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1 INTRODUCTION

The variational inequalities due to Hartman and Stampacchia [15] and
Browder [4,5] have been extended by many scholars and applied to many
problems in mathematical sciences. For the literature, see [9,19,28].

In a recent work of the first author [22], an equilibrium theorem is
obtained within the frame of the KKM theory. This result extends
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known variational inequalities due to Br6zis-Nirenberg-Stampacchia,
Juberg-Karamardian, Mosco, Allen, Takahashi, Gwinner, Lassonde,
Park, and Ben-E1-Mechaiekh. For the literature, see [22]. On the other
hand, more recently, many authors obtained a lot of the Hartman-
Stampacchia-Browder type variational inequalities for upper semi-
continuous or monotone type multimaps and their applications.

In the present paper, first of all, we deduce three generalized varia-
tional inequality theorems from the first author’s equilibrium theorem,
under weaker hypothesis and in more general setting than known ones.
Our new results extend, unify and improve the Hartman-Stampacchia-
Browder type variational inequalities due to Hartman-Stampacchia
[15], Lions-Stampacchia [18], Stampacchia [28], Mosco [19], Browder
[4,5], Allen [1], Shih-Tan [25], Park [20,21], Ding-Tan [12], Yao-Guo
[32], Chang-Zhang [7,8], and Park-Kum [24].

In the second part, by adopting a generalized concept of monotoni-
city, we give simplified and generalized versions of the monotone type
variational inequalities with m-uch simpler proofs. These new results
generalize works of Tarafdar-Yuan [30], Chang et al. [6], Ding-Tan
[12], Tan-Yuan [29], and others.

2 PRELIMINARIES

An extended real-valued function g" X--+ R defined on a topological
space X is lower [resp. upper] semicontinuous (1.s.c.) [resp. u.s.c.] if

{x E X: gx > r} [resp. {x E X: gx < r}] is open for each r R.
For topological spaces X and Y, a multimap T" X--o y is a function

from X into the set 2 Y of nonempty subsets of Y. We say that T is
lower semicontinuous (1.s.c.) at x0 X [3] if for each open set G with

Txo Cq G - (, there exists a neighborhood U of x0 such that x U implies
Txn G (; and upper semicontinuous (u.s.c.) at x0 X [3] if for each
open set G with Txo C G, there exists a neighborhood U of x0 such that
x E U implies Tx G. We say that T is 1.s.c. [u.s.c.] if it is 1.s.c. [u.s.c.] at
each point of X.

For a convex subset X of a topological vector space (simply, t.v.s.) E,
let k(X) denote the set of all nonempty compact subsets of X, and
kc(X) all nonempty compact convex subsets.
The following is well-known. See Berge [3].
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LEMMA Let X and Y be topological spaces, g: X x Y R l.s.c., and
T: X k(Y) u.s.c. Then the function U: X-- [-oc, oc) defined by

U(x) inf g(x, y)
yE Tx

Let K denote either the real or complex field.
From Lemma we have the following immediately:

LEMMA 2 Let E be a t.v.s, over K, X a nonempty subset of E, F a

topological space, T: X-+ k(F) u.s.c., and F x E K a function
such that, for each y E E, (z, x) H Re(z, x y) is 1.s.c. on F X. Thenfor
each y E, the function U X- [-oc, oc) defined by

U(x)= inf Re(z,x-y)
zE Tx

is 1.s.c. on X.

Remark Lemma 2 contains Shih and Tan [27, Lemma 2], Ding and
Tan [12, Lemma ], Kim and Tan [16, Lemmas 2 and 4], and Chang and
Zhang [8, Lemma 3] as particular cases.

Let E and F be vector spaces over K and F x E--, K a bilinear
functional. For each x E, each nonempty subset A of E, and each
e > 0, let

W(x,e) {z F: liz, x)l <
U(A, e) {z F: sup

xA

Let (F,E) denote the topology on F generated by the family
{ W(x, e): x E, e > 0} as a subbase for the neighborhood system at 0.
Similarly, we can define the topology or(E, F) on E. If E is a t.v.s., let
(F, E) denote the topology on F generated by the family

{ U(B, e): B is a nonempty compact subset of E and c > 0}

as a base for the neighborhood system at 0. If E is a t.v.s., let (F, E)
denote the topology on F generated by the family

{ U(B, c): B is a nonempty bounded subset of E and e > 0}

as a base for the neighborhood system at 0.
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If F possesses the topology or(F, E) or 6(F, E), then F becomes a

locally convex t.v.s., not necessarily Hausdorff. If F possesses the
topology r/(F, E), F becomes a t.v.s.

