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A new method for minimizing a proper closed convex function f is proposed and its
convergence properties are studied. The convergence rate depends on both the growth
speed of f at minimizers and the choice of proximal parameters. An application of the
method extends the corresponding results given by Kort and Bertsekas for proximal
minimization algorithms to the case in which the iteration points are calculated approxi-
mately. In particular, it relaxes the convergence conditions of Rockafellar’s results for the
proximal point algorithm.
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1 INTRODUCTION

Consider the proximal minimization algorithm for solving the fol-
lowing convex minimization problem

min{ f(x): x € R"} (1)
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defined by

. 1 B .
Xkl = argmm{f(x) +(—————X;||x— x| xeR },

T+1)

where fis a proper closed convex function defined in R”, the proximal
parameters )\, and 7 are positive constants, ||-|| denotes the standard
Euclidean norm on R”, (see Martinet [15] which is the case =1 based
on [16]). The algorithm is globally convergent, and its local speed of
convergence depends on: (i) The growth speed of f at the minimizers;
(ii) The choice of Ag; and (iii) The choice of 7 (see [1,2,11]). For a survey
of results of the proximal type minimization we refer the reader to
[3-6,8—10,14,20—24], especially to [3,5,9,20].

Rockafellar [20] made a nice extension for the proximal point
algorithm. In his algorithm, the iteration points are calculated approxi-
mately. A question is: do corresponding results of Kort and Bertsekas
[11] hold for the algorithm of Rockafellar [20] when it is applied to a
proper closed convex function?

In the next section, a new method for solving nonsmooth convex
optimization problems is presented. This algorithm is globally conver-
gent, and its local speed of convergence depends on both the growth
speed at the minimizers and the choice of proximal parameters. These
results are similar to those in [1,2,11]. Furthermore, a general proximal
point algorithm introduced in [20] can be regarded as a special case of
this method. In Section 3, an application of this algorithm relaxes a key
condition of Rockafellar [20] for convergence of the proximal point
algorithm. The condition,

00
Z b < 400,
k=1

becomes
limsup{6;} < 1,
where 6 is a parameter in the algorithm. In the same section, some

special cases of the algorithm are also discussed. Some concluding
remarks are in Section 4.
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2 METHOD AND ITS CONVERGENCE PROPERTIES

21 The Algorithm and its Global Convergence

Algorithm 1 Let g>1 be a given positive number. Let x; € R” be
arbitrary. In general, given x; € R", generate a proximal parameter
t >0 and x; 1 € R” such that there exists g, | € 9f (xx ;1) satisfying
the following inequality:

g1 (o — Xi1) > tell g || (2)

THEOREM 2.1  Let {xx},—, be any sequence generated by Algorithm 1.

Q) If Y 2, tk = +00, then either f(x;) — —oo or liminfy _, o ||g|| = 0.
In the latter case, if {xi }~., is a bounded set, then every accumulation
point of {xi}r~, is an optimal point of (1).

(ii) If inf{¢;} > 0, then either f(x;) — —oo or g — 0. In the latter case,
every accumulation point of {xi},., (if there is any) is an optimal
point of (1).

Furthermore, Let X™ be the set of minimizers of f, f*=inf{f(x):
x€R"}. Then

_ 1y}
SOokn) =f* < inf{{beegr = x| x* € X He oo — 2l
Proof From the subgradient inequality,

SOa) > f (i) + g (o — xiq1)-

By (2), we have

S ) > f (k1) + tellgrr || (3)

This implies that f(xz,y) < f(xx). If the decreasing sequence
{f(xk)}re, tends to —oo, we are done. Otherwise, this sequence is
bounded from below.

By (3),

(o8

tellgrst ]| < +oo.
=1
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If |lgell is bounded below by a positive number, then the above
inequality implies that Y ;2 #x < 400, which contradicts our assump-
tions in (i). Thus, liminfy _, « ||gk|| = 0. If {xx };=, is a bounded set, then
there exists an infinite index set K such that limc g gr = 0. Without
loss of generality, we may assume that limy ¢ g X = x*.

