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1. INTRODUCTION

Let P denote a polytope of the form {xR" aTix>_ bi (i--
1,2,..., m)}. The symbol Pint stands for its interior {x 6 Rn" aTix > bi
(i 1, 2,... ,m)}. We assume throughout that Pint is nonempty and
bounded. Let F denote the logarithmic potential function on Pint;

rn

F(x)---log(a/Tx- be) for every x Pint.
i=1

The analytic center oJ of the polytope P [11] is defined as the unique
minimizer of the potential function F over the interior Pint of P. We
denote the gradient vector and the Hessian matrix at each x Pint by
VF(x) and V2F(x), respectively. By a simple calculation, we see that

rn

VF(x)
.= aWi x bi .= (aTi x bi)2"

Assuming there exist n linearly independent ai’s, the Hessian matrix
X72F(x) is positive definite at every x Pint. Hence, the potential
function F is strictly convex over Pint, and if Pint k }, the analytic center
o of the polytope P is the unique solution of the system of equations
VF(x) =0. Furthermore, at any fixed x Pint, we can define a norm
over R by

II[Ix /jTV2F(x) (1)

We use the norm ]Ix wl] to measure the distance from any x 6 Pint to
the analytic center o as in the papers by Renegar [10] and Vaidya [15].

Consider the linear program

Minimize cTx
subject to aTi x >_ bi 1, 2, m)

Here, x, c E R’, ai R’, and bi R. We assume that the linear program
has a bounded nonempty set of optimal solutions. Denote by A* the
optimal value of the objective function. It follows that for every A > A*
the interior Sint(A) of the parametric level set

S(/) {x @ Rn" cTx <_ ,, aTi X >_ bi (i- 1,2,...,m)}
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is nonempty and bounded. For each/ > A*, let oa denote the analytic
center of S(A). It is well known that the set {o)a: > *}, consisting of
all the analytic centers, forms a smooth curve which runs through the
interior of the feasible region and converges to an optimal solution of
the linear program as , tends ,*. The curve is called the central
trajectory or the path of centers. Thus, if we numerically trace the
central trajectory till gets sufficiently close to ,V, then we obtain an
approximate optimal solution of the linear program 11]. Renegar 10]
embodied this idea in his polynomial-time algorithm for linear
programs using Newton’s method for approximating the analytic
center of a polytope. Since then, the approximation of the central
trajectory by Newton method has played a major role in many interior
point algorithms developed for linear programs (see e.g. [2,3,5,7,8,10,
13,14,16]) and their extensions to convex quadratic programs (see e.g.
[9]) and linear complementarity problems (see e.g. [6]).
The following theorem provides a theoretical basis for the poly-

nomial-time convergence of Renegar’s algorithm:

THEOREM 1.1 (Theorem 3.2 of [10]) If Ilv-ol[ e < 1, then the
point x* v- 2F(v)-lVF(v), generated by one Newton iteration for
minimizing the potentialfunction F at the point r, satisfies

(1 -Jr- )22
IIx*-ll< 1-e

(2)

Vaidya [15] also investigated the behavior of a Newton-type method
for approximating the analytic center. Our research is motivated by the
following questions: (i) Do conjugate direction and conjugate gradient
methods (see, e.g. [1,4,12]) work as effectively as Newton’s method for
approximating the analytic center? (ii) Can these methods be utilized
effectively in interior point algorithms, replacing Newton’s method?
Here we begin answering these questions. Let v EintP, and let
d 1, d2,..., dn be n V2F(v)-orthonormal vectors;

]ldill2v--(di)TV2F(l)di- (i-- 1,2,...,n),
(di)TV2F(v)dj -0 if < < j _< n.

(3)

We are concerned with a conjugate direction method for approximat-
ing the analytic center.
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Conjugate Direction Method (One Cycle)

Step 0: Let y0__ v and k 1.
Step 1" Define y/ Geint by F(y)=min{F(y=- + ud) uR}.
Step 2: If k n, then stop. Otherwise, set k k + and go to Step 1.

