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We show that several of the classical Sobolev embedding theorems extend in the case of
weighted Sobolev spaces to a class of quasibounded domains which properly include all
bounded or finite measure domains when the weights have an arbitrarily weak singularity
or degeneracy at the boundary. Sharper results are also shown to hold when the domain
satisfies an integrability condition which is equivalent to the Minkowski dimension of the
boundary being less than n. We apply these results to derive a class of weighted Poincar6
inequalities which are similar to those recently discovered by Edmunds and Hurri. We
also point out a formal analogy between one of our results and an interpolation theorem
of Cwikel.
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1 INTRODUCTION

Let f be a domain, in other words a nonempty open subset of ]N, and
let wl’p(f), p E 1, ], denote the Sobolev space consisting of complex-
valued measurable functions defined on f whose partial derivatives
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326 R.C. BROWN

exist in the sense of distributions and which is endowed with the norm

Here the notation "llVull;p" signifies -iU__l IlOu/Oxill ;p and

lip

,]u,;p’-- ( ]u]Pdx) (1.2)

IfC() consists of the infinitely differentiable (or "smooth") functions
on , we define W’p() c W’p as the closure ofC() with respect to
the norm (1.1).
W’P() and W’P() are classic and well-known function spaces with

many important properties and applications to almost all areas of
analysis. Among the most fundamental results concerning Sobolev
spaces are embedding theorems. We say that W W’P() or

W0 W() is embedded in Lq() if W or W0 Lu() and the natural
maps i: W Lq() or io Wo Lq() are continuous. We express this
by the notation

W or W0 Lq(fl).

Likewise, when the embedding map or i0 is compact we write

w or w0

Since our own results will parallel them, it is convenient to review some
of the most basic embedding theorems. These results are-standard;
proofs and detailed discussion may be found in the books [1,12, or 24].

THEOREM A For any bounded domain fl, < p < and q [1,p) then
W sat&es the embedding (1.3).

Remark 1.1 Theorem A is true even on domains of finite measure as
has been recently shown by Carnavati and Fontes [10].

THEOREM B If <_ p < N, p* :=pN/(N- p), q E [p,p*], and f is a

bounded domain, then

W’P(f)-+ Lq(f).

Further (f q [p,p*) then the embedding is compact.
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Let C(F2) denote the space of bounded continuous functions on ft
which have continuous and bounded extensions to Ft. We also need
spaces of H61der continuous functions on ft. If A E(0,1) and
Di(u) Ou/Oxi set

CA(O) {u C(O)" IOi(u(x)) o.(u(y))l _< Ix y

These spaces are Banach spaces under the norms

Ilulla;oo sup lu(x)l,
xEf

Ill u Ila;,x "-Ilulla;oo + max sup Di(u(x)) Dj(u(y))l.
<i<N

THEOREM C
domain, then

If A (0, 1), N_< (1 A)p < x, and f is a bounded

c (fi).

IfN < (1 A)p then the embedding is compact.

The attempt to extend Theorems B and C to the Sobolev spaces
wl’p(ft) has been a continuing project in Sobolev space theory. Only
Theorem A holds on wl’p(ft) for arbitrary (finite measure) ft, the
remaining theorems are not true unless additional conditions are
imposed on ft. There are a bewildering array of possibilities including
those satisfying various cone conditions [1,15] or twisted cone condi-
tions [3], being star shaped or convex [16,24], having a "minimally
smooth" boundary 0f [11,27], satisfying the segment condition [15],
being a H61der domain [26] or generalized ridge domain [14], etc. Many
of these conditions are quite technical, apparently mutually indepen-
dent, and the proofs ofthe embedding theorems using them are not easy.
One of the weakest, for at least the continuity of the embedding in
Theorem B, is due to Bojarski [5]; he requires that f satisfy the "Boman
chain condition" (see [6]). The Boman condition in turn implies that ft is
a "John" domain and satisfies a "quasihyperbolic" boundary condition.
For a survey of the situation in 1979 which is still informative (see [15]).
More recent information can be found in [18].
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In this paper we are going to show that Sobolev-like embedding
theorems which mimic the Theorems A and B stated above hold on all
bounded as well as on a wide class of unbounded domains f if we
introduce weighted Sobolev spaces or Lebesgue spaces where the
weights have an arbitrarily weak singularity or degeneracy on 0f. We
omit, however, consideration of Theorem C since an exhaustive
treatment of weighted extensions of that theorem may be found in [9].
Many of our results resemble the weighted embeddings given in the
book of Opic and Kufner [25] but with weaker conditions on 0f.
The following are some examples of our general approach. Suppose

that d(x)-dist(x, 0f). Then we can show for a wide range of
_< p, q < oc that

WI’p (a) c.._+ c__+ Lq (a; dfl) (1.4)

for any/3 > 0 and p E [1, oc) where LP(2; dm) denotes the weighted Lp

space with norm

[lul[a;a,p dlulp dx

Similarly if WI’p(-; d -m, 1), WI’p(-; 1, d -m) denotes the spaces having
the respective norms

we shall see that it is often the case that

WI’p d-m, l) --+ Lq

WI’p (’; 1, d zq
(1.5)
(1.6)

