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1 INTRODUCTION

The result known as Ostrowski’s inequality [6] is as follows.

THEOREM A Let a, b and z be real n-tuples with a # 0 and such that

Za,z,-zO and Zb,‘Z,'I 1. (1)
Then

- ‘ P azz
i=1 (E?:l a?)(Z?:l b?) - (X a,-b,-)2‘
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Equality occurs if and only if

o by ai —a; ) abi
@)D 6) - (L aibi)

(1<j<n).

We remark that (1) entails that the sequences (a;), (b;) are not
proportional, so that by the condition for equality in Cauchy’s theorem
the common denominator of the expressions on the right-hand sides of
the last two relations is nonzero.

Ostrowski’s inequality has been extended by Ali¢ and Pecaric[1], who
established Theorem B below.

THEOREM B Suppose the conditions of Theorem A hold and p > 1 is a
real number. Then

2 » >a})
&> Carcny - car

This extended an earlier result of Madevski [3]. Ali¢ and Pecaric used
Theorem B to derive a number of applications.

The aim of this paper is to carry these ideas somewhat further. First
we present an integral analogue to Ostrowski’s inequality. In fact both
Theorems A and B can be so extended. This is the substance of Section 2.

In Section 3 we note briefly how this may be used to derive some
results for moments of probability distributions. We then turn to
extensions of the discrete formulation. In Section 4 we note that the
results of [1] generalize to the case of nonuniform weighting and
in Section 5 we obtain a higher-dimensional discrete version of
Theorem A, allowing for variables which are subject to a general
number of linear constraints.

We conclude Section 5 with a corresponding extension to the integral
analogue allowing a general number of linear constraints.

2 AN INTEGRAL OSTROWSKI INEQUALITY

It will be convenient to first derive an integral version of Theorem A and
then extend this to provide an integral analogue of Theorem B.
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THEOREM 1 Let o be a nonnegative measure on the real line R and
1,8, h:R—R be functions with g not identically zero and such that
f2, g29 h2 € ‘Cl(Ra 0-), with

/ 2()f(x)do =0 and / h()f(x) dor = 1. 3)
Then
. [g*(x)do
/f (x)do = ~ (fg¥(x)do) ([ h*(x)do) — ([ g(x)h(x) da @

with equality if and only if
h(x) [ g*(x)do — g x) [ h2
(J&*(x)do)(f hz —([glx dff)

Proof SetA:= [g*(x)do, B:= fhz(x) do, C:= [g(x)h(x) do and define
function w: R — R by

fx) =

R e

Aswith our comments following the enunciation of Theorem A, the deno-
minator in this last expression is nonvanishing. It is easy to check that

/g(x)w(x) do =0, /h(x)w(x) do =1,

/f(x)w(x) do = A—Bi_CE’ / w?(x) do = EA—cz

Hence we have

0< / (x) - w(x)) do

/f x)do—2 /f dcr+/ 2(x) do
/f AB C2 ABI-4—C2

/f AB AB—C?

giving the desired result.
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THEOREM 2 Assume the conditions of Theorem 1 hold and let p> 1 be a
real number. Then

(/ S da) ( 22(x) o) ( thff)da —(Je@)h(x)do)?

Proof Foru>v>0,theinequality between power sums of orders p > 1
and 1 provides

(=Y + )P <(u=v)+v=u,

that is, (u—v)? <u”—v?. Hence by (4)

(/ 24(x) do)p </ h?(x) da)p— (/ g(x)h(x) da) v
> ( / (%) do / 1 (x) dor — ( / g(x)h(x) da)2>p

> (fEey

which gives the stated result.
If [h(x)f(x)do # 0, then from the substitution

__ ™
SO = i do

we obtain the following result.

THEOREM 3  Suppose g, h and f are functions such that g* h?, f 2¢
ﬁl (R, 0’),

/g(x)f(x) do=0 and /fz(x) do #0.

( / 2(x) da>p< / 2 (x) do)p— ( / 2(x)h(x) da) i

> (Jg(x)do) (fh f(x do)*
(J72()

Then

)
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Remark 1 The result of Theorem 2 can be improved. Suppose that g, &
and f are as in Theorem 2 and G is a nondecreasing, superadditive
function. Then

G(/ g% (x) do/hz(x) da) - G((/ g(x)h(x) da)2>

In particular, this inequality holds for any nondecreasing, convex
function G.

3 APPLICATIONS TO MOMENTS

Let F:R — R be a probability distribution function and suppose that
the corresponding mean a = [gx dF(x) exists. The rth central moment
of F, when the integral exists, is defined by

Yr = /(x —a) dF(x).
R
We have trivially that p; =0.