Our main result is:

THEOREM 1.2 Ife IIv- ll _< 1/6, then Ily n- toll -< 23x/e2.
In the remainder of this note we prove this theorem. As by-products,

we derive several interesting properties of the potential function and its
quadratic approximation. In particular, we will see in Corollary 2.5
that an inequality slightly stronger than (2) holds under the assumption
of Theorem 1.1.

2. BASIC ANALYSIS

2.1. Symbols and Notation

We begin by introducing the notation. Let

f(x) F(x) F(to) for every x E Pint.

Obviously, the gradient and the Hessian of the function f at every
x E Pint coincide with those of the potential function F, respectively. By
the definition of the analytic center to of the polytope P, we have

f(to) --0 and f(x) > 0 for every x E Pint.

We also callf a potential function.
Define a quadratic approximation of the potential functionfat every

Y Pint by

qy(X) :f(y)+ VF(y)T(x- y)

+ 1/2 (x y) v:r(y)(x y) for every x Rn. (4)

In particular, we have

qv(X) qv(X*) +1/2(x- x*)TVZF(v)(x x*) for every x R n. (5)
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Here, x* v-(V2F(v))- 1VF(v) denotes the point generated by one
Newton iteration for minimizing the potential function f at a point
v E Pint (see Theorem 1.1).
For each x E Pint, define an n m matrix Ux by

al a2 am )Ux ax- bl’ ax- b2’ a Tmx- bm

and for each pair x, y Pint, define the m x m diagonal matrix RYx by

(ay- bl ay- b2RYx diag \a x bl ax
Tam y bm
Tam X

With this notation, we can rewrite the norm IIllx of/j R defined by
(1) as

11411- v/TV2F(x) [[UxTII (x P).

This equality is used very often without any reference. Also, it is easy to

verify the following equalities for every pair {x,y} c Pint:

7F(x) -Uxe, (6)
72F(x)- UxUXx, (7)

XUy Ux Ry, (8)
x Te Ry e Uy (y x). (9)

2.2. Some Properties of the Quadratic Approximation

In this subsection we present three lemmas. The first one estimates the
difference between the norms [ll[y and I[[[x of Pint when y and x are
close. The second and the third ones evaluate the errors in the gradient
vector Vqy and the Hessian matrix 2qy of the quadratic approxima-
tion qy of the potential function f, respectively.

LEMMA 2.1 If I Rn, {x, y} C Pint, and IIx ylly < , then

(0)
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Proof For every (i--1,2,...,m), let ri denote the ith diagonal
element (a Xix bi)/(a iY- bi) of the diagonal matrix R;. By (9) and
the assumption,

m
x T 2Z( ri)2 -lie- eell2 -IIU(y- x)ll

i=l

2 <2.Ilx yll y

This implies that

m

-(1 -ri)2 e2 and -e ?’i -+-e (i-- 1,2,...,m). (11)
i=1

On the other hand, we know by (8) that U R; UTx Hence, taking
the Euclidean norm of both sides of this equality, we obtain

Thus, the desired inequalities in (10) follow.

LEMMA 2.2 If E Rn, {x,y} C Pint, and either [[x-y[ly <- e or

IIx- yllx <- e, then

I(Vqy(x) VF(x))TI 2

Proof As in the proof of Lemma 2.1, we denote the ith diagonal
element (aXix-bi)/(aXiY-bi) of the diagonal matrix R by ri
(i-l,2,...,m). If ][x-ylly <_ , then the inequalities in (11) hold.
Since Rx (R)-1, we see by symmetry that if [Ix -Yllx < e, then the
inequalities

m (1 /.)2 e2 and< - <-_< +e
i:1 t’i

(i --1, 2, m) (12).

hold. We can easily verify that

I(Vqy(x) VF(x))TI
I(VF(y)+ VZF(y)(x- y)- (by (4))
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T(X y) --- Uxe) Tl(-e +U

( x-Uye + Uy(-e + Ry e) + UyR e

-2e+Rye+Re U
-< II- 2e + R e + RYx ell" Ull

i=1

(i=1(1 --ri)2i)ll]lY--(i=1 (1

(by (6) and (7))

(by (8) and (9))

In either case ((11) or (12)) the desired inequality follows.

