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Sobolev inequalities in two-dimensional hyperbolic space I[-][ are dealt with. Here [HI is
modeled on the upper Euclidean half-plane equipped with the Poincar6-Bergman metric.
Some borderline inequalities, where the leading exponent equals the dimension, are
focused. The technique involves rearrangements of functions, and tools from calculus of
variations and ordinary differential equations.
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1. INTRODUCTION

1.1. In a paper where fluid mechanics blends with real and functional
analysis, 7], Fraenkel supplied a proof that if 2 < q < oo some constant
A exists such that

(1.1)

2for every test function . Throughout we let + be

{(x,y)" -oo < x < oo,0 < y < o},
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the upper Euclidean half-plane, and let test qualify any smooth real-
valued function defined in R2+ whose value at (x, y) approaches zero fast
enough as either y approaches 0 or x2+y2 approaches infinity. (For
technical reasons, our notations and terminology differ slightly from
those adopted in [7].)
Though chiefly concerned with an existence theory for a partial

differential equation, Fraenkel had an eye to the sharp form of his
inequality, and detected indeed such a form in the case where q 2 and
q 10/3. If q--2, the smallest constant A, which renders (1.1) true for
every test function g), is exactly 1. If q- 10/3, let

A 26/5 15-1/2. 7r-1/5; [= 0.471802666130...];

then (1.1) holds if is any test function, and becomes an equality if is
specified by

79(x y) y2(1 + x 2 q_ y2)-3/2.
The former statement is a straightforward consequence of the familiar
Hardy’s inequality, the latter rests upon the following change of
variable

bl(Xl,X2, X3,X4, X5) --(X + X + x] + X52) -1

l, + 3 + ] +

and a Sobolev inequality in the Euclidean space of dimension 5.
Two moves help to disentangle the matter. One, which did appear in

[7] and turns (1.1) into

3 jc u 2 dx dy (1.2)

is making the change of variable

(x, y) v u(x, y).

Another is realizing that (1.2) falls under Sobolev inequalities in the
hyperbolic (or PoincarO) half-plane.
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The present paper is the second of a series, devoted precisely to these
inequalities. It continues 16], which we refer to for preparatory results
and a bibliography, and focuses some borderline Sobolev inequalities
instances, such as (1.2), where the leading exponent equals the
dimension.
A motive here is to point out that certain lineaments ofthe hyperbolic

half-plane the Riemannian length and area, the geodesic polar coor-

dinates, the isoperimetric theorem and the theory of rearrangements
outlined in 1] and 16] are a key to Fraenkel’s inequality. A feature will

emerge indeed: if a point (a, b) is fixed in R2+ ad libitum, then the test
functions that really count in (1.1) those rendering

dxdy I]qy-q/2-2 dxdy

a minimum have this special form

y)= 7.

Here s Riemannian area of a geodesic disk whose radius equals the
Riemannian distance between (a, b) and (x, y); v is a smooth real-valued
function that is defined in [0, [, decays fast enough at and makes

s(s + 4re) (v’) ds + v2ds}x {Zlvlq ds}
-2/q

a minimum. In conclusion, Fraenkel’s inequality amounts defacto to a

variational problem for functions of a single variable, which can be
treated by simple tools of the calculus of variations and the theory of
ordinary differential equations.

1.2. Let ]2 be 2+ equipped with

y-e [(dx)e + (dy)2], (1.3)

the PoincarO-Bergman metric. ]2 is a Riemannian manifold that
models the two-dimensional hyperbolic space and has the following
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properties see [2, Chapter 14], [13, Section 15], [17, Section 9.5] and
[18, Section 2.2], for example.
The Riemannian length of a tangent vector to lI-lI 2 at a point (x, y)

equals y x (the Euclidean length). The geodesics of lI-lI 2 are the half-lines
and the half-circles orthogonal to the x-axis. The Riemannian distance
between two points (x, y) and (x2, Y2) is the length of the geodesic arc
joining (Xl, Yl) and (x> Y2), and obeys

[(X1 x2)2 + yl
2 + y]. (1.4)cosh(distance)

2yy2

The Riemannian area on EI 2, 3A, is given by

dxdy
dad (1 5)y2

The geodesic circle in lH[ 2, center (a, b) and radius r, has equation

(x- a)2 + (y b)2 [2 sinh(r/2)]2 by, (1.6a)

hence coincides with the Euclidean circle whose center is (a, b cosh r)
and whose radius is b sinh r. The Riemannian radius, area and perim-
eter of a geodesic disk in lI-lI 2 obey

radius- log[1 + (27r)-1 (area + perimeter)],
area r[2 sinh(radius/2)] 2,

perimeter [(area)2 + 47r(area)] 1/2
2r sinh(radius).

The Laplace-Beltrami operator on N 2, /, is given by

(1.6b)

(1.6c)

(1.6d)

02 02) (1.7)

The curvature of ]I-lI 2 is -1. The following statements are closely
related to the last mentioned one and germane to the present context
the former appears in [14]; the latter, known as the isoperimetric
theorem in H 2, appears in [4, Section 10] and [5, Chapter 6], for
example.
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The spectrum of -A "L2(]-2) -+ L2(]’2) is exactly [1/4, [.
If E is any sufficiently smooth subset of H2, then the Riemannian

perimeter and the Riemannian area of E, obey the following inequality.
If the area of E is finite, then

perimeter _> v/area(area + 47r); (1.S)

moreover, equality holds in (1.8) if and only if E is a disk.