Both (1.4) and (1.5) can hold on a class of quasibounded domains which
need not even be of finite measure. Furthermore they may be
generalized in many ways to include weights which go to zero or infinity
more slowly near the boundary than d; or d -m. In still other cases an
arbitrary weight can be attached to the gradient term or (e.g., (1.7)
below) the sign of/3 can be reversed.
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Embeddings like (1.4)-(1.6) and their generalizations should have
applications to the problem of proving the existence of weak solutions
to degenerate partial differential equations. We intend to explore this
kind of employment elsewhere. But there is another aspect of weighted
embeddings, particularly concerning those, like (1.5) which we wish to
point out here. The spaces WI’P(f; d -n, 1) share at least one property
in common with the interpolation spaces (Ao, A1)o,q for a Banach
couple given by the real method of interpolation. We know that
Wo(f)-+-- LP(f) while the embedding of W into LP(f) is merely
continuous. But since (1.5) happens to hold when p--q, there is a chain
of spaces "interpolating" between W0 and W which embed compactly
into LP(f). This is analogous to a similar phenomenon shown to, hold
for (A0, A 1)0, q by Cwikel [11].
The main contents of the paper are presented in Sections 3 and 4.

Sections 3 considers the case where no regularity condition at all is
imposed on 0f. Here we introduce an integrability condition "Iu+"
which is satisfied by all finite measure domains as well as by certain
quasibounded domains of infinite volume. We show that many
weighted embeddings (including (1.4) and (1.5)) which mimic Theorems
A-C exist on these domains and explore further the analogy between
some of these embeddings and interpolation. Section 4 introduces
another integrability condition "I" that is weaker than the usual
Sobolev conditions. For bounded domains it is equivalent to the
Minkowski dimension of 0’ < N. It is too weak for the ordinary
Sobolev embeddings (the well known "rooms and passages" example
(cf. [14]) satisfies it), but it permits the embedding

WI,p() __+c__+ tq(; d/3) (1.7)

for sufficiently small negative and q < p. Thus this is a strengthening
of Theorem A, but at the price of a mild condition on f.
We remark finally that several of the weighted embeddings presented

in this paper, especially in the case q<p, are quite easy to prove;
nevertheless, they appear to be new.

2 PRELIMINARIES

In this section we fix notation and present certain technical lemmas
required in the main body of the paper.
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Suppose v0, Y1, W are positive a.e. measurable functions (i.e. "weights"
defined on a domain f c_ RN. Canonical examples ofweights are powers
or monotone functions of "d(t)", the distance to the boundary function
introduced in Section 1. For <p, q < oe we consider the spaces of
complex-valued measurable functions Lq(f;w) and W’P(f;Vo, Vl)
defined on f and equipped with the respective norms

(f )l/qIlull,;w,q wlulq

Ilull.;v0, ,,1, / II ull a;vl, )
(2.1)

In all cases the derivatives in the gradient Vu are understood in the
distributional sense. In unweighted case (that is, when v0- Vl-w-- 1)
we use the notation (1.1), (1.2). If vl/p, v- 1/p are locally LP’ integrable
where <p’< o is the conjugate exponent of p defined by lip +
lip- it is not difficult to show (see [22]) that Wl’P(f; Vo, vl) is a
Banach space. Likewise, if v0, v are locally integrable it is routine to
prove thatC is dense in Wl’P(f; Vo, v). This implies that we can define
w’P(f; vo, vl) (the analogue of w’P(f)) as the closure of C(f) with
respect to the norm (2.1).
The notations Bt, R, B(t, R) or simply "Bt" will denote the open ball

with center and radius R. A domain f is said to be quasibounded if

lim d(t) 0

and quasicylindrical if

sup d(t) < .
t6f

The volume of a finite measure domain fZ will be denoted by ]Ft l. Given
e > 0, we set 9t(,).= {t E 9t: d(t) < e} and 9t(’) ft\((,). If f RN we

interpret Ft(,) as the complement of B(0, 1/e).
Constants will be denoted by capital or small letters such as K, C, c,

etc., and may change their value from line to line. If we wish to
emphasize a change in the value of a certain constant we use subscript
notation and write K, K2, etc. If F(f), G(f) are two expressions defined
on some underlying space of functions such that F(f)< KG(f) or

KG(f) < F(f) < K1G(f) for fixed constants K, K1 whose precise value is
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immaterial to the argument, it will be often convenient to write

F(f)--< G(f) or F(f) G(f); in the particular case F(f)< KeG(f) for
a small e we write F(f)- O(e)G(f).
The following lemma follows from invoking one of Theorems A, B,

or C on the unit ball followed by a change of variables.

LEMMA 2.1 Let < q,p < oo, Then the inequality

---Rq(1-N/p+N/q)(fBt]bllP)q/P
(2.1a)

holdsfor all u E WI’P(Bt) with constant K depending only on N if
(i) p > N;
(ii) p <_ N andp <_ q < p*;
(iii) q < p.

Also ifp > N the inequality (which implies (2. a))

sup lu(t)
tGBt

is true. Finally, the mappingsfrom WI’p(Bt) to Lq(Bt) or to L(Bt) defined
by (2.1a) or (2.1b) are compact except when p-p* in (ii).

The next lemma gives a well-known necessary and sufficient abstract
condition for there to be a compact embedding of wl’p(f; Vo, vl) into
Lq( w). Given a domain f, suppose C {fn}il is an infinite nested
chain of bounded domains, i.e.,

such that

For proofs of the following fundamental result, see [8, Theorem 4.1]
or [25, Chapter 3, 17]. For the original unweighted prototype with
p 2, see [2].
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LEMMA 2.2 Supposefor all.fn E C,

Then

mI’p (’; vo, Vl )c_+c_+ Lq (", w)

if, and only if, given > 0 there exists an integer n(e), and all u

Wl’p (f; Vo, v), such that for all n > n(e)

holds.