Applying

J(x) = f (xi0) + g5 (x = xx)

and letting k — oo, k€ K, we have that for all xe R", f(x) >f(x"),
which implies that x* is a minimum point of f. By f(xx 4 1) <f(xz), we
deduce that every accumulation point of {x;};-, has the same optimal
value, f(x*), and is, hence, also a minimum point of (1).

We now prove the second conclusion. From (3), we have that either
f(xx)— —o0 or gr— 0 by using inf{#,} >0. Let {x;: k€ K} be any
convergence subsequence of {xx};-, and limye g xx = x*. Then,

Ilig}( Of (xk) € Of (x™)

yields that 0 € 9f(x*). So x™ is an optimal point of (1), since fis a
convex function.
For each x* € X™* and any k, since

I =) 2 () + iy (xF = Xear)s

by (2), we have

S ors1) =" < llgesa lllxeer = x|l

1yl
< s = x*[1[tg vt — xil) "

Hence

. * * K\ [4— -1
f(rs1) =f* < inf{{|xen — x*||: x* € X* Mg e — xl]67 .

The second conclusion follows.

COROLLARY 2.1  Suppose that X is nonempty, compact and {t;};-, is
bounded away from zero. Let {xi}s., be any sequence generated by
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Algorithm 1. Then {x;}y, is bounded, f(x;) — f*and
klijrgo plxi; X*) =0, 4)
where p(x; X™*) is the distance from x to X *given by
p(x; X*) = min{||x — x*||: x* € X*}.

Proof By Theorems 8.4 and 8.7 of [18], the level sets of fare bounded.
On the other hand, for all k, f(xx;1)> f(xx). Hence {xi},o, is
contained in some level sets of f. Therefore, {xi},-, is a bounded set.
By (ii) of Theorem 2.1 and the compactness of X *, we have f(x;) — f*
and (4).

2.2 Local Convergence

We from now on assume that inf{#;} >0. Like [3,11], we need the
following key assumption which was used to analyze the convergence
rate of the proximal minimization algorithm for quadratic as well as
certain types of nonquadratic proximal terms (see [3,11]).

Assumption 1 X ™ is nonempty and compact. Furthermore, there exist
scalars o >0, p>1 and 6 > 0 such that for any x with p(x; X*) <4,

Sx) =f* = alp(x; X7))". (5)

LEMMA 2.1  Suppose that (5) holds. Then for each x with p(x; X*) < é
and g € Of (x),

lgll > a7 f(x) = /1107 (6)
Proof Since for any g € 9f(x) and any x* € X,
[P=r(x") 2 f(x) + &7 (x" = x).

So we have

f* = f(x) > max{gT(x* — x): x* € X*}
> max{—|lg|[[lx* — x[|: x* € X"}
= —[Igllp(x; X ™).
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Hence,

LVP
F) =" < liglp(x X*) < gl [fi(i)a—_i]

by using (5). This implies (6).

LEMMA 2.2 Suppose that (5) holds, {xx} ., is generated by Algorithm 1.
Then for all large k,

S o) —f" 1
FOk) =F* 7 1+ trat/p] f(xpy) — @ D@=D-D/p"

(7)

Proof  Since p(xi; X*)— 0 and f(xz) > f(xx 1), we have ky > 1 such
that for all k > ky, p(xi; X™*) < 6. Using gx 41 € 9f (xx 1), we have

Fxk) = f (K1) + 8y (X — Xiq1)
> f(xk1) + tellgren ||
> f (k1) + P f (i) = f 17007

by Lemma 2.1. Therefore,

SOk) =" = f (Xierr) =+ te@?P[ f (xiegr) — 1777,

This implies the conclusion by using f(xx 4 1) >/

THEOREM 2.2 Suppose that (5) holds, {xi};., is generated by
Algorithm 1. Then f(x;) tends to f* superlinearly under any one of the
following conditions ((a), (b) or (¢)):

(@ @-D(p-DH<1L

®) (g-D(p—D=1and t;— +oo. (If ty— t,. < + 00, then f(x;) tends
to f* linearly.)