1.3. The architecture of a Sobolev inequality on a Riemannian mani-
fold is affected by the underlying curvature. A typical Sobolev
inequality in hyperbolic space ]2 claims that if p, q and R lie in a
suitable range p >_ 1, q > p, 1/q >_ 1/p- 1/2 and R _< p-2 then some
positive constant exists such that

yP u 2 -+- Uy) 2+ x y

>(Cnstant){lulqdxdy}
2/q

{Jy2 + R
+ lulp

dx dy}
2/p

y2 (1.9)

for every test function u.
Observe that

2+
lulp

dx
y2
dy

the norm of u in Lebesgue space LP(]I-2), and similarly

{f Ibllqdxdy}
1/q

IfH I 1/q

2+ y2
lulq dj

the norm of u in Lq(]2). On the other hand,

2" p/2 dx dyyP u 2 + Uy) 2
2+

x y

the norm ofu in (LP(]-2))2.
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Proof If u is a smooth scalar field on ]HI 2 then Vu, the covariant
derivative of u, is the tangent vector field to H2 whose components are

and uy, and whose Riemannian length, IVu], equals yCu 2
x + ub/x

In conclusion, inequality (1.9) reads

IlVull 2 > (Constant)llull e
(Lp(]i. 2))2 Lq(]HI 2) +Nil

Let

C(p, q, R) the largest constant (1.10)

such that inequality (1.9) holds for every test function u. A theorem
from [16] which was derived there as a consequence of the
isoperimetric theorem in H2, and implies the latter results in the
following equations:

C(p,q,R) _p-2 (1.1 la)

if <_ p < oe, q-p and R- O;

C(p, q, R) 47r (1.11b)

ifp- 1, q-2 and -oe <R_< 1;

C(p, q, R) (--1)e/q [sin ()1
if < p < 2, q 2p/(2-p) and -oc < R _< p-2;

(1.11d)

if 2 < p < oc, q oc and R 0.
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1.4. In view of observations made in subsection 1.1, the smallest
constant A which makes Fraenkel’s inequality (1.1) true for every test
function is given by

A-2 C(p, q, 3/4),

here p- 2 and 2 < q < oo, a case not covered by equations (1.11).
In the present paper we look precisely into such a case, and

investigate C(2, q, R). By definition,

C(2, q, R) inff=+ (u2x + u2) dx dy Rf2+ u2y
-2 dx dy

{fR2+lulqy-2dxdy}2/q (1.12)

under the conditions: u is a test function, u : 0.
Alternatively, observe that

(U2x + u2y) dx dy /(Uxx + Uyy)U dx dy

if u is sufficiently well behaved the left-hand side is the standard
Dirichlet integral, the right-hand side is the scalar product of (-Au) and
u in L2(]I2). Deduce that C(2, q, R) coincides with the largest constant
such that

UI[Lq(IHI2(( m i)b/,/,/)L2(IHI2) (Constant). 2 (1.13)

for every test function u.

Geodesic polar coordinates in ]I-]I 2 are introduced in the proof of
Lemma 3.2 together with an instrumental variant. Arguments of
dimensional analysis based upon these coordinates, spectral properties
of the Laplace-Beltrami operator in H2, formula (1.12) and inequality
(1.13) show that

C(2, q, R) { -oo if R > 1/4,
0 if q < 2 and R _< 1/4. (1.14)
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2. MAIN RESULTS

THEOREM 2.1 Assume 2 < q < oe and -oc < R < 1/4.
A test function u exists such that u 0 and

C(2, q, R) re2+ (u2x + u2) dx dy Rf+u2y-2 dx dy

{f2+lulqy_2dxdy}2/q
both C(2, q, R) and u are provided by the following recipe.
A smooth real-valuedfunction defined in [0, + oc[, v, exists such that:

(i) v satisfies the following differential equation

d
(sfs + 4rc)v’(s)) + Rvfs) + Iv(s)l q-2. v(s) 0

ds

for O < s < cx.

(ii) v satisfies the following boundary conditions

-4rrv’(O) Rv(O) + Iv(O)lq-2. v(O), v(oo) -O,

and decays at infinity in such a way that

(sv’(s)) ds < c.

(2.1)

(2.2)

(2.3)

(2.4)

(iii) v is strictly decreasing.

Let (a, b) be any point in IHI 2.
The following equations hold:

(2.5)

{ ooC }
l-2/q

C(2, q, R) Iv(s)l q ds (2.6)

and

(71"U(X,y) V -y ((x-- a)2q-(y

for every (x, y)from ]I-]I 2 in other terms,

u(x, y)

(2.7)

(2.8a)
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s rr[2 sinh(r/2)] 2

Riemannian area of a geodesic disk of radius r,

r Riemannian distance between (a, b) and (x, y).
(2.8b)
(2.8c)

Remarks (i) Equations (2.7) and (2.8) inform that u is radial and
radially decreasing the value of u at any point (x, y) depends only
upon the Riemannian distance between (a, b) and (x, y), and decreases
monotonically as such a distance increases.
An appropriate use of geodesic polar coordinates gives

d
[s(s + 4rr)v’ Xu(x, y) T, (2.9)

as detailed in the proof of Lemma 3.2. Plugging (2.9) in (2.2) results in

Au -+- Ru -+- lul q-2 u o, (2.10)

in the language of the calculus of variations, (2.10) is exactly the Euler
equation implied by (1.12), (2.1) and a suitable normalization.

