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In our previous notes, we give a useful characterization of the chaotic order, i.e.,
log A > log B for positive invertible operators 4 and B. In this note, we present a short
proof to the characterization of the chaotic order and give an answer to a related problem
on it. Moreover we consider the orders defined by 4° > B® (0 < § < 1) as an interpolation
between the chaotic order and the usual order via the Furuta inequality.
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1. INTRODUCTION

A (bounded linear) operator 4 on a Hilbert space H is positive, in
symbol 4 >0 if (Ax,x)>0 for all x€ H. And A >0 means that 4 is
positive invertible. First of all, we recall the Furuta inequality [9], cf.
[2,11] and [10] for an elementary one-page proof.

THE FURUTA INEQUALITY If A> B >0, then for each r >0

Alp+2n/q > (AerAr)l/q (0)
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FIGURE 1

holds for p >0 and g > 1 with

(14+2r)g>p+2r (0"

The domain of (0') is expressed in Figure 1 above.
Motivated by the Furuta inequality, Ando [1] gave a nice operator
inequality, by which the usual order 4 > B is characterized.

THEOREM A For self-adjoint operators A and B, A > B if and only if the
following inequality holds for all p > 0:

(epA/ZepBepA/2)l/2 < epA' (1)

Based on the well-known fact that log¢ is operator monotone on
(0,0), we introduced the chaotic order 4> B among positive
invertible operators which is weaker than the usual order, i.e., 4> B

if logA>1logB, see [7]. Thereby Theorem A is interpreted as a
characterization of the chaotic order.

THEOREM B For A, B>0, A>> B if and only if
(Ap/ZBpAp/2)1/2 < AP (1)

holds for all p > 0.
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Afterwards, we generalized Theorem B in order to discuss the
monotonicity of an operator function associated with the Furuta
inequality under the chaotic order [8], cf. [3].

THEOREM C  For A,B>0, A> B if and only if
(AerAr)2r/(p+2r) < A2r (2)
holds for all p,r > 0.

We here note that the original proof of Theorem C in [8] depends on
Theorem B and the Furuta inequality.

Very recently, we obtained the following simple characterization of
the chaotic order which easily links up the Furuta inequality to
Theorem C [4,5].

THEOREM 1  For A,B>0, A>> B if and only if for any § € (0, 1] there
exists an o= ag > 0 such that

(e°4)* > B*.
The essence of the theorem is as follows.

THEOREM 2 Iflog A >log B for A, B> 0, then there exists an a € (0, 1]
such that A® > B®.

Now the most serious problem arising from Theorem 2 is whether
the assumption log A4 >logB can be relaxed to logA4 >logB, i.e.,
A > B, or not. More presicely, the problem is whether 4 >> B implies
that 4% > B for some « > 0 or not.

In this note, we give a short and elementary proof of Theorem 2, and
a negative answer to the problem stated above by posing a counter
example of 2 x 2 matrices. Inspired by this characterization, we
moreover consider the orders defined by 4°>B° (0<6<1) as an
interpolation between the chaotic order and the usual order, and point
out that they exactly correspond to Furuta’s type operator inequalities.
Of course, the case § =1 does to the Furuta inequality.

2. SHORT PROOF AND PROBLEM

Inspired by Theorem A, we could prove Theorem 2; actually we
showed that if 4 > B, then there exists an o > 0 such that e*?! > ¢*%, by
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using the Taylor expansion of the function e'. We now give another
short and direct proof by paying our attention to the fact

xh—

h

logx = hl—l-»I-I:O decreasingly, 3)

so that the convergence of (3) is uniform on any bounded interval
in (0, 00).

Proof of Theorem 2 Suppose that log 4—log B> 2s > 0. By the above
remark, there exists an o > 0 such that

xh—1

—logx|| <s forO0<h<aq,

1

where I is a bounded interval including the spectra of 4 and B. Since

x* —

OSA 1~10gx

<s

—logA < ”
1

and also

0< B x' -1

—logB <

—logx|| < s

1

by the spectral theorem, we have

a _ Ra a __ a_ 1
A"-B =(Aa l—logA>+logA—logB—(B—a——logB>

(e

Ba
210gA—logB—< ” ——logB)

[¢7

B
>logA —logB—

—log BH
>25—s5=13s,
so that A“—B*“>as>0, i.e., A*> B*.

Next we consider the problem: Does 4 > Bimply that there exists an
a>0 such that 4> B“? As a matter of fact, we pose a counter
example of a pair of positive invertible 2 x 2 matrices.
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Example Take 4 and B as follows:

(2 6 (0 0
logA.—(\/g 1) and logB-—(0 _2>.

Then A >> B clearly but 4% > B“ does not hold for any « > 0.
Actually, log A4 is diagonalized by U;

U(logA)U=<g _?1), where U = ! (

5 )

—V3

by

so that

o e4a 0 o 1 0
A —U<O e—a)U and B —(0 e‘z")'

Replacing by x =¢* > 1, we have

3x*4+2x71 =5 Vo(x* —x71)
V6(x* — x71) 2x4 4+ 3x71 — 5x72
= (Bx*+2x7 1= 5)(2x* +3x 1= 5x7 D) — 6(x* — x7)?
= -5x3(x+ D(x - 1)*2x2+x+2),

5det(4* — B*) =

so that it is negative for all x > 1. Hence it means that 4% > B does not
hold for any « > 0.

3. PATH BETWEEN THE FURUTA INEQUALITY
AND THEOREM C

For the sake of convenience, we rewrite the Furuta inequality.
If A> B>0, then for each r >0

AP+ > (AerAr)l/q (4)
holds for p >0 and ¢ > 1 with

(14+2r)g >p+2r. )
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As a connection with the Furuta inequality and Theorem C, we
present the following theorem, cf. [6; Theorem 9].

THEOREM 3 For a fixed 6 >0, A°> B® for A, B>0 if and only if for
eachr>0

Alp+2)/q > (AerAr)l/q (5)
holds for p >0 and q > 1 with

(6+2r)g>p+2r (5)

Proof Put py=p/é, ri=r/b, A; =A% and B; = B®. Since 4, > B, and
(1+2r1)q > py +2r; by the assumption, the Furuta inequality implies
that

APr+2m)/q > (A'l‘lBlPlAil'l)l/q‘

Hence we have the conclusion (5).

We note that Theorem C exactly corresponds to the case §=0 in
Theorem 3. In fact, Theorem C is represented as follows.
For A4, B> 0, A> B if and only if for each r >0

(AerAr)l/q < APt/ (6)
holds for p >0 and ¢ > 1 with

2rg > p + 2r. (6"

The point of the proof is that if p, ¢ and r as in above, then they
satisfy (6 +2r)q > p + 2r for all § > 0, which suggests Theorem 3.

Finally we remark that the boundaries of (4’), (5’) and (6') in which
the inequalities (4), (5) and (6) hold respectively are the lines through
the points (0, —2r) and (1,6) for 0 <6 < 1. The case § =1 (resp. 6 =0) is
just the Furuta inequality (resp. Theorem C), and the cases § € (0, 1)
interpolate between them. One of the authors [12] showed that the
boundary for the Furuta inequality is the best possible. Anyway, one
will be able to recognize the decrease of the domains when 6 moves
from 1 to 0; we present Figure 2 unifying them.
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(6+2r)g>p+2r
r>0,p>0,1>262>0

(1+2r)g=p+2r
(6+2r)g=p+2r
p=q

FIGURE 2
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