The final tool we shall require is the Besicovitch Covering Lemma.
For the proof see [17, Theorem 1.1, p. 2].

LEMMA 2.3 If $ is a system of cubes or balls covering a bounded
domain f such that every 2 is the center of an element B , then
there exists a subcovering 7-c $ consisting offinitely many subfamilies
Ii, i= 1,..., x(N), of$ such that

(i) each I’i consists ofmutually disjoint members of$;
(ii) each B 7- intersects at most x(N) members of 7-;
(iii) the number x(N) depends only on the dimension N.

Additionally if f is unbounded a subcover 7- exists satisfying (i)-(iii)
if the members ofS are uniformly bounded.

WEIGHTED EMBEDDINGS ON A GENERAL CLASS OF
DOMAINS WITH NO REGULARITY CONDITIONS
ON THE BOUNDARY

In this section we prove some embedding results for weighted Sobolev
and Lebesgue spaces where the weights mainly are powers of d(t) and
are defined either on domains of finite measure or on a more general
type of quasibounded domain.
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DEFINITION 3.1 A domain f is quasicylindrical if

sup d(t) D <
tEf

and quasibounded if

lira d(t) 0.

Clearly every domain with finite measure is quasibounded but the
reverse implication is not true.

DEFINITION 3.2 $2 is an (I+) domain or f E (I+) if

(I,+) there is a number # > 0 such that ff d(t)" dt-M

If this integrability condition holds for arbitrarily small #, we say that
f is an (I-’) domain or f E (I-’). This is to be distinguished from
F, (I-) which is equivalent to f being of finite measure.

Remark 3.1 The following properties of the (I+) condition are easily
verified.

(i) ] (I) => f is quasibounded.
+ then f I,+, if #’ > #.(ii) If f I,

(iii) (I-’) includes non-finite measure quasibounded domains. To see
this in IR2 for example, let f be the union of open adjacent squares
S, n 1,2,..., of edge length 1/ erected on the x-axis. Then on

Sd(t) <_ 1/(2x/-)and for every #>0

d(t) dt _< (1/2)* n--F+7 <
n=l

(iv) On the other hand, there are f2 which are in (I+) for some # > 0 but
not in (I-’). Again in 12 we can let f2 be the union of adjacent
squares Sn with edge length 1In /3. Then d(t) <_ (1/2n/3) if E Sn and
t) (I)if#> 1.

(v) Let f/be the union of progressively thin adjacent rectangles aligned
on the x-axis of length e and thickness 1/n. Then

en 2Ind( t)* dt >
4 2 n#+

Thus there are quasibounded domains not in (I) for any # > 0.
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THEOREM 3.1 Suppose <_ q,p < , a,/, "7 N, 1 is a weight, f is

quasibounded, and 6 >_ 1. Then the embedding

wl’p(f;d", Vl)--’-- Lq(f;d) (3.1)

holds

(i) q < g, fl (I), O, and

(q/)7 + (1 q/); (3.2a)

(ii) q- and fl > 7;

(iii) q >, > N or N and < q <*, d, and

fl > (q/P)7 + 6q(N/ N/q)
(q/p) 3q(1 N/ + N/q); (3.2b)

(iv) > N, is quasibounded, q , d, and

7/P + 6(N/p), (3.2c)> alp- 6(1 N/p).

Further, in Cases (ii)-(iv) the continuous embedding

WI’p(a;d,vl) Lq(a;d) (3.3)

holds equality is substituted for strict inequality in the inequalities

fl > 7 of (ii) or in (3.2b) and (3.2c) of (iii) and (iv). The embedding is

also continuous in Cases (ii)-(iv) is quasicylindrical or q-p* in

Case (iii).

Proof Case (i): On (1/,) we have the chain of estimates

d+(#-#)(1-q/p) lulq
(l/.)

d" dfl(p/q)-#(1-q/p)(p/q)-fd7 lulp
(/.) (/)

Mll" d" d l.Ip + VllVUI" (3.4)
(t/n)
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where

M- sup d(p/q)-#(1-q/p)(p/q)-’ ( O0

by (3.2a) and the quasiboundedness of f. Finally, we take n large
enough that fa(,m d’ < P(P-q)- and obtain that

(f )l/q {(f ll/plf i1/p Id/lu[q O(e) d’lulp + vl lulp
(/n)

3.5)

Since d(t) is bounded above and below on -(1/2n) and this set is bounded,
we have as an immediate consequence of Theorem A that

WI’p(; d"r, vl) ’---’- Lq((1/2n); d); (3.6)

(3.5) and (3.6) together with Lemma 2.2 now give (3.1).
Case (ii): We have since/3 > q,

< (1 In)-’r d lulp

The proof is completed in a way similar to Case (i) with n chosen greater
than 1/e. If we repeat these estimates on f instead of f(1/n) and f is
quasicylindrical or/3 the embedding is obviously continuous.