(ii) The curvature of ]}.][2 is a reason why the leading coefficient in
Eq. (2.2) is a polynomial of degree two with two distinct roots. In fact,
the genesis of such equation reveals that the coefficient in question
4rrs- (curvature) s 2.
Though harder than equations like

(4rrs v’)’ + (lower order terms) 0,

which appear in [10, Sections 6.73 to 6.76] and when borderline
Sobolev inequalities in the Euclidean plane are considered Eq. (2.2)
has certain particular solutions available in closedform. The function
defined by

s ) -1/(q-2)
v(s) (q 2) -2/(q-2) + (2.11)

happens to satisfy (2.2) if q > 2 and R-(q-3)(q-2)-2. The function



204 F. MUGELLI AND G. TALENTI

defined by

2q ]
1/(q-2)

v(s)-
(q-2)2 (1 __)-2/(q-2) (2.12)

satisfies (2.2) if q > 2 and R 2(q-4)(q-2)-2.
(iii) Some radial solutions to Eq. (2.10) result from the previous

remarks. The function defined by

u(x,y)
(q_ 2) (x- a)2 + (y + b)2 (2.13)

satisfies (2.10) in the case where q> 2 and R=(q-3)(q-2)-2; the
function defined by

u(x, y)
(q 2)2 (x a)2 q- y2 q_ b 2 (2.14)

satisfies (2.10) in the case where q > 2 and R 2(q-4)(q-2)-2.
Constant factors apart, some ofthese solutions appear in Theorem 2.2,

and one of them appeared in subsection 1.1.
(iv) The function defined by (2.11) satisfies boundary conditions

(2.3). Property (2.4) holds if in addition q_< 4, whereas (2.5) holds
plainly. The function defined by (2.12) does the same if 2 < q _< 6.

Coupling (2.6), (2.1 !) and (2.12) would give

C(2, q, R) (2r)1-2/q (q 2)-1-2/q (2.15)

in the case where

( )_1-oo<R<_l/4, q-2+2, l+x/1-4R

and

C(2, q,R) (27r)’-2/q(q 2) -’-2/q 2q(q + 2) -’+2/q (2.16)
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in the case where

-oc < R <_ 1/4, q-- 2+4. (1 + x/1 -4R) -1

One might wonder whether formulas (2.15) and (2.16) are correct.
Fraenkel’s result tells us that (2.16) holds if q= 10/3 and R=-3/4.
Theorem 2.2 shows that (2.15) and (2.16) identify C(2, q, R) properly in
the case where R is zero.

(v) If q is larger than 2 (but is not too large) and R is below 1/4, then
C(2, q, R) can be accurately computed by an algorithm. Such algorithm
consists in: (i) solving Eq. (2.2) subject to conditions (2.3) and (2.4) via
an appropriate shooting method; (ii) selecting a solution satisfying
condition (2.5); (iii) checking the uniqueness of this solution via an
appropriate test; (iv) using formula (2.6).

Details can be found in [15], sample values are displayed in the table
below.

q C(2, q, 0) q C(2, q, 0)

3.0 1.8452701 8.0 3.6479107

10/3 2.2655626 8.5 3.6096511

3.5 2.4484193 9.0 3.5635303

4.0 2.8944050 9.5 3.5119626

4.5 3.2085021 10.0 3.4567447

5.0 3.4207189 11.0 3.3403841

5.5 3.5569171 12.0 3.2216028

6.0 3.6372463 13.0 3.1043799

6.5 3.6767932 14.0 2.9908876

7.0 3.6866772 15.0 2.8823095

7.5 3.6750545 (2.17)

THEOe,EM 2.2 (i) C(2,3,0)=(27r) 1/3, i.e. the following inequality

(u2+ 2) dxdy>(27r)uy +l u[3dxdyy2 (2.18)
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holds for every test function u and is sharp. Equality takes place in

(2.18) tf

u(x,y)

(ii) C(2, 4, 0) (8rc/3) 1/2, i.e. the following inequality

u)+u dxdy_> --2+
x y2 (2.19)

holds for every test function u and & sharp. Equality takes place in

(2.19)/f

u(x,y)
X 2 _+_ y2 q_

3. KEY LEMMAS

The lemmas from this section, culminating in Lemma 3.5 below, show
that the Sobolev inequalities in hand amount to a variational problem
in dimension one.

LEMMA 3.1 Ifu is any testfunction, then a real-valuedfunction defined
in [0, oo[, u*, exists such that:

(i) u*(c) 0;
(ii) u* is decreasing;
(iii) u* is equidistributed with u;
(iv) u* is absolutely continuous, and the following inequality holds

(u 2 + u2) dx dy > s(s + 4rr) [--s (s)
2+

x ds.