©) (—D(p—1)>1and

Jdim o f (o) = £ 0700 = oo, ®)

If p=1, then there exists ky > ki such that x, € X*, i.e., the minimizer of
f can be determined within a finite number of steps.
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Furthermore, if there exists a scalar 3 < + oo such that
SG) =1 < Blp( X)) for all x with p(x;X*) <8, (9)

then x;. tends to X “superlinearly under any of the above conditions ((a),

(b) or (c)).
Proof The fact, f(x;1) —f ", implies that

klim tkaq/P[f(xk+1) __f*]((q—l)(p—l)—l)/p = to0, (10)

if one of the conditions (a)—(b) holds. Then

lim S (Xk1) —

T f* =0 (1

by Lemma 2.2.
In case (b) with 7, — ¢, < + oo, from (7), we have

S k1) =S~ 1
m <
kh—voo f(xk) =f* ~ 1+ tuad/p <1

Hence f(x;) tends to f* linearly.
For (c), using

f(f—i; 2 “< 1 /{1 @t f ) — 1 ) — 00

te] f (x) _f*]((q—l)(p.—]>_1 /p},

(11) follows.

Recalling (5) and p(xy; X *) < 6 for all k& > k, which has been used in
the proof of Lemma 2.2, we have

Sfx) =f* > alp(x X*))7. (12)
But from the proof of the Lemma 2.1,

S =" < lgellp(xes X7). (13)
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Thus,
a(p(xi; X)) < lgrllp(xrs X*).

If p=1, since limy _, ., gx = 0 and X * is a compact set, we have k, > k;
such that xi, € X* (otherwise a <0).

We now prove the second conclusion. Let |x—X"|| denote
p(xi; X ™). By (5) and (9) we have k5 > k; such that for all k > k3,

allxe — X*|" < f(x) —f* < Bllxe — X (14)
This yields that f(x;) tends to f* superlinearly if and only if x; tends to

X* superlinearly. The second conclusion follows from (11).

COROLLARY 2.2 Suppose that X * is singleton, i.e., X * = {x"}, {x}rey
is generated by Algorithm 1.

(1) Assume that (5) and (9) hold. If there exist 7o >max{0, (g—1)p—q}
and 71 >0, such that for all k,

tellxk — x| = 711,

then
liggfw =0
if, for all k,
tellXear — xell” > 71,
then

ek
lim ”xk+1 X " —
k—oo ||Ixe — x*||

(ii) Assume that (5) holds. If there exists Ty > 0 such that for all k,

tel f () = f Ga))! > 1,
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then
o fOer) =S
P 7
if, for all k,
tel f (i) = £ (i) > 7,
then

o f k) = _
e =

Furthermore, if (9) is true, then

0.

Y
1iminf|_|xk+—l_i_|l _
k—oo |2k — x*||

or

_ *
o e =)
e o —

holds respectively.

Proof (i) It is very clear that #; — + oco. Hence, we only need to
consider case (c) of Theorem 2.2. If the conclusion is false, then we have
a positive number 7, < + 0o, such that for all k,

e —x*| 1
XK1 —x*|| 7 72
Thus, we have

[l — x|l [l = x*|l

36 = X1l = [l — 2 *{| + [Joee—1 — x*||
_ 1

L [lorgemr = x*|| /[l — x*|

> 1

1+T2‘
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This inequality and (5) yield that

1l f (k) _f*]((q—l)p—q)/p
[(g—-1)p—a] ((a=V)p—9)/p
X = x* xXx) —f*
= til|xx — xp1 | [———l I ” } [f( o~/ }