Case (iii): For R > 0 let A := B(0, R) N f and for fixed e E (0, 1) and a
5 > consider the cover

By Lemma 2.1 we have the inequality

fBt ’ulq g{(fd(t)6)-q(N/p-N/q)(fBt ]uIPl
q/p

--k (ed(t)’)q(1-N/p+N/q) (Bt ImulP)
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Moreover Bt c Ft and if s E Bt, then

Hence if e < 1/2

< d(s) 3
--2’ (3.7)

and so

f, d(s)31u] q <_ {K1 (e)d(t)4) ( fB, d(s)Tlu]p) q/p

-+-K2(e)d(t)O(fBtd(s)alVmulP)q/P},
where

K (e) := Kf.-q(N/p-N/q)

K2(6) K.q(1-N/p+N/q),
b := fl- (q/P)7 Sq(N/p N/q),
0 :=/3- (q/p)a + Sq(1 NiP + N/q).

By (3.2b) and the fact that d(t) is bounded d(t)4) and d(t) are uniformly
bounded by a positive constant M on Ft. Thus (3.8) has the form

d(s)lu]q < K()M d(s)lu[p

(3.9)

where K(e):= max{K(e), Kz(e)}.
Since A is bounded it follows from Lemma 2.3 that CA may be

decomposed into finitely many families I’l,..., Ix(u) of disjoint balls
where the number x(N) depends only on the dimension Nand not on A.
Addition of (3.9) over 1-’i yields the inequality
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Hence

d(s)/lu q <_ llr, d(s)lulq<_ x(N)KM d(s)lulp

(3.10)

Here we use the elementary inequality A _< (Ai) for c>l
(where of course c=q/p) on each of the right-hand integral terms.
Since (3.10) is independent of A, it remains true if Ft is substituted for
A in the left-hand integral.
By these arguments for Case (iii) we have shown that there is a

continuous embedding ,.7 of wl’p(f;d’r,da) into Lq(f;d) if f is
quasicylindrical. It is also clear that the proof did not require strict
inequality in the first inequality of (3.2c) or that q < p*.
We next demonstrate that ,7 is compact in Case (iii) if f is

quasibounded, p < q < p* when p < N, and the strict inequality in
(3.2b) holds. Let e > 0 be chosen and take n large enough that d(t) <
6.1 +q(N/p--N/q) and d(t) < M< on f(1/n). (This is possible by (3.2b).)
Let "ft" ft(1/n), and apply the reasoning leading to (3.7)-(3.10) using
a bounded set A c f(1/.) for the Besicovitch part of the argument. We
will end up with the equivalent of (3.5). By [12, Theorem 4.20] we can
always construct a nested chain C-{ft,}i of bounded domains
such that each ft, E C has an analytic boundary and
The compactness of ,.7 now follows by application of Lemma 2.2.

Case (iv): Let tf1/ where n> 1/e. Then (2.1b) of Lemma 2.1,
(3.2c), (3.7), and extension of the right-hand integrals to all of
imply that

sup Id(s)u(s)] <_ Ke ]Ul];lml,d.,d,r,p
sB,

wherer/= min{/3 (SN+ 7)/P, + 5(1 N/p) alp} > 0. Consequently,
we may conclude again that

The remaining details to establish continuity and compactness are
left to the reader.
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Remark 3.2 Note that the case # a =/3-’y-0 in Theorem 3.1(i)
gives the extension of Theorem A to finite measure domains due to
Carnavati and Fontes.

By eliminating by equating the right-hand expressions in the
inequality pairs (3.2b) and (3.2c) we obtain

COROLLARY 3.1 The compact embedding (3.1) is true if
p >_ and

(i) q > p, f is quasibounded, p > N or p < N andp < q < p*, and

/3/q > (3’/p)(1 + U/q- N/p) + (a/p)(N/p- N/q);
(ii) q , f is quasibounded, p > N, and

> 7/P + N(a "y)/p2.

COROLLARY 3.2 Suppose < q,p < cxz. Then the embeddings

wl,p (-) ---+---+ tq(;
WI’p (f; d-g, 1) ’--*’--+ Lq (fit)

hold if
(i) q < p, f c (I-’), and > 0 or (Iff) and/3 >_ 0;
(ii) >p(N/p-N/q); f is quasibounded, q >p, and either p > N or

p < N and q < p*.

One interpretation of Corollary 3.2 is that any bounded domain f
"nearly" satisfies the standard Rellich-Kondrachov compact embed-
ding theorems if we are willing to replace a regularity assumption on
0f by a mildly singular or degenerate weight on the left or right side of
the embedding. However it is not essential that the weight be a power of
d(t). It is possible to generalize both Theorem 3.1 and Corollary 3.2
by considering an arbitrary weight w. We begin by replacing the
integrability condition (I+) by"

(I+,w) there is a number # > 0 such that f w dt M < .
Also the following conditions will replace the inequality possibilities

in (3.2b) and (3.2c):

(H 1) limt_o w(t)-(q/P)’d(t)-q6(N/p-N/q) 0;
(HI’) lim supt-Of w(t)3--(q/P)’d(t)--q6(N/p-N/q)< 0;
(H2) lira supt-oa w(t)/3-(q/P)ad(t)q(I-N/p+ N/q) < cx3;
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(H3) limto w(t)-’/Pd(t)-6(N/p) 0;
(H3’) limto w(t)-’/Pd(t)-6(N/p) < :x;
(H4) lim supto w(t)-(a/P)d(t)6(1-N/P) <
(H5) There exist positive constants C, D > 0 such that

w(s)
C<-(t) <-D

on Bt-B(t, ed(t)) for sufficiently near 0f.