Proof Let # be the decreasing right-continuous map from [0, x[ into
[0, ] defined by the following formula:

/(t)- Riemannian area or {(x,y)
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and let u* the map from [0, oe[ into [0, cxz] defined by

u*(s) min{t _> 0" #(t) < s}. (3.2)

(These definitions mimic those introduced by Hardy and Littlewood
and elaborated by several authors: # is the distributionfunction, u* is the
decreasing rearrangement of u see [9, Chapter 10], [11], 12], 1], [20],
and the references quoted therein.)

Clearly, formulas (3.1) and (3.2) imply properties (i) and (ii).
The same formulas and a brief reflection yield {s _> 0: u*(s)> t}

[0,#(t)[ for every nonnegative t. We deduce that the following
equation:

length of {s _> O" u*(s) > t}
Riemannian area of { (x, y) E lI-lI 2 lu(x,y)l > t} (3.3)

holds for every nonnegative t. Property (iii) is demonstrated.
A version of a theorem, which is central to the present context and

is offered in [1, Sections 3 and 4] and [16, Section 2], implies property
(iv).

LEMMA 3.2 Suppose v is a real-valued function defined in [0,
suppose v is smooth and decays fast enough at infinity. Let (a,b) be
any point in ]I’]I 2, and let u be defined by

rr ((x- a)2u(x, y) v -y -+- (y b)2)). (3.4)

Then u is a test function and the following properties hold:

(i) u and v are equidistributed;
2)dx dy f s(s + 4rr)(v’(s)) 2 ds.(ii) f2+ (u 2

x + u y

Proof There is a notational convenience and no loss of generality in
assuming that a-0 and b- 1. The following equations

sinh r. sin 0
x

cosh r sinh r. cos 0 Y cosh r sinh r. cos t9
(3.5a)
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the following others

cos 0
X 2 nt_ y2

(x2+(y-1)2.v/x2+(y+1)2

sin 0
2x

(3.5b)
V/x2 + (y-1)2 V/X2 + (y + l)2

2, 2coshr-y(l+x +y ),

and the following constraints

O_<r<oo, -rr<v<rc (3.5c)

define a system ofgeodesic polar coordinates in lIqI2. Here r stands for the
Riemannian distance between (0, 1) and (x, y); a line where 0 Constant
is a geodesic arc whose origin is (0, 1) and whose angle with the y-axis
is 0.

Define

s rr[2 sinh(r/2)] 2, (3.6a)

the Riemannian area of a geodesic disk of radius r. In other terms,

2rr-cosh r 2rr / s,

2rr. sinh r v/s(s + 4rr),
71" (X 2 2s=- +(y-l) ).
Y

(3.6b)

The system of curvilinear coordinates made up by s and 0 is especially
convenient in the present context such a system makes a dimensional
analysis of Sobolev inequalities possible, by the way.
The Poincar6-Bergman metric obeys

[(dx) 2 -+-(dy) 2] (dr) 2 q-(sinh r)2(dO)2

(ds) 2 s(s + 47r) (d9)2
s(s + 4rr) + 47r 2 (3.7)
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Formula (3.7) and customary rules of differential geometry tell us
that

d(Riemannian area) (sinh r) dr dO ds dO, (3.8)

and that any sufficiently smooth function f obeys

IX7fle- /(sinh r) -2

(0f)2 47r2 (_)2s(s + 47r) ss + s(s + 47r (3.9)

Incidentally, observe the following formula

Af--(sinhr)- 0 ( Of) 02f
rr sinh r rr + (sinh r) -2 690 2

O Of] 47r 2 02f
0-- s(s + 47r)ss + s(s + 47r 00 2. (3.10)

Owing to Eq. (3.4), one may check that u is smooth in particular,

IVu(x,y)l O(r) as r O.

Moreover, u(x, y) approaches zero fast as r approaches infinity.
Equations (3.4) and (3.8) imply that

Riemannian area of {(x,y) E lH[ 2" lu(x,y)l > t}
length of {s _> 0" Iv(s)l > t}

for every nonnegative property (i) is demonstrated.
Equations (3.4), (3.8) and (3.9) give

the Dirichlet integral of u s(s --t- 47r)(v’(s)) 2 ds,

property (ii) is demonstrated.
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A couple of definitions are involved in Lemma 3.3 and Sections 4
and 5.
DEFINITION 3.3 J is the functional defined by

J(v) fs(s + 47r)(v’(s)) ds RfCv(s)) ds

{ fOlv(s)lq ds} 2/q (3.11)

DEFINITION 3.4 3 denotes the collection of those real-valued func-
tions v defined in ]0, oe[ such that:
(i) v() 0;
(ii) v is absolutely continuous, and both fo s(v’ (s))2ds andf(sv’ (s))2ds

converge.

LEMMA 3.5 Suppose 0 < q < cx and -cx < R < x. Then the following
holds:

(i) If is any real number, then either

{v: 0 v e , J(v) <_ } 0

OF

{v: O v e , J(v) < l} fq {v: v , v decreases} - {3.

(ii)

inf{J(v) 0 v E 3} C(2, q, R).

Proof Combine Lemmas 3.1 and 3.2.