Xk — xi| [k = x*|I”
1
TN T ]
1 [(g—1)p—q] 1
> ralle-br-a)/p ; .
- I+m ke = e ||~

This last result implies that (8) holds. Hence x; tends to x* superlinearly
by Theorem 2.2 and

_ *
ig llxx — x| o
72 ||xe—1 = x*|

This is a contradiction. So the first conclusion of (i) follows.
We now prove the second conclusion of (i). If the conclusion is false,
then we have a positive number 7, < + oo and K such that for all k € K,

[2ee — x| 1

Ik = x*{| — 2

Using this inequality, similarly to the proof of the first conclusion, we
have for all k € K,
tel f (k) __f*]((q—l)p—q)/p

1
1+m

—1)p—
[(4=1)p—q] 1

llXks1 — xk”T—[(q—l)p—q] ’

> ralla-Dr=a)/p

This and Lemma 2.2 imply that

lim S (Xr1) = _

kek f(xx)—f* =0
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By (5) and (9), we have

1/p
X = x| e ) =S
L A TE— [_] Jimy [T(x:—)——f*_} =0.

kek ||lxg—x*| — Lp

So 7= + o0o. Again, this is a contradiction. This proves the second
conclusion of (i).

(i) Assume that (5) holds. We prove the first conclusion.
Using

) =" 1
S Oe) = f (1) = 1+ (fCerm1) =)/ (f (k) =)

and

tel f (i) — f*) @ De=a)/p

= e[~ Gaen)] [ﬁ%

] -4/p

] ((g=1)p—q)/p

x [ 0u) = £xen)
similarly to the proof of (i), if the conclusion is false, we have
khm n [f(xk) __f*] ((a-V)p—q)/p = +00.

Using conclusion (c) of Theorem 2.2, we have f(x;) tends to [~
superlinearly which contradicts our assumption that the conclusion is
false. Hence, the conclusion follows.
Similarly to the proof of the first conclusion of (ii) and the proof of
the second conclusion of (i), we can prove the second conclusion of (ii).
If (9) holds, by

e =l [8 £0e) =]
=T = | f0s) — /"
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and the conclusions which we have just proved, the last conclusion of
the corollary follows.

Using the results of this subsection, we may give some special cases of
Algorithm 1 according to the choice of #,. One such special case
follows.

Algorithm 1.1 In Algorithm 1, generate x; . € Of (xx 1) satisfying
the following inequality:

gt (% = xicr1) = Nlxk = X1 77Nl grat |17

or

gF (e = xip1) > [£ () = fGeen)] N 17

In general, we can choose g =2.
It is worth to note that, if we choose #; as following:

gl (xk—1 — xk)

ty =
llgll?

B

where r> 1 is a constant, then from (2), we can deduce that for all %,
4 >r*. Hence t; — + oo. Hence if p=gq=2, then, by Theorem 2.2,
f(xz) tends to f* superlinearly under the condition (5).

Kort and Bertsekas in their novel paper [11] presented a combined
primal—-dual and penalty method for solving constrained convex
programming. It essentially is a proximal point algorithm (see [2,19]).
Hence, from the results of [1,2,11], under (5), the convergence rate of
the ordinary proximal minimization algorithm is shown to depend on
the growth speed of f at the minimizers as well as the proximal
parameters A\, and 7. More precisely, if 7= 1, the ordinary minimiza-
tion algorithm has finite, superlinear and linear convergence rate
depending on whether p=1, 1 <p<2 and p=2, respectively. The
convergence rate is also superlinear if p=2 and Ay — co. In the case
where the proximal term has a growth rate 7 > 1 other than quadratic
(r =1), the convergence rate is superlinear if 1 <p <7+ 1 even in the
case where p>2 (see [1,2,11]). From Theorem 2.2 (in the case of
q=1+1/7), we obtain corresponding results for our algorithm.
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3 APPLICATION TO THE PROXIMAL POINT METHOD

In [20], Rockafellar presented two general proximal point algorithms
for solving (1). One of them is as follows.