With these conditions we can obtain the following extension of
Theorem 3.1.

THEOREM 3.2 Suppose < q,p < , and >_ 1. Then the embedding

WI’p(; w, Vl)’-+’--+ Lq(; w)

holds if

(i) q < p, fl E (Iu+,w), and fl, "7 satisfy (3.2a);
(ii) q-p and/3 > "7;

(iii) q > p, f is quasibounded, v d, p > N orp <_ N andp < q < p*, and
the conditions (HI), (H2), (H5) hold;

(iv) p > N, f is quasibounded, v- d, q-, and the conditions (H3),
(H4), (H5) hold.

In Cases (iii)-(iv) the continuous embedding

WI’p(; w"y, Vl Lq(; dfl)

holds if (HI’) is substituted for (HI) in (iii) and (H3’) is substituted

for (H3) in (iv). The embedding is also continuous in Cases (iii) and (iv)
if 9t is quasicylindrical or in Case (iii)/fq-p*.

Proof Wejust retrace the argument ofTheorem 3.1. For (i) and (ii) we
substitute "w" for the distance function throughout. The condition

(Iu+,w) replaces (I+). In the remaining parts we choose the same balls
Bt-B(t, ed(t)) in the cover and use w as the weight. In (iii), (H1) and
(H2) replace (3.2b); similarly (H3) and (H4) replace (3.4c), and so forth.
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It is easy to give examples of weights w with much weaker (or
stronger) degenerate or singular behavior at 0 than d(t) or d(t)-1.
For instance, we can define

uo(x) := log(1 + (d(x)) 1/2)
uj(x) "-log(1 + (uj_l(x))l/2), j-- 1,2,...

Then for all j

lim uj+ (x)/uj(x) oo.
t-O

Set w :--Uk for some (large!) k. Since 1/2 <_ ds/dt < 3/2 if s Bt with
e < 1/2, we see (provided d(t)) is small enough that

uo(d(s)) log(1 + (d(s)) /2) < log(1 + x//2(d(t)) /2)
uo(d(t)) -log(1 + (d(t)) 1/2) log(1 -+- (d(t)) 1/2)
uo(d(t)) log(1 + (d(t)) 1/2) log(1 + x/(d(s)) /2)
uo(d(s)) log(1 + (d(s)) 1/2) log(1 + (d(s)) 1/2) <- 2x/,

so that

2x/< <2
uo(d(t))

An inductive argument will show that the same bounds hold for

U[kl(d(s))/U[kl(d(t)), k 1,2,...
In this case it will follow that:

COROLLARY 3.3 For q < p, any positive integer k, and fl > 0

WI’p() -+--+ Lq(a; u),
W’’p (f; u-3, l) -- Lq ($2) (3.11)

provided also e (Iu+,w) for any # > 0 unless q-p in which case may
be quasibounded.
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Notice that Corollary 3.3 does not apply if q >p because (H1) is not
satisfied. However, if w(t) goes to zero more rapidly than d(t) (e.g., take
w-e-lId(O) and q >p then the embedding will hold when/3> (q/p)-),
and/3 _> (q/p)c and p > N or q _< p* and p <_ N.

In these results we have not only replaced a cone condition on f or
a regularity condition on 0f by a weakly singular or degenerate
weight but also f need not be bounded. In the unweighted case the
embedding is almost never compact on unbounded domains; an
old result of Adams and Fournier (see [1]) shows that a necessary con-
dition for compactness of the embedding of wl’p(fz) into Lq(f), q >_ p,
is that

lim e \B(O, R)] 0
R--+oo

+for all A > 0. (In or quasiboundedness are less restrictive conditions.
From an "interpolation" point of view in the case rn- Corollaries

3.2 and 3.3 state that there exist (many!) nested chains of weighted
Sobolev spaces between wl’p(f) and wl’p(f) enjoying the Rellich-

,pKondrachov embedding property. For example, if we set wk,(f
W’P(f; u-/, 1,) and take/3 >/3 we have

1,p ,p W,pc

with all the embeddings below W’P(f) being compact. We can
construct similar nested chains in the target spaces LP(f, Uk). Clearly
many other examples of the same kind using other families of weights
can be constructed.
The fact that the intermediate spaces W’.(f)compactly embed into

Lq(f) has a strong analogy to an abstract result of Cwikel [11]
concerning the real interpolation method. To understand the parallel-
ism we sketch a few of the essential ideas of the K-functional method of
interpolation. For a complete treatment of the theory see [3 or 28].
Suppose Ao, A, are a pair of Banach spaces with norms ]](’)]]A0, ]](’)]]A,
or "Banach couple" which are each continuously embedded in a
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Hausdorff topological vector space 4. We form the sum

A0+A1 ={a’a0+al;a0EA0, a EA}

and endow it with the norm

[lall,o+,4, :- inf {llaollo + Ila, 114, ),
aO ,al

+a

and the intersection Ao N A with norm

[]allAoA, max{llallAo, I[allA, }.

Under these norms Ao + A and Ao fq A become Banach spaces. For
a Ao +A and > 0 we define the functional

K(t, a) inf {llaollAo + tllal [I,4 }
,a
+a

and the interpolation space

{(Ao, A1)o,q a Ao / A," Ilallo,q \ to

The main result of the theory is that (Ao, A 1)O,q equipped with the norm
]](’)]10,q becomes a Banach space such that

Ao A ’-+ (Ao, A)o,q’--+ Ao + AI. (3.12)

Cwikel [11] proved the following result concerning interpolation spaces.