(3.12)

4. ESTIMATING C(2, q, 0)

THEOREM 4.1 The following inequality

f
C(2, q, 0) > {

( (q
87rq (r(q/(q 2)))2}-2/q2)2 r(2q/(q 2)) (4.1)

holds



SOBOLEV INEQUALITIES IN 2-D HYPERBOLIC SPACE 211

Proof Let 2 < q < and R 0. Since

q
7r )1-2/qSl+2/qS(S -t- 471) >_ 41-3/q "q"

2

for every positive s, we have

)
1-2/q

foe sJ(v) >_ 41-3/q q
q 2

+2/q(v’(s))2 ds

(cx I-2/q)< I(S)I q ds (4.2)

if 0 v E 3. Applying Lemma 4.2 we deduce

J(v) > { 87rq (I’(q/(q-2)))211-2/q(q_2)2 I’(2q/(q-2))
(4.3)

if 0 v E . Applying (ii), Lemma 3.5, concludes the proof.

LEMMA 4.2 Let 2 < q < c; let v be a real-valued absolutely continuous

function defined in ]0, c[ such that v(c)= O. Then

/o { }sl+2/q(lt(s))2 ds > 2q-:Vq
(I’(q/(q 2))2

1-2/q

(q- 2)I’(2q/(q- 2)

Iv(s)l q ds (4.4)

and equality holds if v is specified by v(s) (1 + s1-2/q)-2/(q-2).

Proof Formula (4.4) is a variant of an inequality by Bliss [3].

5. FURTHER LEMMAS

The lemmas from this section prepare a proof of Theorem 2.1, and
describe properties of function space 3 and functional J. Lemma 5.2,
coupled with a standard theorem of functional analysis, enables to
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assert that if 2 < q < oo any bounded subset of is relatively compact
in Lq(O, oo). Lemma 5.5 enables to show that if-oc < R < 1/4 the
restriction of J to the unit sphere of Lq(O, oo) is lower semicontinuous.

LEMMA 5.1 If v belongs to 23, then

( ) (v’()>d+ -l (v’(t>>at(v(s))2<log 1+
for every positive s and every positive c. The following asymptotics hold:

v(s)- o(s-1/2) ass--, as s 0. (5.2)

Proof Since v is absolutely continuous and v(oo)- 0, we have

v(s) (-v’(t))dt

for every positive s thus

V(S) (ct-Jr- t2) -1/2" (Et-JI- t2)l/2(--v’(t))dt

if both s and e are positive. Hence Schwarz inequality gives

et + 2
x e t(v’(t))2 dt + (tv’(t))2 dt

if both s and c are positive. Inequality (5.1) follows.
Properties (5.2) are an obvious consequence of (5.1).

LEMMA 5.2 If2 < q < oo, then a positive constant C exists such that

Iv()l ds

{/o L< C. (e + h) ’-q/2. e s(v’(s)) 2 ds + (sv’(s)) 2 ds (5.3)
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and

oolV(S
+ h) v(s)l q ds

h
s(v’(s)) 2 ds + s (sv’(s)) 2 ds_< C.l+s---. (5.4)

for every v from , and every nonnegative h and s.

Proof A formula from [8, Section 4.271] gives

f0 [log(1 q-O]kds--F(k+ 1)(k)

if k> 1.
Formula (5.5) implies

Ilo (l ds <_ r(k + 1)(k) (1 + h)

if h >_ 0 and k > 1, since

(1 + h)k-1 fhC Ilog (1 + 01 ds

decreases monotonically as h increases from 0 to c and k > 1.
Lemma 5.1 yields

]v(s) lq ds _< log + ds

{f0 f0 /
q/2

x s(v’(s)) 2 ds + e-1 (sv’(s)) 2 ds

if h is nonnegative and is positive. Therefore

 lV(s)l
q ds

{/or(1 + q/2)((q/2) (Ft(S))2 -1

(1 q- h/E)q/2-1
s ds + }q/2(Sl,,t ())2 ds

if h is nonnegative and e is positive. Inequality (5.3) is demonstrated.
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Since v(s+h) v(s) f+h--Js v (t) dt, wehave

s+h

v(s / h) v(s) (t 2 / t/e) -1/2 (t 2 / t/e)I/2v’(t) dt
dS

if s, h and e are positive. As

s+h dt + h/s [ h]t2 + tle
e log

l+eh/(es+l)
-<elg l+(l-eh)s

Schwarz inequality gives

Iv( + h) v( )l

< log + (1 q2eh)s t(v’(t))2 at + e (tv’(t)) 2 at

if s, h and e are positive. Owing to (5.5), we deduce

olv(s
-+- h) v(s)lq ds

h lP(1 + q) (q) s(v’(s)) 2 (sv (S)) 2
q/2

-< +e---- ( ds+e ds

Inequality (5.4) is demonstrated.

LEMMA 5.3 Suppose v is a real-valued function defined in ]0,
suppose v is absolutely continuous and v(oc)= O. Then

(sv’(s)) 2 ds >_ - (v(s)) ds. (5.6)

Proof Pass to the limit in inequality (4.4) as q 2, or see [9, Theorem
328]. Alternatively, use the following identity

V
2 / (V / 2SVt)2 4(SV’) 2

/ 2(SV2)t,

or Plancherel’s theorem for Mellin transforms.
The following definition is involved in Lemma 5.5 and subsection 6.1.
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DEFINITION 5.4 K is the functional defined by

f0 f0K(v) s(s + 47r) (v’(s)) 2 ds R (v(s))2 ds.

LEMMA 5.5 If --oe < R < 1/4 and v E, then

fo { d
(s(s + 4r)P’ RP} ds’v/K(v) sup v ss

provided the trialfunctions obey: p is smooth and behaves well near 0 and
cx K( ) 1.