LEMMA3 LetEbeat.v.s. overK, FavectorspaceoverK, Canonempty
subset ofE, and F x E-- K a bilinearfunctional. Suppose thatfor
each z E F, y -+ (z, y) is continuous on C and that one of the following
holds:

(A) F has cr(F, E)-topology.
(B) C is compact and F has (5(F, E)-topology.
(C) C is bounded and F has rl(F, E)-topology.

If T." C ---. k (F ) is u.s.c., then for each y E the function

x inf Re(z, x y)
zE Tx

is l.s.c, on C.

Proof (A) For each y E, (z, x)H Re(z, x-y) is continuous on F x C.
Therefore, by Lemma 2, we have the conclusion.

(B), (C) As in the proof of Kum [17, Lemma B], the pairing
): F x C K is continuous. Therefore, by Lemma 2, we have the

conclusion.

Remark If F= E*, the topological dual of E, then y H (z,y) is con-
tinuous automatically.

Particular Forms
1. Browder [4, Lemma 1]: E is locally convex, C is compact, F= E*,

is the pairing between E* and E, and T is single-valued.
2. Shih and Tan [25, Lemma 1]: Lemma 3(C) for a locally convex t.v.s.

E, F= E*, and a single-valued continuous map T.
3. Kim and Tan [16, Lemma 2]: Lemma 3(C) with F--E*.
4. Chang and Zhang [8, Lemma 3] and Zhang [33, Theorem 1]

obtained Lemma 3(C) with a proof more lengthy than ours.

The following is well-known:

LEMMA 4 (Ky Fan [14]) Let X be a compact Hausdorffspace and Y a

set. Let f be a real-valuedfunction on X x Y such that for every y Y,
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f(x, y) is l.s.c, on X. Iff is convex on X and concave on Y, then

min sup f(x, y)- sup min f(x, y).
xEX yE y y y xX

For the terminology in Lemma 4, see [14].
A convex space X is a nonempty convex set (in a vector space)

equipped with any topology that induces the Euclidean topology on the
convex hulls of its finite subsets.
A subset B of a topological space Xis said to be compactly closed in X

if for every compact set Kc X the set B N K is closed in K.
Let (X) denote the set of all nonempty finite subsets of X, and co and
denote the convex hull and closure, resp.
The following equilibrium theorem is the basis of our arguments:

THEOREM 0 Let X be a convex space, f, g X x Y---, [-oc, oc], K a

nonempty compact subset of X, and 7 E [-oc, oe]. Suppose that

(0.1) f(x, x) <_ 7 for all x X;
(0.2) for each y X, {x X: g(x, y) > 7} is compactly open;
(0.3) for each x X, { y X: f(x, y) > 7} D co{y E X: g(x, y) > ,}; and
(0.4) for each N (X), there exists an Lukc(X) containing N such

that for each x LN\K, g(x, y) > 7 for some y LN.

Then there exists an - K such that g(N, y) <_ 7 for all y X.

Note that Theorem 0 follows from [22, Theorem 9] and is slightly
different from [22, Theorem 10]. A far-reaching generalization of
Theorem 0 is given in [23, Theorem 6].

3 VARIATIONAL INEQUALITIES FOR U.S.C. MULTIMAPS

From Theorem 0, we deduce a number of known results on variational
inequalities.

THEOREM Let X be a convex space, E a vector space over K
containing X as a subset, Z a set, T: X--o Z a multimap, and K a
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nonempty compact subset of X. Suppose that

(1.1) ):ZxE--K is a function such that, for each zEZ, Iz,.) is

linear on X;
(1.2) c:X x X--+ R is a function such that, for each x X, cffx, x) 0

and c(x, .) is concave;
(1.3) for each y X, the set

{xeX:rinf Re(z,x-y)+c(x,y)> 0}
is compactly open; and

(1.4) for each N IX), there exists an LN kc(X) containing N such
that x LN\K implies

inf Re/z, x- y) + c(x, y) > 0 for some y LN.
zE Tx

Then there exists an - K such that

inf Re(z,2- y) + c(-, y) <_ 0 for all y X.
zE T2

Moreover, the set of all solutions X is a compact subset of K.

Proof Define p:X x X--+ [-oc, oc] by

p(x, y) inf Re/z, x y) + c(x, y) for (x, y) X x X.
z Tx

We use Theorem 0 with p =f= g and 3’ 0.