THEOREM D Let ]t, be Banach couples and suppose that the linear
operator T" Ao / A Bo + B is bounded. Suppose that T" Ao Bo is

compact. Then T" (Ao, A )O,q -+ (Bo, B)o, q compactly for 0 (0, 1) and
p [1,0].

The prototype of this theorem is a result of Krasnosel’ski [21]
who proved that if T mapped LPi() continuously into Lqi(]),
< Po,P, q < oo, _< qo < oo, and additionally T’LP(1R) --+ Lqo() is
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compact, then T" LP(R) Lq(R) where

liP (1 O) /po + O/pl,
1/q (1 O)l/qo + O/ql,

where 0 < 0 < 1.
The resemblance between (3.11) and Cwikel’s theorem is clear if we

take J (W(gt), wl’p(f)) and/the pair ofimages of W(f), Wl’P(f)
in Lq() under the embedding map T. Then wl,p(f; u], 1) "corre-
sponds" to (Ao, A1)o,q. However this analogy is only formal; for (as
in the present case) when Ao is a topological subspace of A1, the
K-functional method is vacuous and gives the same intermediate space
for all 0, q namely Ao. This follows because (see, e.g., [3, Theorem 2.9])
A0 A0 fq A is dense in (Ao, A 1)O,q for 0 E (0, 1), q E [1, ) and the
embeddings (3.12) entail that the norms II(’)ll0,q and It()ll 0 are
equivalent on A0. Nevertheless, it may be of some interest that we can
exhibit chains of spaces intermediate between Wo and Wwhich are not
given by interpolation and yet have the behavior of Theorem D.

EMBEDDINGS WITH A WEAK INTEGRABILITY
CONDITION ON

We now change the (Iu+) condition to allow # to be negative. We say that
9t is an (IS) domain or "f (IS)" if

(IS) there is a number -N< # < 0 such that fa d(t) dt-M<.
PROPOSITION 4.1 Iff is an (IS) domain, then f hasfinite measure.

Proof Suppose that 9t is not quasicylindrical. Then for each n Z
we can find tnG such that d(tn). Consider the ball Bn-
B(t, d(t)) C f. If s B then d(s) < 2d(tn). Hence

> f d(t)’ >- f d(t)

>_ 2"d(tn)"lB,
_> Ig(0, 1)12d(tn)u+ ,

which is a contradiction.
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On the other hand, if f is quasicylindrical, then and (I) is true then

> f (t) >

where D- supt e d(t) so that f has finite measure.
An (I) domain, however, need not be bounded. Supposef: Z

is any function such that (a) f(n) diverges (b) f(n)2+" con-

verges. Let N- 2 and C, be a family of pairwise tangent circles of radii

r,:=f(n) and centers c, with coordinates (f(n)+ 27-f(k),0).
Define

n=l

where is the interior of the circle with radius (1 + e)r and center
and 0 < e << f(n). is unbounded since c. . Further if Q then

d(t) f(n) -t- c. Introducing polar coordinates (with r "-It- c)
we find that

( + )-"(/(-,.)- 1/(2- .))l(,)-".
Thus Q satisfies (I).

There is.a connection between the (I2) condition and the notion of
Minkowski dimension.

DEFINITION 4.1 Let 0 < X < N and r > 0 and set

yN_A

M(OQ) lim sup M(OQ; r),
r0+

dim(0Q) "-inf{A" M(OQ) < }.
M,Q

The last two of these quantities are called respectively the A-
dimensional Minkowski precontent and Minkowski dimension of
A consequence of the definition is that dimm,(0Q) N. However this
dimension need not be strictly less. than N. There exists such that

M(O) %r all A (0, N) (see [13, Remark 4.3] and the associated

reference).
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Next, recall that a Whitney covering /Y of f is a family of cubes Q
each ofedge length LQ-- 2-:, k E N and diameter DQ LQVsuch that
the following five properties hold:

(i) f U QwQ;
(ii) the interiors of distinct cubes are disjoint;
(iii) <_ dist(Q, Of)/DQ <_ 4;
(iv) J _< diam(Q1)/diam(Q2) if Q1N Q2 :/: ;
(v) at most 12u other cubes in W can touch a fixed Q E W; further for

fixed E (1, - each x f lies in at most 12N of the dilated cubes tQ,
Q ’I/V.

It is known [27] that such a covering exists for any bounded f.
Condition (iii) in particular means that there are fixed constants cl, c2
such that

ClLQ d(s) 2LQ (4.1)

for any s Q. Note that we can take in (4.1) c and c 5v.
Now let n(k) denote the number of cubes in l/V where

V {Q V" LQ 2-}

and k is a positive integer. The domain 2 is said to satisfy a Whitney
cube #-condition if there is a continuous increasing function
h’(0, ) (0, ) such that n(k) < h(k) for all k _> k0 > 1.
The following lemma as well as (i) and (ii) of Lemma 4.2 were proved

in [7, Lemma 6.1 and Proposition 6.1] (also see [23, Theorem 3.11; 13,
Lemma 2.2]).

LEMMA 4.1 Let f be boundedand A E (O, N]. Then M(Of) < if, and
only if, n(k) <_ K2 for all k >_ ko where K and ko are finite positive
constants.

LEMMA 4.2 Suppose f is bounded and let dimt,(0f)- A. Then the
jbllowing conditions are equivalent:

(i) , < N.
(ii) f I for some # < O.

