m=1

m∑

i=0

i!(α)m+1
(
β
)
iai

(m − 1)!(α)i+1
(
β
)
m+1

xm−1,

(2.7)
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we have

xy′′
p(x) +

(
β − x

)
y′
p(x) − αyp(x) = a0 +

∞∑

m=1

m∑

i=0

i!(α)m+1
(
β
)
i

(
m + β

)
ai

m!(α)i+1
(
β
)
m+1

xm

−
∞∑

m=1

m−1∑

i=0

i!(α)m
(
β
)
i(m + α)ai

m!(α)i+1
(
β
)
m

xm

= a0 +
∞∑

m=1

amx
m,

(2.8)

which proves that yp(x) is a particular solution of the inhomogeneous Kummer’s equation
(1.4).

We now apply the ratio test to the power series expression of yp(x) as follows:

yp(x) =
∞∑

m=1

m−1∑

i=0

i!(α)m
(
β
)
iai

m!(α)i+1
(
β
)
m

xm =
∞∑

m=1

cmx
m. (2.9)

Then, it follows from (2.5) that

lim
m→∞

∣
∣
∣
∣
cm+1

cm

∣
∣
∣
∣ ≤ lim

m→∞

∣
∣
∣
∣
α +m

β +m

∣
∣
∣
∣

⎡

⎣
1

m + 1
+

m

m + 1

∣
∣
∣
∣
∣

(m − 1)!
(
β
)
mam

(α)m+1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

m−1∑

i=0

i!
(
β
)
iai

(α)i+1

∣
∣
∣
∣
∣

−1⎤

⎦

≤ μ.

(2.10)

Therefore, the power series expression of yp(x) converges for all x ∈ I1/μ. Moreover, the
convergence region of the power series for yp(x) is the same as those of power series for
y′
p(x) and y′′

p(x). In this paper, the convergence region will denote the maximum open set
where the relevant power series converges. Hence, the power series expression for xy′′

p(x) +
(β − x)y′

p(x) − αyp(x) has the same convergence region as that of yp(x). This implies that
yp(x) is well defined on Iρ0 and so does for y(x) in (2.6) because yh(x) converges for all
x ∈ I∞ under our hypotheses for α and β (see above Theorem 2.1).

Since every solution to (1.4) can be expressed as a sum of a solution yh(x) of the
homogeneous equation and a particular solution yp(x) of the inhomogeneous equation, every
solution of (1.4) is certainly in the form of (2.6).

Remark 2.2. We fix α = 1 and β = 10/3, and we define

a0 =
10
3
, am = 1 +

4m2 − 6m − 3
3m2(m + 1)

(2.11)
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for every m ∈ N. Then, since limm→∞am/am−1 = 1, there exists a real number μ > 1 such that

∣
∣
∣
∣
∣

(m − 1)!
(
β
)
mam

(α)m+1

∣
∣
∣
∣
∣
=

10 · 13 · 16 · · · (3m + 4)
m3m−1 am−1 · 3m + 7

3m
· am

am−1
· m

m + 1

=
(m − 1)!

(
β
)
m−1am−1

(α)m
· 3m + 7

3m
· am

am−1
· m

m + 1

≤ μ
(m − 1)!

(
β
)
m−1am−1

(α)m

≤ μ

∣
∣
∣
∣
∣

m−1∑

i=0

i!
(
β
)
iai

(α)i+1

∣
∣
∣
∣
∣

(2.12)

for all sufficiently large integers m. Hence, the sequence {am} satisfies condition (2.5) for all
sufficiently large integers m.

3. Hyers-Ulam Stability of (2.1)

In this section, let α and β be real constants and assume that ρ is a constant with 0 < ρ ≤ ∞.
For a given K ≥ 0, let us denote CK the set of all functions y : Iρ → C with the properties (a)
and (b):

(a) y(x) is represented by a power series
∑∞

m=0 bmx
m whose radius of convergence is at

least ρ;

(b) it holds true that
∑∞

m=0 |amx
m| ≤ K|∑∞

m=0 amx
m| for all x ∈ Iρ, where am = (m +

β)(m + 1)bm+1 − (m + α)bm for each m ∈ N0.

It should be remarked that the power series
∑∞

m=0 amx
m in (b) has the same radius of

convergence as that of
∑∞

m=0 bmx
m given in (a).

In the following theorem, we will prove a local Hyers-Ulam stability of the Kummer’s
equation under some additional conditions. More precisely, if an analytic function satisfies
some conditions given in the following theorem, then it can be approximated by a
“combination” of Kummer functions such as M(α, β, x) and M(1 + α − β, 2 − β, x) (see the
first part of Section 2).