(1) p(x,x)=O for xEXby (1.1) and (1.2).
(2) For each y X, {x X: p(x, y) > 0} is compactly open by (1.3).
(3) For each x X,

{y X:p(x,y) > O}- y E X: inf Re(z,x- y)+ c(x,y) > O
z Tx J

is convex since /z, .) is linear and cffx, .) is concave by (1.1) and
(1.2).

(4) (1.4) (0.4).

Therefore, by Theorem 0, we have the first conclusion. Moreover,
the set of all solutions is in the intersection ("]y x {x K: p(x, y) G 0}
of the compactly closed subsets of K, and hence compact. This
completes our proof.
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Particular Forms
1. Allen [1, Corollary 1]: E is a t.v.s., Z= E*, T:X E* a function

such that x (Tx, x} is 1.s.c. on X, and c(x, y) =f(x) -f(y),
where f:E (-,] is a 1.s.c. convex function which is finite on
X. Note that our coercivity condition is more general than Allen’s.

2. Yao and Guo [32, Theorems 3.1 and 4.1]: E=Z=R and c=0.
Consequently, all of the existence results of variational problems in
[32, Sections 3 and 4] are consequences of Theorem 1.

3. Park and Kum [24, Theorem 2]: Z is a vector space,
Z x E R is a bilinear functional, and c 0.

From Theorem and Lemma 2, we obtain the following:

THEOREM 2 Let X be a convex subset ofa t.v.s. E over K, F a t.v.s, over

K, T: X-- k(F) u.s.c., and K a nonempty compact subset of X. Suppose
that

(2.1) ): F x E---+ K is a function such that, for each z e F, (z, .) is

linear on E;
(2.2) c X X R is a function such that, for each x E X, (x, x) O,

(x, .) is concave, and (., x) is 1.s.c. on compact subsets of X;
(2.3) for each y X, (z, x)-+ Re(z, x-y) is l.s.c, on F X; and

(2.4) for each N (X), there exists an LN k(X) containing N such
that x LN\K implies

inf Re(z, x- y) / c(x, y) > 0 for some y LN.
zE Tx

Then there exists an - K such that

inf Re{z,-- y) + c(-, y) <_ 0 for all y X.
zE T7

Moreover, the set of all solutions - is a compact subset of K.

Proof We use Theorem with Z F. Note that (2.1) (1.1),
(2.4) = (1.4), and (2.2) == (1.2). Since T:Xk(F) is u.s.c., by
Lemma 2, (2.3) implies that, for each y X,

x inf Re{z, x y)
z Tx
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is 1.s.c. on compact subsets of X; and hence

x inf Re(z, x y) + c(x, y)
zE Tx

is 1.s.c. on compact subsets of X. Therefore, (1.3) is satisfied. Now the
conclusion follows from Theorem 1.

Particular Forms
1. Hartman and Stampacchia [15, Lemma 3.1]: X= K is a compact

convex subset of E=F=Rn, is the scalar product in Rn,
T:X+ R a continuous map, and a 0.

2. Lions and Stampacchia [18], Stampacchia [28], and Mosco [19]:
X K is a compact convex subset of a real inner product space E,
T= x, a:E x E- R a continuous bilinear form on E, and for a

v’ E E*, let a(u, w) (v’, w u). Then there exists a u E K such that

a(u,w-u)<(v’,u-w) for allwX.

3. Park [21, Corollary 2.1]: T is single-valued.

From Theorem and Lemmas 3 and 4, we obtain the following:

THEOREM 3 Let Xbe a convex subset ofa t.v.s. E over K, Ka nonempty
compact subset of X, and F a vector space over K. Suppose that

(3.1) F E K is a bilinear functional such that, for each z F,
x - (z, x) is continuous on each compact subset of X;

(3.2) c:X XR is a function as in (2.2);
(3.3) F has any one of topologies r(F,E), 5(F,E) and /(F,E); and

T: X- k(F) is u.s.c, on compact subsets of X; and
(3.4) for each N (X), there exists an LNkC(X) containing N such

that x LN\K implies

inf Re(z, x- y) + c(x, y) > 0 for some y LN.
zE Tx

Then there exists an - K such that

inf Re(z,-- y) + c(-, y) < 0 for all y X.
zE TN
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Moreover, the set ofsolutions - is a compact subset ofK. Further, if T-
is Hausdorffand convex, then there exists a E T- such that

e,e(,- y) + c(, y) <_ o for a y x.