Moreover, if < N, then the set of # for which (ii) is true is exactly the
open interval (-(N- ), 0).
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Proof We give here only the proof of the final part of the lemma. By
Lemma 4.1 and the definition of dimM,(0f) if dimM,(0f)----A < N,
then , must be the least number such that n(k) < K2k. Therefore there
exists a subsequence {n(kj)}, n(kj) K2kj. Then as in Proposition 6.1 of
[7] we have that

d(s)-(N-)
_
K Z 2kJ(+(N-)-N

j=l

On the other hand if 0 > # > -(N- ), we find that

d(s)’ -< K 2k(’-N-) <
j=l

Thus # may be an arbitrary element of (-(N- ), 0).
Lemma 4.2 shows that (I) can be a very weak condition. For

instance, since it can be shown that John domains, domains satisfying
a quasihyperbolic boundary condition, domains satisfying a cone con-
dition or minimal smoothness conditions on their boundary or convex
domains have the property that 0f has Minkowski dimension <N we
can conclude that the class of (IS) domains includes all of these if I#1 is

small enough. At the same time, however, the condition is not strong
enough to yield the classical embedding theorems for it is routine to

show that it applies to domains of the "rooms and passages" type which
are counterexamples to these theorems.
We are now in a position to improve Theorem 3.1 when q < p.

THEOREM 4.1 Suppose fl E (I) or equivalently that dimM, (0f) <
N+ #, and q < p. Then the compact embedding (3.1) of Theorem 3.1
holds if

/3 > 3’- I#1( q/P). (4.2)

Proof The argument is exactly the same as for Theorem 3.1 (i) except
that now # is negative and (IS) is substituted for (I+).
COROLLARY 4.1 Suppose f is (I), and q <p then

Wl’p (-; d")’, 1) _c___ Lq (-)

/f0 >/3 > -[#[(1 q/p) and 3’ < I#]( q/P).
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Remark 4.1 This corollary which is an immediate consequence of (4.2)
says that Wembeds compactly into Lq(f; d) for some negative powers
of d(t) or into Lq() for sufficiently small positive 7 provided q < p, f
has finite measure, and satisfies the (I) condition. Thus (IS) gives
a better embedding than Theorem A or the extension of it to
finite measure domains given in [10].

The next result includes the case q _>p but depends on much more

complicated arguments than those given for q <p. We first present
some preliminary definitions and lemmas.

DEFINITION 4.2 A domain f is said to be a (q,p)-Poincar domain,
for <_ p, q < if the inequality

lU Uf[q g(p, q, f) ]Vulp

holds. Here

The constant K(p,q,f) which is independent of u is called the
Poincar6 constant of f. If p q we call f a p-Poincar domain.

The question of exactly which domains are p-Poincar6 or (q,p)-
Poincar6 has been much investigated see e.g. [18-20]. The only fact we
need here, however, is that cubes are p-Poincar6 and hence have a
Poincar6 constant. We can then prove

LEMMA 4.3 Ifq E [1,p*] whenp < Nor q [1, c) whenp > NandQ is a

cube, then

(f[U uQIq)
1/q

for all u WI’p(Q).

<_ K(q,N)IQ[1/N+I/q-1/P (f IZulP)
1/p

Proof If q <p we obtain from the q-Poincar6 inequality and H61der’s
inequality that

]u- ual q <_ g(q,g)lol /N [Tul q

<_ K(q, N)IQI 1/N+I/q-1/p IVulp
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Under the other conditions on q we have by Lemma 2.1 and the
p-Poincar inequality that

<_ KI(p,q,N)IQI 1/N-1/q-1/p IVul

LEMMA 4.4
able subset off such that faw < oo. Let

fA WUUA,w fAW
Thenfor all u E LP(f; w) and c

If <_ q < p < oo, w is a weight on Ft and A is a measur-

<_ K wlu- c]p

where

Proof The Lemma extends [13, Lemma 2.3] and the proof is similar.
By the triangle inequality

(L WlU-- UA,wlq) I/q(_ (J WlU-- C]q)
But by HClder’s inequality

4- wlc- UA,wl q

<_ L w(- u) ( w)-l (L w) 1/

<- (L w, u,) / (L w)-1/ (fa w)1/
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Also by H61der’s inequality

(fWlbl-- clq)l/q_ (fWlbl-- lP)
1/p

(fW)
1-q/p

The result follows by combination of these estimates.

DEFINITION 4.3 Suppose we are given a covering by cubes of a
domain f. Let Q0, Q be respectively a fixed and arbitrary member of. We call a finite sequence of cubes {Qi}’oQ joining Q0 and QnQ Q a
PoincarO chain if

(i) Qif-q Oj TL O, li-jl < 1, 0 < i, j < no 1.
(ii) max{IQi[, IQi+I} < KIQifqQi+l, i-o,...,no where

sup K(p, Q) <_ K <
QY

Further the number nQ is called the length of the chain.

THEOREM 4.2 Suppose 2 E (I) and bounded, <_ p, q <

#,
fl >- c/p + N(1/p l/q) 1,

< (p )ll, < (p 1)(11- N) +p N, and that q [p,p*] when
p <_ N. Then

WI’p (-’; d7, d) tq (a; dfl). (4.3)

Further if additionally q [p, p*) when p < N and the conditions

(i) 7/P </3/q + N(1/q- l/p),
(ii) fl/q > max(cffp + N(1/p 1) 1,#)

are satisfied, then the embedding (4.3) is compact.