Theorem 3.1. Let α and β be real constants such that β /∈Z and neither α nor 1+α−β is a nonpositive
integer. Suppose a function y : Iρ → C is representable by a power series

∑∞
m=0 bmx

m whose radius
of convergence is at least ρ > 0. Assume that there exist nonnegative constants μ/= 0 and ν satisfying
the condition

∣
∣
∣
∣
∣

(m − 1)!
(
β
)
mam

(α)m+1

∣
∣
∣
∣
∣
≤ μ

∣
∣
∣
∣
∣

m−1∑

i=0

i!
(
β
)
iai

(α)i+1

∣
∣
∣
∣
∣
≤ ν

∣
∣
∣
∣
∣

(m + 1)!
(
β
)
mam

(α)m+1

∣
∣
∣
∣
∣

(3.1)
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for all m ∈ N0, where am = (m + β)(m + 1)bm+1 − (m + α)bm. Indeed, it is sufficient for the first
inequality in (3.1) to hold true for all sufficiently large integersm. Let us define ρ0 = min{ρ, 1/μ}. If
y ∈ CK and it satisfies the differential inequality

∣
∣xy′′(x) +

(
β − x

)
y′(x) − αy(x)

∣
∣ ≤ ε (3.2)

for all x ∈ Iρ0 and for some ε ≥ 0, then there exists a solution yh : I∞ → C of the Kummer’s equation
(2.1) such that

∣
∣y(x) − yh(x)

∣
∣ ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ν

μ
· 2α − 1

α
Kε (for α > 1),

ν

μ

[
m0−1∑

m=0

∣
∣
∣
∣

∣
∣
∣
∣
m + 1
m + α

∣
∣
∣
∣ −
∣
∣
∣
∣

m + 2
m + 1 + α

∣
∣
∣
∣

∣
∣
∣
∣ +

m0 + 1
m0 + α

]

Kε (for α ≤ 1),

(3.3)

for any x ∈ Iρ0 , wherem0 = max{0, 	−α
}.

Proof. By the definition of am, we have

xy′′(x) +
(
β − x

)
y′(x) − αy(x)

=
∞∑

m=0

[(
m + β

)
(m + 1)bm+1 − (m + α)bm

]
xm

=
∞∑

m=0

amx
m

(3.4)

for all x ∈ Iρ. So by (3.2) we have

∣
∣
∣
∣
∣

∞∑

m=0

amx
m

∣
∣
∣
∣
∣
≤ ε (3.5)

for any x ∈ Iρ0 . Since y ∈ CK, this inequality together with (b) yields

∞∑

m=0
|amx

m| ≤ K

∣
∣
∣
∣
∣

∞∑

m=0

amx
m

∣
∣
∣
∣
∣
≤ Kε (3.6)

for each x ∈ Iρ0 .
By Abel’s formula (see [18, Theorem 6.30]), we have

n∑

m=0
|amx

m|
∣
∣
∣
∣
m + 1
m + α

∣
∣
∣
∣

=

(
n∑

i=0

∣
∣
∣aix

i
∣
∣
∣

)∣
∣
∣
∣

n + 2
n + 1 + α

∣
∣
∣
∣ +

n∑

m=0

(
m∑

i=0

∣
∣
∣aix

i
∣
∣
∣

)(∣
∣
∣
∣
m + 1
m + α

∣
∣
∣
∣ −
∣
∣
∣
∣

m + 2
m + 1 + α

∣
∣
∣
∣

) (3.7)
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for any x ∈ Iρ0 and n ∈ N. Withm0 = max{0, 	−α
} (	−α
 is the ceiling of −α), we know that

if α > 1, then
m + 1
m + α

<
m + 2

m + 1 + α
for m ≥ 0;

if α ≤ 1, then
m + 1
m + α

≥ m + 2
m + 1 + α

for m ≥ m0.

(3.8)

Due to (3.4), it follows from Theorem 2.1 and (2.6) that there exists a solution yh(x) of
the Kummer’s equation (2.1) such that

y(x) = yh(x) +
∞∑

m=0

m−1∑

i=0

i!(α)m
(
β
)
iai

m!(α)i+1
(
β
)
m

xm (3.9)

for all x ∈ Iρ0 . By using (3.1), (3.6), (3.7), and (3.8), we can estimate

∣
∣y(x) − yh(x)

∣
∣ ≤

∞∑

m=0

∣
∣
∣
∣amx

mm + 1
m + α

∣
∣
∣
∣

∣
∣
∣
∣
∣

(α)m+1

(m + 1)!
(
β
)
mam

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

m−1∑

i=0

i!
(
β
)
iai

(α)i+1

∣
∣
∣
∣
∣

≤ ν

μ
lim
n→∞

n∑

m=0
|amx

m|
∣
∣
∣
∣
m + 1
m + α

∣
∣
∣
∣

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν

μ
lim
n→∞

[

Kε

∣
∣
∣
∣

n + 2
n + 1 + α

∣
∣
∣
∣ +

n∑

m=0

Kε

(
m + 2

m + 1 + α
− m + 1
m + α

)]