Proof Let Q be the bilinear symmetric form defined by

fo foQ(v, p) s(s + 47r)v’ (s)p’ (s) ds R v(s)g)(s) ds.

Lemma 5.3 tells us that Q(v, v) >_ 0 for every v from , if R < 1/4. We
deduce

v/Q(v, v) max{Q(v, p). E , Q(p, ) 1}

for every v from , if R < 1/4. An integration by parts shows that

fo { d
(s(s + 47r)P RP} dsQ v, p v -ss

provided v is in , is smooth enough and behaves well near 0 and
and K()= 1.
The conclusion follows.

6. PROOF OF THEOREM 2.1

6.1. A member of, v, exists such that

Iv(s)[ q ds (6.1)
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and

J(v) inf{J(g)): 0 E 3}. (6.2)

Proof We have to show that the restriction of J to the unit sphere of
Lq(O, c) attains a least value. Two typical ingredients of the calculus of
variations are involved here: compactness and semicontinuity.
Lemmas 5.2 and 5.3, and a standard theorem (see e.g. [6,

Theorem IV.8.20]) tell us that the set defined by the following con-
ditions

v , Iv(s)[qds- 1, K(v) <_ constant

is relatively compact with respect to the topology of Lq(O, cx3)
Lemma 5.3 ensures boundedness with respect to a topology of ,
Lemma 5.2 ensures sufficient conditions for compactness with respect
to the topology of Lq(O, oc).
Lemma 5.5 implies that K is lower semicontinuous with respect to the

topology of Lq(o, oo).
We deduce that the set mentioned above is compact with respect to

the topology of Lq(O, o), and the restriction ofK to such a set attains a
least value.

Since J is positively homogeneous of degree zero and

J(v) K(v) Iv( )l q ds

the assertion is demonstrated.

6.2. Function v satisfies the following differential equation

d
(s(s + 4r)v’(s)) + Rv(s) + J(v) Iv(s)[q-2 v(s) 0

ds

for 0 < s < oc, and the following boundary condition

s(s + 4r)v’(s) -+ 0 as s O.

(6.3)

(6.4)
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Proof The Gateaux differential of J, J, is the map from into the
appropriate dual of whose value at v obeys

J’(v)() -lim
,-0 7 [J( + t) J(v)]

for every from . Let v belong to and satisfy (6.1). An inspection
shows

1J’(v)() s(s/47r)v’’ds-R vds J(v) Ivlq-2vds
2

for every from . The asymptotic behavior of v(s) as s 0 or s

is displayed in (5.2), Lemma 5.1. Hence an integration by parts yields

1j’.v...( )( s(s + 47r)v’(s)
2

/ R v(t) dt / J(v) Iv(t)[q-2v(t) dt 9’(s)ds

for every from .
Property (6.2) implies J’(v)--O. We deduce

f0 f0s(s + 47r)v’(s) + R v(t) dt + J(v) [v(t)lq-2v(t) dt 0, (6.5)

correcting v on a set of measure zero guarantees that Eq. (6.5) holds for
every positive s.

Equation (6.5) implies both (6.3) and (6.4) and vice versa.

6.3. Function v satisfies the following boundary condition

-47rv’(0) Rv(O) + J(v). [v(0)l q-2. v(0). (6.6)

Proof Equation (6.5) gives

/0 /0 (47r Iv’(s)l ds _< log + R Iv(s) / J(v). Iv(s)lq- } ds.
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This inequality includes the following information:

Iv’(s)l ds < oo,

because of formula (5.5) and Lemma 5.1.
We deduce that v is continuous up to 0. Dividing both sides of (6.5)

by s, then letting s 0 gives (6.6).

6.4. Function v satisfies

v() 0 and (sv’(s)) 2 ds < (6.7)

trivially these conditions are included in the membership to .
6.5. Statement (i) from Lemma 3.5 enables us to convert v into a
function that simultaneously minimizes J and is decreasing. In other
words, we can assume that v obeys all the properties listed above and, in
addition, is decreasing.

Observe that v decreases strictly and is smooth. Indeed, any de-
creasing solution of Eq. (6.3) is either constant or strictly decreasing;
any positive solution of (6.3) is infinitely differentiable.

6.6. Replace v by

[J(v)]l/(q-2) v, (6.8)

in other words, renormalize v in such a way that

{ fooC }
1-2/q

Iv(s)[q ds J(v). (6.9)

The renormalized v satisfies conditions (2.2)-(2.5). Condition (2.6)
results from (6.9) and statement (ii), Lemma 3.5.
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6.7. Applying Lemma 3.2 concludes the proof.

7. PROOF OF THEOREM 2.2

7.1. A function which satisfies the following differential equation

cl
(s(s + 47r)v’(s)) + Iv(s)lq-2- v(s) O,

ds (7.1)

for 0 < s < oc, decays at infinity in such a way that

v(oe)- 0 and (sv’(s))2ds < oe, (7.2)

and obeys the following boundary condition

-47rv’(0)- Iv(0)lq-2. v(0) (7.3)

is given by

v(s)- (1 -k- )-1 or v(s) x/. +
-1

according to whether q- 3 or q- 4.
Therefore Theorem 2.2 results from Theorem 2.1 and the following

statement" if q < 3 _< c, conditions (7.1)-(7.3), plus the following one

v’(s)<O for0<s< (7.4)

identify v uniquely.
The subsequent subsections step toward a proof of this statement.