Algorithm A  For x;, generate x; 1 € R” satisfying

6
p(0; Se(ks1)) < 21t = il (15)
where ¢, >0,
Zék < 00, (16)
k=1
and
1
Sk(x) = 9f (x) +c—k(x—xk)- (17)

In the following, we present a generalization of Algorithm A. In the
new algorithm, we relax (16) to the following condition:

lim sup{é¢} < 1. (18)

The new algorithm possesses a convergence rate similar to the rate for
Algorithm A. The relaxation may be important in practice.

Algorithm B For any given 7> 0, let x; € R”. In general, for x; € R",
generate x; ., € R" satisfying

6 T
p(0; ST (xi11)) < ;’;nxm —x", (19)

SE) = O (x) + - llx = el (3 — 3. (20)

The following theorem proves that Algorithm B is a special case of
Algorithm 1, hence the conclusions of Theorem 2.2 hold for Algorithm B.
It is very clear that the ordinary proximal minimization described in the
introduction of this paper is a special case of Algorithm B. Therefore,
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we extended the corresponding results [1,2,11], for ordinary proximal
minimization algorithms to the case when the iteration points are
calculated approximately.

THEOREM 3.1  Suppose that x| is generated by Algorithm B, and gy
is a vector in Of (xy 4 1) such that the norm of g 1 + 1/ci|| Xk 11— xk||T_1
(Xk 41— Xx) is not bigger than the right-hand side of (19). Then for all
large k, (X 1,8k 1) satisfies (2) with g=1+ 1/7 and

Proof Without loss of generality, we may assume that
sup{éc} < L. (21)

By (19), (21) and (20), we have

1 _ )
8k+1 +a||xk+1 — x| (gt — xi)|| < E;“xk“ x| (22)

The inequality,

1 . r
[gk+1 e =l ok - xk>] A

<

1 -
et + [ Xierr = xiell” H(ovk = xk) | 1k = Xl

and (22) imply that

_6k

1
g1€+1(xk+1 —xk) < — k41 — xkuTH'
Therefore,

1 — 6

8 (X — Xp1) 2> e = xill ™ (23)
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On the other hand, using (22), we have
1+ 6k

llgi+11l < [kt = xiell”™ (24)

Now, the conclusion of the theorem follows (23) and (24).

By the above results, we may state global convergence and
convergence rate results for Algorithm B. Noticing that 7, — + oo if and
only if ¢, — + oo, we only need to change ¢ to 1+ 1/7 in Theorem 2.2
and Corollary 2.2. We do not go into this direction in details. We are
more interested in the special case in which 7=1. In the following
analysis, we always assume 7= 1.

THEOREM 3.2 Let {xx},—, be any sequence generated by Algorithm B
with {ck} 4., bounded away from zero. Suppose that {xi};., is bounded.
Then every accumulation point of {xi}s, is an optimal solution of (1).
Furthermore, if x* is an optimal solution of (1), then

S aer) =S (%) < lxieps — x|

X [”gk+1 + CI:I(XkJrl —xi)|| + 01:1”Xk+1 - xk”]

S1+<5k

||Xk+1 = X" X1 — x|

Proof By Theorem 2.1, we have the first conclusion. The proof of the
first inequality in the second conclusion is similar to the proof of
Theorem 4 in [18]. The second inequality follows (22).

For rates of convergence in optimization methods, a key condition is
called the quadratic growth at x* of £, i.e., in the neighbourhood of x*,
O(x™; ri) = {x: [[x=x"|| <ri},

f(x) > f(x*) +alx —x*||* for all x € O(x*;r1), (25)

where «>0. Under (25) and some other additional assumptions
(ck— +o00 and Z,:ff b < +00), Rockafellar proved the superlinear
convergence of Algorithm A. The conditions in (16) and ¢, — + oo are,
however, quite strict. Very large ¢, and very small §, in fact, imply that
the calculation of x,,; can be almost as difficult as the original
minimization problem (0 € 9f(xx ;. 1)). Moreover, the condition (25) is
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false for a large class convex functions (for example, f(x) = || x||?, p > 2).
So it is necessary to discuss the possibility of relaxation of the
requirements for ¢, §; and (25).