LEMMA 2.3 If ; E Rn, {x,y) C Pint and ]Ix ylly < e, then

[;T(V2qy(X)- V2F(x))I <_ (2 + e)ell/jllZy.

Proof By the definition (4) of the quadratic function qy and (7),

By Lemma 2.1,

IT (V2qy(X)

-< max{l(1-
<_ max{ (2

(2 +

2.3. Minimization of the Quadratic Approximation

The following lemma shows a relation between the minimizer xf of the
potential function f and the minimizer xq of its quadratic approxima-
tion qy over any affine subspace S that intersects Pint.
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LEMMA 2.4 Suppose S is an affine subspace ofRn which intersects Pint,
and let y E Pint be any point. Let xf be the minimizer of the potential

functionfoyer SN Pint, and let xq be the minimizer over S ofthe quadratic
approximation qy of f at y Pint. Under these conditions, if either

Ilxf ylly <_ or Ilxf yllx <_ , then Ilx q -xfiiy <_ e2/(1 --e).

Proof From the definition of xf and xq,

(x z)TF(x f) 0 and (x z)TVqy(X q) 0

for any x and z in S. In particular, these inequalities hold for x xq and
z x f. Hence,

(x q xf)mVF(x f) 0 and (x q xf)Tqy(Xq) O. (13)

Therefore,

f 2_ T(X q]iX q X liy IlUy -xf)ll 2

T(xq Xf(xq xf)TVy Vy
(X q xf)Tv2F(y)(X q Xf) (by (7))

(x q xf)T(Vqy(X q) Vqy(xf )) (see (4))"

(x q xf)T(vr(xf) Vqy(xf)) (by (13))
2< l-Z- I[x q- xf[]y (by Lemma 2.2).

Using Lemma 2.4, we can strengthen the inequality (2) given in
Theorem 1.1.

COROLLARY 2.5 Under the assumptions of Theorem 1.1, [[x* -w][ <_
+

Proof If we apply Lemma 2.4 to the case where S R andy- v, then
xf-oo and xq-x*, and hence [[x*-w[[ _< e2/(1 -e). On the other
hand, by Lemma 2.1, [[x* o[] <_ (1 + e)I[x* o[[. Thus the desired
inequality follows.

2.4. Neighborhoods of the Analytic Center

We define an ellipsoidal neighborhood E(e) of the analytic center o by

E(e) {z: [Iz- _< { + I1 11 and 0
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and the level set L(c) of the potential functionfby

L(c) {x: f(x) < c)

for each c >_ 0. The following lemma shows a relation between the
neighborhood E(e) of the analytic center to of the polytope P and the
level set L(c):

LEMMA 2.6 For every e E [0, ],

E(e) C L(2e2/3) C E(’/e).

Proof By Lemma 5.1 of [15],

3
If(a’ + 5) 1/2’2TvF()I <

3(1 5)

for every 6 E [0, 1) and every tj Rn with I111 1. Since TV2F(to)--
TuwuTw, it follows that

3< (14)3( -5)

for every 6 E [0, 1) and every tj Rn with ]ll] 1. This inequality will
be used later.

Now, if

x to + s/ E(e), 0 < s < e < and I111 1,

then

f(x) =f(to + sty)
2S S

2 3(1 s)
2

2 3( )
2e
3

(by (14))

(since s < e < 1)
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This implies that x E L(2e2/3). Thus, we have shown the first inclusion
relation E(e) c L(2e2/3) of the lemma.
We now prove the second inclusion relation L(2e2/3) c E(x/e). It

suffices to show that if

x o + s E(x/e) and 1111 1,

then

x o)+ sj L(2e2/3).