7.2. Two remarks are in order:

(i) Let 3 <_q< oe; if v satisfies (7.1) and (7.2), then $21(S)---0 as
S --+ 0o

(ii) Let 2 < q < oc; if v satisfies (7.1) and sv’(s) --, 0 as s 0 then (7.3)
holds.
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Proof of (i) Equation (7.1) gives

lim t(t + 47r). v’(t) s(s + 47r). v’(s) + Iv(t)lq-:v(t) dt

if s is positive; condition (7.2) and Lemmas 4.2 and 5.3 imply that

if q>3.

Proof of (ii) The hypotheses give

s(s + 47r). v’(s) Iv(t)lq-2v(t) dt

for every positive s, and v(s)=o(log(1/s)) as s0. The proof goes
ahead as in subsection 6.4.

7.3. If q > 3, the change of variables defined by

47r (_)s- t- log / v(s)- ,l/(q-2)u(t)
e- 1’ -converts the set made up by (7.1)-(7.4) into the set consisting of

conditions (7.5)-(7.8). In other words, our goal becomes identifying a

sufficiently smooth real-valued function defined in [0, oc[, u, and a

nonnegative par.ameter, A, such that u and X satisfy the following
equation

d2u
dt2

(t) + A(sinh t)-21u(t)lq-2u(t) 0 (7.5)

for 0 < < ec, and u satisfies the following conditions:

du
u(0)-0 and -(0)- 1, (7.6)

du
d--- (oc) 0, (7.7)
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du
dr(t)>0 for0<t<oo. (7.8)

7.4. If A is positive and 2 < q < , any solution to (7.5) and (7.6) has
the following properties:

(i)

du

and

,u(t)l <_ min{t, (-A)l/q (sinht)2/q)
for every nonnegative t.

(ii) u is asymptotically linear more precisely, two constants A and B
exist such that

db/
--(t) A + A. o(tq-le-2t) and u(t) At + B + A o(tq-le-2t)

as t- 00.

(iii) u has finitely many zeroes and finitely many bend points.
(iv) u is concave if and only if u has no positive zeroes.

(v) u is increasing if and only if u has no positive zeroes.

Proof of (i) Let H be defined by

H(t)
du

(t) + (2A/q). (sinh t) -2. lu(t)l q.

Equation (7.5) gives

dH
dt (t) (2A/q). lu(t)l q

d
(sinh t) -2,

therefore

dH
dt (t) _< 0
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for every positive t. Initial conditions (7.6) give

H(0+) .
We deduce

+ (2A/q). (sinh t) -2. lu(t)lq

for every positive t. Property (i) follows.

Proof of (ii) Equation (7.5) plus initial conditions (7.6) give

du
d-- (t) A (sinhs)-2lu(s)lq-2u(s) ds.

Hence we have

du f0d- (t) A (sinhs)-2]u(s)lq-2u(s)ds + a remainder,

where

[remainder < A (sinhs)-2[u(s)lq-1 ds.

Property (ii) follows, since (i) gives lu(t)l <_ t.

Proof of (iii) Equation (7.5) plus initial conditions (7.6) give

du f0’dt (t) >_ A lu(s)[q-l(sinhs)- ds.

Therefore

du ]0-d---- (t) >_ A sq-(sinhs) -2 ds

because of property (i), consequently

du A q-2d-(t) > q-2
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and

u(t) >_ t- q-1.
(q- 2)(q- 1)

We deduce that u(t) increases strictly as increases from 0 to [(q-2)/
A] 1/(q-2) and is .strictly positive as 0 < <[(q-2)(q-1)/A] I/(q-2) in
other words, u has neither positive zeroes nor bend points in some
neighborhood of 0.

Let z be defined by

du
z -. sinh t. (7.9)

Equations (7.5) and (7.9) yield

z. cosh (dz/dt) sinh A[ulq-2u.

Eliminating u between the last two equations gives

d2z { /l/(q- 1)
-1 + (q- 1)(sinh z cosh

dz (q-2)/(q-1) }-. sinh z O.

Therefore z obeys the following equation

d22
dt 2 t- [-1 + Q(t)]z O. (7.10)

Here

Q(t) (q 1),(sinh t)-21u(t)lq-2, (7.11)

a coefficient which will play a role in subsequent developments too
observe that property (i) yields

0 < Q(t) < (q- 1)(sinht)-2t q-2. (7.12)

Since the coefficient of z in Eq. (7.10) approaches -1 fast enough as

t--+ec, Sturm comparison theorem (see e.g. [21, Section 20], [19,
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Chapter 1]) or standard oscillation theorems (see e.g. [19, Chapter 2])
guarantee that Eq. (7.10) is nonoscillatory, i.e. the zeores of z do not
cluster at infinity.

Property (iii) follows.
Observe incidentally that if H is defined by-- (t). sinh +(2A/q). lu(t)l q,

then Eq. (7.5) gives

du
H’(t) - (t)

d
(sinh t) 2,

in other words, H is an increasing function. Therefore

lu(t)l < lu(t2)l < lu(t3)l

if t, t2, t3... are the bend points of u arranged in increasing order
compare with Sonin and P61ya theorem [21, Section 19].