For given x€ R" and SCR™* =(0,+00), a collection of proper
closed convex functions (PCCF) is defined by

CC(x;S) ={f: f€PCCF and there exists p € S,0 < o, ( f;x)

< Bp(f5x) < 00},
where
ap(f3) = lim mf{—(“y—)—){l—l(,iﬂ () >f<x>} (26)
and

5y(f:) = lim sup{f LA, f(y)>f(x)} @7)

We now have the following theorem by Theorems 2.2 and 3.2.

THEOREM 3.3 Suppose that the conditions of Theorem 3.2 hold,
{xk}re, is generated by Algorithm B and x;— x". Then f(x;) tends to
f(x*) superlinearly if one of the following conditions ((a;), (by) or (c1))
holds:

(@) pe(1,2), ap(f5x7)>0;

(b)) p=2, ar(f;x*) >0 and ¢; — + oo;

(€1) pEQ,+00), ap(f;x*)>0, and limy 0 x| f (xx) — f (x*)] P27
~+o00.
If a1(f; x*) >0, then the minimizer of f can be determined after a
finite number of steps.

Furthermore, x; tends to x*superlinearly if one of the following
conditions ((ay) or (by) or (cy)) holds:

(ap) f€CC(x";(1,2));
(by) f€ CC(x*{2}) and cx— + oo;
(2) f€CC(x* (2, +00)) andlimy o0 ci[f (i) = f(x*)] "7 = +oo.
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COROLLARY 3.1 Assume that f has a unique minimum, say x*. Let
{Xk} 1y be a sequence generated by Algorithm B.

() Iffe CC (x™;{p}) and there exist T3 > max{0, p—2}, and 74> 0, such
that for all k

.
cillxk = x| > 74,
then x; tends to the unique minima of f, i.e., x, — x*, and

liminf“xk+l - X*“ —
k— o0 ||xk—x*||

b
if for all k,
ckllXipr — x| > 74,

then

po I = x°l)
k—oo  ||Xk — x*||

(ii) Assume ou( f;x%)> 0. If there exists T > 0 such that for all k,

e[S (k) — f (Xx-1)] > 7ar,

then

o S (e) — ()

W e e
if, for all k,

ek [f (xiegn) = f (xn)] = 7w,
then

S (i) —f(x7)

lim ————————==0.

k—oo f(xx) = f(x*)
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Furthermore, if f€ CC (x*; p), then
fiminf 12 =l _
k— o0 “Xk — x*||

or

i Wt = X" _

=0
k—oo ||lxx — x*||

holds respectively.

Proof Using the assumption of this theorem, we can deduce that
{xk } =, is bounded (see the proof of Corollary 2.1). By the boundedness
of {xi}iZis

T4 T4

Ck = >
Xk — x| 27 sup{||xe[|”}

>0,

and Theorem 3.2, we have that x; tends to x*, the unique minimum of f;
i.e., x, — x*. The conclusions follow Corollary 2.2 now.

It should be noted that the condition ay(f;x*) >0 is weaker than
(25). In fact, ay(f;x*)>0 does not imply the uniqueness of the
minimizers of f, but the following proposition holds.

ProPOSITION 3.1  If (25) holds, then X™* = {x"}.

Let Y™ be the set of all accumulation points of {x};-, generated by
Algorithm B. Then we have the following result.

LeEMMA 3.1  Suppose that Y*# ) has an isolated point and

M| — x| = 0. (28)

Then {xx}r, is a convergent sequence.