Proof We use Theorem with F- Z. Then (3.1) == (1.1), (3.2)
(1.2), and (3.4)= (1.4). It remains to show that (1.3) holds. For any
compact subset C of X, by Lemma 3, (3.1) and (3.3) imply that, for each
y E X, the function

xH inf Re(z,
zE Tx

is 1.s.c. on C. Since c(., y) is 1.s.c. on C by (3.2),

x inf Re(z, x y) + c(x, y)
zE Tx

is 1.s.c. on C. Hence (1.3) is satisfied. Therefore, by Theorem 1, the first
and second part of the conclusion hold.

Suppose that T is convex. Define f" T2 X R by

f(z, y) Re(z,2- y) + a(2, y) for (z, y) T2 X.

Then f is linear in z T2 and in y X. Moreover, for each y X,
z (z,2- y) is continuous as in the proof of Lemma 3, and hence
zf(z, y) is 1.s.c. on TY. Therefore, by Lemma 4, we have

min sup f(z, y) sup min f(z, y).
zT yX yX zT

Since zH SUpyExf(z,y is 1.s.c. on the compact set T2, being the
supremum of 1.s.c. functions, there exists a 2 E T2 such that

sup f(2, y) min sup f(z, y) sup min f(z, y).
yX zT yX yX zET-ff

Since the right hand side is < 0 by the first part of the conclusion, we
have SUpyx f(,y) <_ 0; that is,

Re(Z, 2- y) + c(2, y) < 0 for all y X.

This completes our proof.



80 S. PARK AND M.-P. CHEN

Remark If F--E*, the topological dual of E, then we do not need to
assume the continuity of y H (z, y} in (3.1).

Particular Forms
1. Browder [4, Theorem 3], [5, Theorem 2]: E is locally convex,
F= E*, X= K, T K--, E* continuous, and a =0.

2. Browder [5, Theorem 6]: E is locally convex, F=E*, X=K,
T:K kc(E*) u.s.c., and a 0.

3. Shih and Tan [25, Theorem 10]: E is locally convex, F=E*,
T X--+ E* continuous, and a 0.

4. Park [20, Theorem 2]: X= K is a compact convex subset of a real
t.v.s. E, F= E*, T:K E* continuous, and a 0.

5. Ding and Tan [12, Theorem 4]: Equip Fwith the (5(F, E)-topology,
a(x, y) h (x)-h (y) where h X R is a 1.s.c. convex function, and
assume more restrictive coercivity condition.

6. Ding [11, Theorem 2.2]: X is equipped with the or(E, F)-topology, F
with the or(F, E)-topology, and assumes stronger coercivity.

7. Park [21, Theorem 3]: E is locally convex, F=E*, T is single-
valued, and a 0.

8. Chang and Zhang [8, Corollary ]: X Kand a(x, y) h (x) h (y),
where h:XR is a 1.s.c. convex function.

9. Zhang [33, Theorem 6]: F has the (5 (F, E)-topology, a(x,y)=
h(x)- h(y) as above, and the coercivity is stronger than ours.

10. Park and Kum [24, Theorem 1]: F= E* with (5(F, E)-topology,
X= K, and a 0.

VARIATIONAL INEQUALITIES FOR GENERALIZED
MONOTONE MULTIMAPS

Let E and F are t.v.s, and F x E K be a pairing. For any Xc E,
a multimap T:X--o F is said to be

(i) monotone if for each x, y E X, u Tx, and v Ty,

Re(u- v, x- y) >_ 0;

(ii) semimonotone [2] if for each x, y X, u Tx, and v Ty,

inf Re(u, x y) > inf Re(v, x y);
uE Tx vE Ty
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(iii) quasimonotone [12] if for each x, y E X,

inf Re(v,x- y) > 0 implies inf Re(u,x- y) > 0.
vE Ty uE Tx

The concepts of semimonotonicity or quasimonotonicity are used in
the works of Bae et al. [2], Cottle and Yao [10], Yao [31], and Ding-
Tarafdar [13].
We now introduce the following: T is said to be

(iv) demimonotone if for each x, y E X,

sup Re(v,x- y) > 0 implies inf Re(u,x- y) > 0.
v Ty u Tx

Note that this kind of monotonicity is used by Zhang [33, Theorems
4,7, and 8] and extends the monotonicity (i).

