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Let n be any positive integer, x and y any positive real numbers. The inequality

(on)!
j:o (aj)! (a(n -j))!

xy("-.) <_ (x + y)"

was conjectured for 0 < a < by T.J. Lyons, after he had proved it with an extra factor 1/a
on the right, in a preprint (Imperial College of Science, Technology and Medicine, 1995).
Many numerical trials confirmed the conjecture, and none disproved it. The present paper
proves it, with strict inequality, for all a in sufficiently small neighbourhoods of , ,
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In a long preprint entitled "Differential equations driven by rough
signals" (Imperial College, London, 1995), Lyons proves a "neo-
classical inequality":

aJ/Pb(n-j)/p

p2 (j/p) n j) /p)j=O

(a + b)n/p

wherep> 1, n is a positive integer, a > 0 and b > 0 [2.2.3, pp. 38-42]. He
also remarks that this inequality appears to hold with the factor 1/p2 on
the left replaced by 1/p, on the basis of numerical evidence. The present
paper proves this conjecture for a certain infinite set of values of 1/p.
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It is convenient to write a, x and y in a place of l/p, a and b
respectively, and to use the binomial coefficient notation

(zw)_ w,
z!(w- z)! r(z + 1)r(w- z + 1)

for arbitrary real (or complex) w and z. Lyons’s proved inequality can
then be written

a (an)xJya(n-J)< --l(x+y)n,
j-0

aj a

where 0 < a <_ 1, x > 0 and y > O. Under the same conditions, his con-

jecturedinequality is the stronger one in which the factor 1/a on the right
is reduced to 1. Our first, and main, aim in this paper is to prove that

n()an xaJya(n_j) < (x + y)’ (1)

for a-, , ,... Of course the two sides are equal for a-1, by the
binomial theorem.

LEMMA If0 < cO < 1/2re and rn is afixedpositive real number, then

I(cO) cos(b cO)dq5

is greatest when cO- 1/4r, with greatest value 2 f/4 csm 0 dO.

Proof Since

I(cO) f cosm 0 dO,

I’ (cO) cos (1/2 71- cO) Af_ cosm (_cO) cosm cO sinm cO;

so I(cO) is stationary when tanmcO 1, cO-1/4re. Also

I" (cO) -m COSm-I cO sin co- m sinm- cO cos co < O,

so I(co) is concave throughout 0 < co < 1/2rr. Together these facts prove the
lemma.
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LEMMA 2 IfC > 0 andfor all positive x and y such that x + y <_ 1,

n

2o .= (2om’ x2ajy2oe(n_j) < (X --}" y)2On
\ 20jJ

then, for all positive x and y,

ce xJy(n-j) < (x q- y)Om.
j=o

(2)

(3)

Proof In Legendre’s duplication formula, V/-P(2z)-22z-lF(z)
I(Z q_ 1)2, take z-aj+ 1/2; thus

V(aj + 1)
V(2aj + 1)

sr(j + 1)2
(4)

Consequently,

an) P(an + 1)
oj r(cj + 1)r(c(n --j) + 1)

where B denotes the beta function. This gives, for all positive x and y,

o -’ (n) xJy’("-J)
S=o cj B(ozn + 1/2 1_),2 =o \2j]

u(j + 1/2, ( -j) + 1/2)x.("-a)
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where r- x/(x + y). This expression is now

]{- 7-7 -) /1-1/2(1 u) /2

j=o \2cjfl

x (ur)J{(1 u)(1 r)}(-j) du.

Now put b/ COS2(fi and r--cos2co, where q5 and co are in (0,1/27r). The
expression becomes

2 (2cn’ (cos q5 cos co)2j (sin q5 sin co)2c(n--j)dO
=0 \2jJ

(cos cos a + sin sin co)2" d

using the inequality (2) in the hypothesis. Thus

O Cos2Cn(q5 co) dq5
j=o

oj Bt7 -T27 1/2) ao
2(x + y)n f/4

cos2 OdO by Lemma 1,

(x + y)" cos" 0 dO cos2" 0 dO
0 J0

< (x + y)’, as required.
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THEOREM Ifx > 0 and y > 0 then

o XcJyc(n < +
=0 J

(1)

for o- {, 4, {,"" and all positive integers n.

Proof If c-1/2 the binomial theorem gives that (2) holds. The required
inequality (3), for c- 1/2, then follows by Lemma 2.

from the case c-1/2 byInequality (3) now follows for c- 4l, , 16,"

successive applications of Lemma 2 with these values of c.

THEOREM 2 Inequality (1) in Theorem holds for all c in sufficiently
small neighbourhoods of, 14, , and all n, x and y considered therein.

Proof Since

x"y( /(x +
=0 J

is a continuous function ofc in 0 < c _< 1, and is strictly less than at the
points c- 2

,
4
, {,... by Theorem 1, it is strictly less than in sufficiently

small neighbourhoods of these points.