Proof By the assumption on Y*, there is a point y* € Y * such that it is
an isolation point in Y. Then there exist r,>0 and O(y*;ry) =
{x: ||x—=y"|| <ry} such that Y*NO(y*;r)\{y*}=0. Let K(y*)=
{k: x;, € O(y*;r2)}. Then K(y*) is an infinite set and

lim x, =yp*.
kekiyn ¥ =Y
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Furthermore, let K(y*) = {k;: ji <j, implies k;, < k;,} and N be the
set of natural numbers. If N\ K(y™) is an infinite set, then there exists an
infinite set K;(y*) C K(»*) such that for all k;€ Ky(y*), ki+ 1¢K(y™).
Let /; be the smallest number in N\K(y™).

In general, suppose that we have {/;,5,...,/;}. Then let /;, ; be the
smallest number in N\K(y*)\{/1,i+1,...,1;[;+ 1}. By induction, we
have an infinite set {/;: i€ N}. It is clear that K;(y*)={k;=[—1:
i € N} is the desired set. Since limg, _, oo Xk, =y *, wehave lim, _, oo Xg,11=
y* by (28). This is impossible from the definition of K(»*) and
ki+1¢ K(y*). So N\K(y*) is a finite set. This implies that
limg _, o, X = y* by the definition of K(y™).

Indeed, if both L(f;x;)={x: f(x) < f(x1)} and {cx} are bounded,
then Theorem 3.2 implies that limg .o, ||xx+1 — x| = 0. In addition, if
the condition (a,) in Theorem 3.3 holds and Y™ is not a dense subset of
R", then x; tends to one of the minimizers of f superlinearly. In this
sense, (25) relaxed by ax(f;x*) >0 is a useful consideration for those
problems with nonunique minima.

Example 3.1 Let f(x)€ LEC, and f(x*)=0. For any given number
I < —(p—2)/p, choose

()] ifp>2 (29)

in Algorithm B, then f(x;) tends to f(x™) superlinearly if o, ( f;x*) > 0.
Furthermore, x; tends to x* superlinearly if f€ CC(x*; { p}).

{c>0 if1<p<2,
Cip =

In Examples 3.2-3.4, we assume that ¢, satisfies (29) in Algorithm B
and that x; tends to x*.

Example 3.2 Suppose that we wish to find a zero point of a function
h(x)e LEC. Then we can choose f(x)=max{0,A(x)} and start
Algorithm B from the point xj, A(x;)>0. Since f(xi)>f(xiq1)—
f(x™), also A(xi) > h(xg 4 1) — h(x™). Thus, ~(x*) = 0. Furthermore, we
have the following proposition.

PROPOSITION 3.2 If oy, (h; x™) > 0, then h(xy) tends to O superlinearly. If
he CC(x*;{p}), then x; tends to x*superlinearly.

Proof Since a,(f;x*)=a,(h;x™) and B,(f; x*)=B,(h;x*), the con-
clusions follow from Theorem 3.3.
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Example 3.3 An important special case of Example 3.1 is called the
inequality feasibility problem which is the most fundamental in convex
mathematical programming.

Let f; (i € I a finite index set) be convex functions. Find x € R” such
that

fi(x) <0 foralliel

Let f(x) =max{0, f;(x): i€ I}. Then fis a convex function, f(x)>0.
Furthermore

f(x) =0 if and only if fi(x) <0 forall i€l

Hence, for the inequality feasibility problem, we have a method to solve
it quickly if there exists p€(0,+ o0o) such that for all i I(x*)=

{i:fi(x*)=0}, fi€ CC(x*; { p}). More precisely, we have the following
proposition.

PROPOSITION 3.3 If for alli€ I(x™), oy,(fi; x™) > 0, then f(x;) tends to 0
superlinearly; if for all i€ I(x*), f;€ CC(x*;{p}), then x; tends to x*
superlinearly.