In this section, from Theorem 0, we deduce generalized and simplified
versions of the main results of [6] and many other authors with much
simpler proofs.
The following existence result on solutions of variational inequalities

for demimonotone multimaps is important:

THEOREM 4 Let X be a convex subset ofa t.v.s. E over K, Ka nonempty
compact subset of X, F a vector space over K, and ).’F E K a
bilinearfunctional such thatfor each f F, thefunction x (f, x) is 1.s.c.
on X. Suppose that

(4.1) T: X--o F is demimonotone;
(4.2) a X X R is such thatfor each y X, c(., y) is l.s.c, on compact

subsets of X;
(4.3) for each N (X), there exists an LNG kc(X) containing Nsuch that

for each x LN\K,

sup Re(v, x- y)+ c(x, y) > 0 for some y LN.
v6Ty

Then there exists an - K such that

sup Re(u,2- y) + a(2, y) <_ 0 for all y X.
v6Ty
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Proof For x, y E X, let

g(x, y) sup Re(v, x y) + a(x, y),
v6 Ty

f(x, y) inf Re(u, x y} + a(x, y),
uE Tx

and use Theorem 0 with 7 0. Note that (0.1) holds by (4.2).
Since T is demimonotone, we have g(x, y) > 0 implies f(x, y) > 0 for

each x, y E X. Note that {y X: f(x, y) > 0} is convex. In fact, if
f(x, yl) > 0 and f(x, y2)> O, by the bilinearity of and (4.2), we
can easily check that

f(x, ty + (1 x)y2) >_ tf(x, Yl) + (1 t)f(x, Y2) > 0

for 0 < < 1. Hence, we have

{ y e X: f(x, y) > 0} D co{ y X: g(x, y) > 0}

for each x X. This shows (0.3).
Note that for each z E F, x H (z, x) is 1.s.c. on X by assumption, and

hence xH supv vy(V,x-y) is 1.s.c. for each y X, being the supremum
of 1.s.c. functions. Since a(., y) is 1.s.c. on compact subsets ofXby (4.2),
x g(x, y) is 1.s.c. on compact subsets of X for each y X. Hence (0.2)
holds.

Moreover, (4.3) implies (0.4). Therefore, by Theorem 0, there exists
an 2 K such that SUpy E xg(2, Y) <- 0; that is,

sup Re(v,2- y) + a(2, y) _< 0 for all y X.
v6 Ty

This completes our proof.

Remark For F= E*, a monotone map T, and a(x,y)=h(x)-h(y),
where h:XR is a convex 1.s.c. function, Theorem 4 reduces to
Tarafdar and Yuan [30, Theorem 3.1], where the coercivity is stronger
than ours.

LEMMA 5 Let E be a t.v.s, over K, F a vector space over K, and ):
F E---K a bilinear functional. Then for each z EF, y- (z,y) is

continuous on E with the or(E, F)-topology.

For the proof, see [6, p. 499].
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From Theorem 4 and Lemma 5, we immediately obtain the following:

THEOREM 4 Let X be a convex subset of a t.v.s. E over K, F a vector

space over K with the or(F, E)-topology, and K a nonempty
compact subset ofX w.r.t, a bilinearfunctional ): F E-- K. Suppose
that

(4.1) T: X---o F is demimonotone;
(4.2)’ c X x X R is such thatfor each x E X, c(x, x) 0 and c(x, .) is

concave, andfor each y X, c(., y) is l.s.c, on compact subsets ofX
with the cr(E,F)-topology; and

(4.3)’ for each N (X), there exists a cr(E,F)-compact convex subset
LN ofX containing N such that for each x LN\K,

sup Re(v, x- y) + c(x, y) > 0 for some y LN.
v6 Ty

Then there exists an - K such that

sup Re{u,-2- y) + (-g, y) < 0 for all y X.
v6 Ty

LEMMA 6 Let X be a convex subset ofa t.v.s. E over K, and F a vector

space over K with the cr(F,E)-topology w.r.t, a bilinear functional
): F E-- K. Suppose that

(1) T: X--o F is u.s.c, on each line segment of X; and
(2) c:X X R is a realfunction such that for each x X, c(x, x) --0

and c(x, .) is concave.

Then for each -g X, it follows from

sup Re(v,- y) + o(-, y) <_ 0 for all y X.
v Ty

that

inf Re(u,2- y) + c(-2, y) < 0 for all y X.
u T2

Proof Just follow the proof of Chang et al. [6, Lemma 3].
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Particular Forms
1. Shih and Tan [26, Lemma 2]: E is a Banach space, F= E*, c 0,

and Tx is weak* compact for each x E X.
2. Tan and Yuan [29, Lemmas 3 and 8], Tarafdar and Yuan [30,

Lemma 2.7]: F=E*, c(x,y)=h(x)-h(y) where h:XR is
a convex function, and Tx is or(E*, E)-compact for each x E X.