Properties (iv) and (v) are an immediate consequence of (7.5)
and (7.6).

7.5. Let us assume 2 < q < oc, and examine how the solution u to (7.5)
and (7.6) depends upon parameter A.

Clearly, u(t) =_ if 0. On the other hand, u remains an increasing
function of if is positive and small enough the inequality

dt
(t) >_ A sq-(sinhs) -2 ds

(derived in the previous subsection) and the formula

sq- (sinh s) -2 ds 2 2-qr(q)(q 1)
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(appearing in [8, Section 3.527]) tell us that du(t)/dt is positive for every
positive if

2q-2

[F(q)(q- 1)]

Let L be Ou/O), the derivative of u with respect to . An inspection
shows that L is given by the following formula

(q- 2)AL w- u, (7.13)

where w obeys

d2w
dt 2 (t) + Q(t)w(t) 0 (7.14)

for 0 < < o and

dw
w(0) 0, d--- (0) 1. (7.15)

Coefficient Q is defined as in (7.11). The following properties are
easily inferred from (7.12), (7.14) and (7.15):

(i) ]w(t)l < (Constant). for every positive t;
(ii) w is asymptotically linear, and Iw-(asymptote)l approaches 0

exponentially fast as approaches ;
(iii) w has finitely many zeroes and finitely many bend points.

LF.MMA 7.1 Let u satisfy (7.5), (7.6), and let w satisfy (7.14) and (7.15).
Then w(t) < u(t) 0 is positive and does not exceed the first positive zero

ofw.

Proof Equation (7.5) reads dZu/dt2 + P(t)u 0, where (q- 1). P(t)
Q(t). On the other hand, u and w obey the same initial conditions.
Then either the comparison theorem appearing in [21, Section 20] or

Levin comparison theorem see e.g. [19, Chapter 1, Section 7] leads
to the conclusion.

LEMMA 7.2 Suppose u satisfies (7.5), (7.6) and (7.8). Then the solution
w to (7.14) and (7.15) has one positive zero at most.
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Although a formal proof eluded the authors, the truth of Lemma 7.2
may be reasonably inferred from the following facts:

(i) Suppose u satisfies (7.5), (7.6) and (7.8). Then the solution w
to (7.14) and (7.15) cannot have two distinct zeroes in the following
set:

{t>0" t.cotht>q/2}. (7.16)

(Observe that t. coth is convex and increases strictly from to as
increases from 0 to . The root to t.cotht-q/2 is 1.287839 if

q-3, is 1.915008 if q-4, lies below q/2 and approaches q/2
asymptotically as q grows large.)

(ii) Suppose u satisfies (7.5) and (7.6), assume w satisfies (7.14) and
(7.15), and let a and b obey 0 <_ a < b, w(a) w(b) 0 and w(x)
0 for a < x < b. Then

,bq-3(b a) _> q 2. (7.17)
q-1

(iii) Suppose q, , and a neighborhood of 0 are specified. Then both
u(t) and w(t) can be computed with any prescribed accuracy for every
from that neighborhood. Numerical tests show that no more than one
zero of w occurs as long as u remains positive relevant information
can be found in [15].

Proof of (i) Let u be any solution to (7.5), and let z be defined by

z(t) u(t) t. u’(t), (7.18)

the height above the origin of the tangent straight line to the graph of u
at (t, u(t)). Equations (7.5) and (7.18) give

t2d(u)-7 +z-0, dZd____ "t(sinht)-2lulq-2u"

Eliminating u between the last two equations gives

d2z ( q)dzdt2 - 2cotht--
dt

dzl(q-2)/(q-l)+ (q- 1),l/(q-l)(sinht) -2/(q-l) - -- z O. (7.19)
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In other terms, we have

dt 2 +(2cotht-q) dz
7 -d + Q(t)z- o, (7.20)

provided Q is defined by (7.11).
Suppose u obeys (7.6) and (7.8) too. Then u vanishes at 0 and is

concave, hence

dz
z(t) > 0 and -.(t) > 0 (7.21)

for every positive t. Consequently, Eq. (7.20) reads

dt 2--+ [Q(t)+ (t. cotht-) (a positive coeff.)]z- 0. (7.22)

Equations (7.14) and (7.22), inequalities (7.21) and Sturm comparison
theorem lead to the conclusion.

Proof of (ii) Statement (ii) follows from a variant of de la Vall6e-
Poussin theorem see [21, Section 17]. It is an easy matter to show that
if a, b and w obey

O <_ a < b, w(a) w(b) O, and w(x) =/: O fora<x<b

then

fab d2w
w(t) (t)

Therefore we have

dt > (’/- + V/-d)2
b-a

(7.23)

+tQ(t) dt >_
b a

Since inequality (7.12) implies

Q(t) <_ (q- 1),/q-4,

the conclusion follows.

7.6. Equation (7.13), and Lemmas 7.1 and 7.2 tell us that

L(t) < 0
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for every positive if u satisfies (7.5), (7.6) and (7.8). In other words, the
solution u to (7.5) and (7.6) decreases steadily with respect to , as long
as u itself remains an increasing function of t.

This implies that the solution to (7.5)-(7.8) is unique, and concludes
the proof.
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