Proof First of all, we note that I(x*)#0 from f(x;)>0 and
f(x)—f(x*)=0. On the other hand, for i¢ I(x*), since f;(x*) <0,
so there exists r, >0, such that for all xe O(x";r,), fi(x) <0. This
implies that for i ¢ I(x™),

fi(x) # f(x) for all x € O(x*;ry).

Hence, if for all i€ I(x™), a,( f;; x*) >0, then

ap(fix™) = xlimx* inf

T
{———“x_x*”,, ) > S >}

> min{e,( fi;x*): i€ I(x*)} > 0.

> lim inf
X—Xx*

Therefore, the first conclusion follows Theorem 3.3.
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By the same approach, if for all i€ I(x™), f;€ CC(x"; { p}), we have
Bp(f3x7) < 4o0.

The second conclusion follows Theorem 3.3.

Example 3.4 Another case of Example 3.1 is finding the zero points of
a given function F(x): R” — R™. More precisely, find x* € R", such that

F(x*)=0

if f(x)= %F (x)TF(x) is a convex function (example: F(x)=Ax+b,
A € R"™™). For this problem, we have the following result.

PROPOSITION 3.4  Suppose that f is a convex function from R" — R,

lim inf{—ﬂf—(ﬂﬂz—p: F(x) # 0} > 0.

xoxe | e — x|

Then ||F(xy)|| tends to O superlinearly. Furthermore, if the following
condition

2
XILH}* sup {%: F(x) # 0} < 400

is added, then x; tends to x* superlinearly.

4 CONCLUDING REMARKS

The original motivation for the Moreau—Yosida regularization was to
solve ill-conditioned systems of linear equations. It is noticed that
Algorithm B always converges superlinearly when p < 2, ¢; = constant,
br=6<1 and, for a large class of functions, a smaller p (< 2) implies
greater ill-conditioning. Comparing with other methods (for example,
Newton or quasi-Newton methods), the proximal point method takes
advantage of solving ill-conditioned problems (also see [13,17,7] for
more details on this topic).

The benefit of Algorithm B can be explained by using the univariate
function f(x) = %le3. For this function, the algorithm given in [12] may
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not converge superlinearly when starting from x; > 0 (see Proposition
15 of [12]). If we choose cx=[f(xx)] (I< —% is a constant) and
apply Algorithm B, then {x;};-, converges to the solution 0 super-
linearly by the results of Example 3.1. Also, for this function, since (25)
does not hold, the superlinear convergence results of [20] cannot be
applied.

The results of Corollaries 2.2 and 3.1 are important for constructing
a good algorithm in the spirit of the variable metric methods (see [12]).
In [12], the authors gave a way to construct ¢, such that ¢, — + oo.
They proved the algorithm possesses superlinear convergence under
(25) when fis an LC' function (in this case, f€ CC(x*; {2})). Since
Algorithm 13 of [12] is a special case of Algorithm B (if for all £, §; =0),
xy tends to x* superlinearly from Theorem 3.3. On the other hand, if we
let ¢x = ||xx — xk—1]|”" in Algorithm B, then we can expect that x;
tends to x* superlinearly even if f is not a smooth function using
Corollary 3.1. Hence, the results of Corollary 3.1 provide a rule to
construct the variable matrices based on the ideas of [12] (for penalty-
type bundle algorithms) and quasi-Newton formulae.

It is not very hard to give a partial proximal minimization algorithm
(see [3]) by a way similar to Algorithm 1. In fact, in Algorithm 1, if we
let gx 1 be the vector with components zero for i € I (where I is a subset
of the index set {1,...,n}, see [3]) then one of the special cases of the
PPM algorithm given by [3] is contained in the Algorithm 1. The reader
can go into this direction in details by following [3].

The essential content of this paper is a theoretical investigation of
algorithms for nonsmooth convex optimization. We extended conver-
gence results from those previously given but one question remains.

How can one solve (2) effectively if fis a nonsmooth function?
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