3. Chang et al. [6, Lemma 3]: c(x,y)=h(x) h(y), where h:XR is a
convex function.

LEMMA 6 Let X, E, F, and c be the same as in Lemma 6. Suppose that

(1) T" X--o F is 1.s.c. on each line segment of X.

Then for each - X, it follows from

sup Re(v,N- y) + c(-, y) <_ 0 for all y X
v6 Ty

that

sup Re(u,-- y) + c(-2, y) <_ 0 for all y X.
uE T2

Proof Just follow the proof of Ding and Tan [12, Lemma 3].

Particular Forms
1. Ding and Tan [12, Lemma 3]: c(x,y)=h(x)-h(y), where h:
X R is a convex function.

2. Tan and Yuan [29, Lemma 2]: E is a Banach space, F= E*, and
c(x, y) h (x) h (y) as above.

THEOREM 5 Under the hypothesis of Theorem 4 or 4t, assume that

(5.1) T is u.s.c, on each line segment ofX to the or(F, E )-topology on F.

Then there exists an K such that

inf Re(u,-- y) + c(2, y) < 0 for all y X.
uE T

Furthermore, if T- is Hausdorff compact convex, then there exists a

T such that

Re(T,- y) + o(, y) <_ 0 for all y X.
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Proof From Theorem 4 or 4 and Lemma 6, the first conclusion
follows. For the last part, we can follow the proof of Theorem 3.

Particular Forms
1. Stampacchia [28, Theorems 2.3 and 2.4]: E is a reflexive Banach

space, X= K, F= E*, c--0, and T is single-valued and monotone.
2. Shih and Tan [26, Theorems and 2]: E is a reflexive Banach space,

F-E*, c=0, and T is monotone with stronger coercivity.
3. Chang et al. [6, Theorem 2]: Eis locally convex, c(x,y) h(x) h(y)

for a function h X--+ R, Tis monotone, and the coercivity is stronger
than ours.

4. Tarafdar and Yuan [30, Theorem 3.4(II)]: F=E*, c(x,y)=
h(x)- h(y) as above, T is monotone with stronger coercivity.

THEOREM 5 Under the hypothesis of Theorem 4 or 4 , assume that

(5.1)’ T is l.s.c, on each line segment ofX to the or(F, E)-topology on F.

Then there exists an - E K such that

sup Re(u,- y) + a(2, y) < 0 for all y X.
uE T2

Proof From Theorem 4 or 4 and Lemma 6, the conclusion follows.

Particular Forms
1. Shih and Tan [25, Theorems 6 and 7]: F--E*, a=0, and T is

monotone with stronger coercivity.
2. Ding and Tan [12, Theorems 2 and 3]: a(x,y)--h(x)-h(y) for a

function h:X R and assume stronger coercivity.
3. Ding [11, Theorem 2.1]: Under stronger coercivity and additional

assumption.
4. Zhang [33, Theorems 4 and 5]: a(x, y)= h (x)- h(y) under stronger

coercivity.
5. Tarafdar and Yuan [30, Theorem 3.4(1)]: F=E*, c(x,y)=

h(x)- h(y), and assume stronger coercivity.

Remarks 1. There are a lot of particular forms of (reflexive) Banach
space versions of Theorems 4, 4’, 5, and 5. See [7,30,32] and others.
Those results can be improved by following our method.

2. There are a lot of applications of Theorems 4, 4t, 5 and 5 . See
[7,15,18,19,28,30,32] and others. Some of them also can be improved
using our results.
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Finally, from Theorem 4 or 4t, we have the following:

THEOREM 6 If T is monotone in Theorem 5, then there exists an - E X
such that

sup [sup Re(v,2 y) + a(2,y)]_< sup[ inf Re(u,2 y) + a(2,y)]<_ 0.
yEX vE Ty yX uT

Further, if T- is Hausdorff compact convex, then there exists a -a T-
such that

Re(T,- y) + a(-, y) <_ 0 for all y e X.

Proof Since T is monotone, for all x, y X, u Tx and v Ty, we have

Re(v, x y) <_ Re(u, x y)

and hence we have

g(x, y) <_ f(x, y)

in the proof of Theorem 4, which readily implies the conclusion by
Theorem 5.

Remark Under the hypothesis of Theorem 4, a very particular form
of Theorem 6 is due to Chang et al. [6, Theorem 1] and Chang and
Zhang [7, Theorem 4.1].
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