(for α > 1),

ν

μ
lim
n→∞

[

Kε

∣
∣
∣
∣

n + 2
n + 1 + α

∣
∣
∣
∣ +

m0−1∑

m=0

Kε

∣
∣
∣
∣

∣
∣
∣
∣
m + 1
m + α

∣
∣
∣
∣ −
∣
∣
∣
∣

m + 2
m + 1 + α

∣
∣
∣
∣

∣
∣
∣
∣

+
n∑

m=m0

Kε

(
m + 1
m + α

− m + 2
m + 1 + α

)]

(for α ≤ 1)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ν

μ
· 2α − 1

α
Kε (for α > 1),

ν

μ

[
m0−1∑

m=0

∣
∣
∣
∣

∣
∣
∣
∣
m + 1
m + α

∣
∣
∣
∣ −
∣
∣
∣
∣

m + 2
m + 1 + α

∣
∣
∣
∣

∣
∣
∣
∣ +

m0 + 1
m0 + α

]

Kε (for α ≤ 1)

(3.10)

for all x ∈ Iρ0 .

We now assume a stronger condition, in comparison with (3.1), to approximate the
given function y(x) by a solution yh(x) of the Kummer’s equation on a larger (punctured)
interval.

Corollary 3.2. Let α and β be real constants such that β /∈Z and neither α nor 1+α−β is a nonpositive
integer. Suppose a function y : I∞ → C is representable by a power series

∑∞
m=0 bmx

m which
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converges for all x ∈ I∞. For every m ∈ N0, let us define am = (m + β)(m + 1)bm+1 − (m + α)bm.
Moreover, assume that

lim
m→∞

(m − 1)!
(
β
)
mam

(α)m+1
= 0, 0 <

∣
∣
∣
∣
∣

∞∑

i=0

i!
(
β
)
iai

(α)i+1

∣
∣
∣
∣
∣
< ∞ (3.11)

and there exists a nonnegative constant ν satisfying

∣
∣
∣
∣
∣

m−1∑

i=0

i!
(
β
)
iai

(α)i+1

∣
∣
∣
∣
∣
≤ ν

∣
∣
∣
∣
∣

(m + 1)!
(
β
)
mam

(α)m+1

∣
∣
∣
∣
∣

(3.12)

for all m ∈ N0. If y ∈ CK and it satisfies the differential inequality (3.2) for all x ∈ I∞ and for some
ε ≥ 0, then there exists a solution yn : I∞ → C of the Kummer’s equation (2.1) such that

∣
∣y(x) − yn(x)

∣
∣ ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ν · 2α − 1
α

Kε (for α > 1),

ν

[
m0−1∑

m=0

∣
∣
∣
∣

∣
∣
∣
∣
m + 1
m + α

∣
∣
∣
∣ −
∣
∣
∣
∣

m + 2
m + 1 + α

∣
∣
∣
∣

∣
∣
∣
∣ +

m0 + 1
m0 + α

]

Kε (for α ≤ 1)
(3.13)

for any x ∈ In, wherem0 = max{0, 	−α
} and n is a sufficiently large integer.

Proof. In view of (3.11) and (3.12), we can choose a sufficiently large integer n with

∣
∣
∣
∣
∣

(m − 1)!
(
β
)
mam

(α)m+1

∣
∣
∣
∣
∣
≤ 1

n

∣
∣
∣
∣
∣

m−1∑

i=0

i!
(
β
)
iai

(α)i+1

∣
∣
∣
∣
∣
≤ ν

n

∣
∣
∣
∣
∣

(m + 1)!
(
β
)
mam

(α)m+1

∣
∣
∣
∣
∣
, (3.14)

where the first inequality holds true for all sufficiently largem, and the second one holds true
for all m ∈ N0.

If we define ρ0 = n, then Theorem 3.1 implies that there exists a solution yn : I∞ → C

of the Kummer’s equation such that the inequality given for |y(x) − yn(x)| holds true for any
x ∈ In.

4. An Example

We fix α = 1, β = 10/3, ε > 0, and 0 < ρ < 1. And we define

b0 = 0, bm =
ε

s
· 1
m2

(4.1)
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for all m ∈ N, where we set s = (5/3)(2 − ρ)/(1 − ρ). We further define

y(x) =
∞∑

m=0

bmx
m (4.2)

for any x ∈ Iρ.
Then, we set am = (m + β)(m + 1)bm+1 − (m + α)bm, that is,

a0 =
10
3

· ε
s
, am =

(

1 +
4m2 − 6m − 3
3m2(m + 1)

)
ε

s
≤ 5

3
· ε
s

(4.3)

for every m ∈ N. Obviously, all ams are positive, and the sequence {am} is strictly monotone
decreasing, from the 4th term on, to ε/s. More precisely, a0 > a1 < a2 < a3 < a4 > a5 >
a6 > · · · .