_ Suppose the distribution has variance unity, so that y, = 1. On setting
fx) =1 and g(x) =x—a in (5) we obtain since [dF(x)=1 and p;=1

that
( / 1 (x) dF(x))p— ( / (x — a)h(x) dF(x))zp
> ( / h(x) dF(x))zp. (6)

By using substitutions of the form

h(x) = Zc(x —a)f, Jcz

keJ

we can get different inequalities for the central moments.
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Thus on putting 4(x) =(x—a)" + AM(x—a)* + u in (6), where A\, u€R
and r,s € Z, we get

(bar + N pis + 187 4 20ty + 2puptr + 22 papts)
> (et + Miss1)? + (1 + M5 + 12).

So in particular for r =2, s=1 we have
(o + 2013 + N+ 42 + 200 > (3 + N7 + (1 + )™

and for A= =0 we have

() > (prs)? + (ur)?

(cf. [1,3]).

4 NONUNIFORM WEIGHTS

In[1], Ali¢ and Pecari¢ used the substitutions z; = 1/ 5., b;,(1 < i < n)
to give a useful corollary to Theorem B.

If () is an n-tuple such that > y; = 0 and Zy,z = n, then
1 . p 1 2p 1 2p
- 2) > (= b - A
(n > b,) > (n Zy,b,) + (n > b.) (7)
Using substitutions of the form

bi:Zciyika JCZ,i=1,...,n
keJ

and the notation «, := (1/n) Y_i_; y/ they obtained many improvements
and generalizations of known statistical inequalities given in [2,3,7,8].
See also [4, pp. 339-340]. We show that the uniform weighting 1/n can
be replaced by a general probabilistic weighting p; with > | p; = 1.
Let F be the probability distribution function of the discrete random
variable X with P{X=x;}=pi, k€N, so that X has expectation
a=7Y, xkpc. If the variance of X is equal to unity, that is,



INTEGRAL ANALOGUE OF THE OSTROWSKI INEQUALITY 281

Dok o — a)’pr = 1, then (6) assumes the form

(Z pibf)pz (Z: p,~b,~> 2p+ <§l: p,~y,b,~> 2p,

where y;:= x; — a. In the case p;=1/n (1 < i< n) this reduces to (7).

5 MULTIPLE LINEAR CONSTRAINTS

We now proceed to higher-dimensional versions of Theorems A and 1.
We start with the former, replacing (1) with sets of constraints

and

Typically we expect m + r < n in applications.

We shall assume that the columns of the matrix 4y = (a; ) are linearly
independent, which by Gram’s inequality (see, for example, [5, Ch. 20
Theorem 1] implies that the matrix 4 := Al 4, be invertible.

THEOREM 4 Let Ay, By be respectively n x m and n x r real matrices and
let z be a real column n-vector satisfying

z2'4p=0 and zBy=el, (8)

where e, represents the column t-vector (1,1, .., 1)*. We suppose that the
columns of Ay are linearly independent, so that A := Al Ay is invertible.
We define B:= B} By, C:= A} By and suppose that By is such that
B— CYA7'C is also invertible. We denote its inverse by K. Then

n
T 2 T
ZZ:E z; > e, Ke,,

i=1
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with equality if and only if
z=(By— ApA"'C)Ke,. 9)
Proof The vector y given by the right-hand side of (9) satisfies
yTAg = e"KT(Bf Ay — CT 471 4f 40) = " KT (CT — CT47'4) =0
and
yTBy = e"KT(BYBy — CTA7 A By) = ef K(B— CTA7'C) = ¢],

and so meets the conditions of the enunciation. Also, if z is any solution
to (8), then

ZTy = 27(By — 4gA7'C)Ke, = ¢! Ke,,

and in particular

n
yly = ny = e,TKe,.

i=1
Any vector z subject to (8) therefore satisfies

n n n
z—yTy =D 23"y = (z-y)
i=1 i=1

i=1

which gives the stated result.

For the integral result, we replace (3) by the set of constraints
Jetmdr=o (1<j<m
and
[esmae=1 =i

We assume the functions g; are linearly independent.
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THEOREM 5 Let o be a nonnegative measure on R andf, g =(g), h=(h;
respectively scalar, column m-vector and column r-vector valued functions
Jfrom R to R with square-integrable components with respect to o with

/ g)f(x)do =0 and / h(x)A(x) do = e,.
Define matrices A, B, C by
A= [ ailx)gx) do.
B = / hi(x)hy(x) do,
Cij= /gi(x)hj(x)da.

Let (g;) be a linearly independent set, so that A is invertible, and suppose
that the matrix B— CYA7'C is invertible, with inverse K, say. Then

/fz(x) do > e;rKe,,
with equality if and only if

f=e'K(h—C"47g).

The proof parallels that of the previous theorem, mutatis mutandis.
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