Since s > x/e andfis a strictly convex function attaining its minimum
value 0 at the analytic center o of the polytope P, we have

f(o + s) > f(o + v/e).

On the other hand, by (14) and 0 _< e _< 1/6,

2e2
f(o + x/et) >

2
> 2e2/3.

Hence, xf L(2e2/3).

3. PROOF OF THE MAIN THEOREM

By applying Lemma 2.4 with S-R", xf--o0 and x q --X*, we first
observe that

2
Ilx*-wl[ <. (15)

We also see by Lemma 2.6 that v eE(e)cL(2e2/3), which implies
f(yO) =f(v)< 2e2/3. It follows from the construction of the sequence
(see the Conjugate Direction Method described in Section 1) that

22

f(y) <_f(yO) <_---’ i.e., y: L(2e2/3) (k- 0, 1,...,n).
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Hence, for every k-0, 1,..., n,

Ily vii (by Lemma 2.1)

(llY "11 / IIv ’11)

(+ )
(by y E L(22/3), Lemma 2.6 and v E E(e))

<_3e (since0<e<_ 1/6).

Thus, we have shown that

Ily vllv 3e (k 0, 1,..., n). (16)

Recall that dl, d2,...,dn are n V2F(v)-orthonormal vectors satisfy-
ing (3).

LEMMA 3.1 Ify X* t_ -]iL1 Ai di, then for everyfixedj (j- 1,...,n),
the minimum ofthe quadratic approximation qv ofthe potentialfunctionf
at v Pint or/the line {y + c dJ: ty R} is attained at x* + iji di.

Proof By (5) and (3),

di dj V2F(v) Ai di @ djqv(y + adj) qv(X*) + Ai
i=l i=l

q(*) +g

Thus, the minimum of q(y + d with respect to R is attained at

Let (i- 1, 2,..., n) be real numbers such that

y0
_

x* +d.
i=1

For each k (k 1,2,..., n), let u denote the step length fromy-i taken
at Step of the Conjugate Direction Method along the direction d;

y yC- + ugd. (17)
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Then each y k (k 1, 2,..., n) can be rewritten as

k k

y= yo + iai= x* + <.i + )d + .d.
i=1 i=1 i=k+l

For each k (k- 1,2,..., n), let p k be the minimizer of qv on the line
{yk-1 + a dk. a E R}. By Lemma 3.1,

k-1 n

k X* -’[- Z(#i -1- V’i)di -t- Z Izidi yk (#k -1- tk)dk.
i=1 i=k+l

Hence,
n

Ily" x*ll 2v Z(#i -’[-" ui)dill 2v
i=1

II(#/+ t/i)dill 2v
i=1

i=1

( (3e)2
2

-< -\3Ji=l
_<n "3eJ

(by (3))

(by (16) and Lemma 2.4)

Since 0 <_ e < 1/6,

[lyn-x*[lv<-X/
3e

(18)

Consequently,
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4. CONCLUDING REMARKS

Our main theorem (Theorem 1.2) suggests a modification of Renegar’s
polynomial-time algorithm [10] for linear programs. Specifically, we
can replace Newton’s method, which is used to trace the central
trajectory in Renegar’s algorithm, by the Conjugate Direction Method.
Such a modification does not, however, seem so attractive. The authors
are not satisfied with the fact that in the Conjugate Direction Method
the search directions d, d2,..., dn are chosen as conjugate directions
with respect to a fixed Hessian matrix 72F(v) of the potential function
F at v. Only the line search from yk- is performed along the direction
dk using the potential function f at each iteration of the method. In
standard applications of conjugate gradient methods to nonlinear
minimization, the search direction d is computed adaptively rather
than fixed in advance. Our ultimate goal is to see whether conjugate
gradient methods can be effectively incorporated in interior point
algorithms. Thus it would require more effort to establish a similar
result for conjugate gradient methods rather than the Conjugate
Direction Method given in Theorem 1.2.
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