Since

a0 =
10
3

· ε
s
>

1
6
· ε
s
+
41
36

· ε
s
= a1 + a3, (4.4)

we get

∣
∣
∣
∣
∣

∞∑

m=0

amx
m

∣
∣
∣
∣
∣
=
∣
∣
∣a0 + a1x + a2x

2 + a3x
3 +
(
a4x

4 + a5x
5
)
+
(
a6x

6 + a7x
7
)
+ · · ·

∣
∣
∣

≥
∣
∣
∣a0 + a1x + a2x

2 + a3x
3
∣
∣
∣

≥ a0 − a1 − a3

=
73
36

· ε
s

(4.5)

for each x ∈ Iρ and

∞∑

m=0
|amx

m| ≤
∞∑

m=0

amρ
m ≤
(

10
3

+
∞∑

m=1

5
3
ρm
)

ε

s
= ε (4.6)

for all x ∈ Iρ. Hence, we obtain

∞∑

m=0
|amx

m| ≤ K

∣
∣
∣
∣
∣

∞∑

m=0

amx
m

∣
∣
∣
∣
∣

(4.7)

for any x ∈ Iρ, where K = (60/73) · (2 − ρ)/(1 − ρ), implying that y ∈ CK.
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We will now show that {am} satisfies condition (3.1). For any m ∈ N, we have

∣
∣
∣
∣
∣

m−1∑

i=0

i!
(
β
)
iai

(α)i+1

∣
∣
∣
∣
∣
= a0 +

m−1∑

i=1

10 · 13 · 16 · · · (3i + 7)
(i + 1)3i

ai

≤
[
10
3

+
m−1∑

i=1

10 · 13 · 16 · · · (3i + 7)
(i + 1)3i

· 5
3

]
ε

s
,

∣
∣
∣
∣
∣

(m + 1)!
(
β
)
mam

(α)m+1

∣
∣
∣
∣
∣
≥ 10 · 13 · 16 · · · (3m + 7)

3m
· 1
6
· ε
s
,

(4.8)

since limm→∞am = ε/s.
It follows from (4.8) that

∣
∣
∣
∣
∣

m−1∑

i=0

i!
(
β
)
iai

(α)i+1

∣
∣
∣
∣
∣
≤ 10

[
1
3
+

m−1∑

i=1

10 · 13 · 16 · · · (3i + 7)
(i + 1)3i

· 1
6

]
ε

s

= 10

[
1
3
+
10 · 13 · · · (3m + 7)

3m

m−1∑

i=1

3m−i

(3i + 10) · · · (3m + 7)
· 1
i + 1

· 1
6

]
ε

s

≤ 10

[
1
3
+
10 · 13 · 16 · · · (3m + 7)

3m

m−1∑

i=1

1

(i + 1)2
· 1
6

]
ε

s

≤ 10
10 · 13 · 16 · · · (3m + 7)

3m

[
1
10

+
1
6
(ζ(2) − 1)

]
ε

s

=
5π2 − 12

3
· 10 · 13 · 16 · · · (3m + 7)

3m
· 1
6
· ε
s

≤ 5π2 − 12
3

∣
∣
∣
∣
∣

(m + 1)!
(
β
)
mam

(α)m+1

∣
∣
∣
∣
∣
.

(4.9)

We know that the inequality (4.9) is also true for m = 0.
On the other hand, in view of Remark 2.2, there exists a constant μ > 1 such that

inequality (2.12) holds true for all sufficiently large integers m. By (2.12) and (4.9), we
conclude that {am} satisfies condition (3.1)with ν = (5π2 − 12)μ/3.

Finally, it follows from (4.6) that

∣
∣xy′′(x) +

(
β − x

)
y′(x) − αy(x)

∣
∣ =

∣
∣
∣
∣
∣

∞∑

m=0

amx
m

∣
∣
∣
∣
∣
≤

∞∑

m=0
|amx

m| ≤ ε (4.10)

for all x ∈ Iρ0 with ρ0 = min{ρ, 1/μ}.
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According to Theorem 3.1, there exists a solution yh : I∞ → C of the Kummer’s
equation (2.1) such that

∣
∣y(x) − yh(x)

∣
∣ ≤ 100π2 − 240

73
· 2 − ρ

1 − ρ
ε (4.11)

for all x ∈ Iρ0 .
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