Proof Our strategy will be to first obtain a Poincar6-type inequality
and then derive (4.3) by means of a triangle inequality argument.
Our methods are similar to those of Bojarski [5] and Edmunds and
Hurri 13].
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Let W be a Whitney covering of f. For Q E W define Q (9/8)Q.
It is known (see [18, Proposition 6.1]) that there exists a Poincar6
chain C(0)"- {00, 01,..., 0ne-1,0} joining a fixed cube 00 E W and
an arbitrary Q W. Let nQ be the length of the chain and set Qne Q.
We are going to derive the inequality

I =_ dlu UOo ]q g dlul (4.4)

We begin estimating the left side of (4.4). By the triangle inequality

Iq -< Z JO lu- uo’lqdfl-+- Z fO ]uO- uo[qd -11 + 12.
QEW QEW

By the properties of Whitney cubes and the Poincar6 inequality of
Lemma 4.3 which holds under the stated conditions on p, q and N we

obtain successively that

(4.5)

Next using the triangle inequality and the chain C(O) we have that

ke
Iqd.12 Z Zlbloj--UOj_l

QI,’V j=l
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By property (ii) of Poincar6 chains we find that

ko

j=l

I-11- lu- ul +
-,

Ig1-1+1/ IWl +
j=o

IOjl -I+llp’+IlN-INp dlVulv
j=0

the last inequality following from an application of H61der’s inequality.
Thus

12 -< J’O IO’SI-’Ip+’IN-iNp dlVulP

Minkowski’s inequality for sums (for p 1) then yields that

( )q/P
_

dlVulp

dlVule’

provided the sum involving the cubes in the Poincar6 chain is finite.
However

kQ

7 d(tQ,)uv’(-llv+llu-luv) -< 7 H(k)2-UP’(-llv+llU-<lUv)
j=0 k=0

(4.6)
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where H(k) is the number of cubes whose volume 2-klf]. Since f
is (IS), by Lemmas 4.1 and 4.2 we can conclude that H(k) 2k(N+u).
A calculation shows that the sum in (4.6) is finite if and only if
a < (p 1)(-# N) +p N.

Ifp we get from (4.5) and Minkowski’s inequality that

I2 -< f Ijl (-i+I/N-/NI dlVul d
QEI/V J Q O<j<ka

_e, (fda,bll)q(supd )N(-I+I/N-a/N)
\QEV

tQj

-< dl7ulp d,
provided

a<l-N- lim(p-1)(-#-N)/p-N.
pl+

This argument establishes the Poincar6 inequality (4.4) when p _< q _< p*
and p _< N, or p > N. By the triangle and H61der’s inequality (4.4) is
equivalent to

Jdfllulq-’< { Joulq+(fda]ulP) q/p }
-_ {(fd-7/(P-1))q/P’(fdflbllP) q/p/(fdal\Zbl]p)

This establishes the continuity of the embedding (4.3).
We turn next to compactness. Suppose qE[p,p*) if p < N and

q E [1, ) otherwise. Take c << If we repeat the previous argument
on f(,) then

I,() lu-uolqd/,

where now W is a Whitney cover of f,) and the cubes Q (including a
fixed cube Q0) are elements of V,. Since Q cf,) we see that
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IQI d(tQ)N
_

6N. Therefore assumption (ii) guarantees in the chain of
inequalities (4.5) that d(tQ) + u + N--qN/p--qo/p

f. and so

I1 ’< e. d’lVu]p
()

Similarly the sum (4.6) if finite is also O(e). It follows that we have

I.- UQol q - dlV

Therefore

J(.)dfllbllq - IOl-q((,) dfl) Qo lq@(dllP) q/p

[ 1/p’( fll/q]q q/p

+, lulp q/P @q(-/pWN/p’-g+fl/qW1/q)) dlulr

+ dlulp , dlulp + dlu p

(by Assumption (i)). (4.8)

Ifwe define {fn} and {f"} as in Theorem 3.1 and choose n > 1/. Then
by (4.8) Ilulla,/,;d,,q Ollulla;d,d,,p and also as in Theorem 3.1 we can
show that wl’p(f; dr, d) embeds compactly into every Lq(fn, d). By
Lemma 2.2 the compactness of the embedding follows.

Remark 4.2 By Lemma 4.2 we can replace the conditions on c,/3, 3’
involving # in Theorem 4.2 by conditions involving dimt,a(Of). A
calculation shows that these are
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Remark 4.3 The arguments of Theorem 4.2 remain valid even if
#-0; equivalently if 9t is an arbitrary bounded domain, but the
restrictions on a,/3, "7 are more severe than in Theorem 3.1. However
since (4.7) will hold in this case when /3>0 and a<p(1- N), by
substituting "u"-u-UQ in (4.7) we get the weighted Poincar6-type
inequality

1/p

We now apply Lemma 4.4 to the left side of this inequality, taking
w d/, A -, q--p, c u0 noting that q <p is possible when p > N.
This gives

1/p

for all nonnegative/3. A similar observation was made in [13]. The same
argument giving a (q,p)-Poincar6 inequality of course will work for
0 > # > -N. We also note here that when/3 > 0 it follows by the second
part of Theorem 4.2 that the Poincar6 inequality is associated with a
compact embedding of wl’p(f; 1, d) into Lq(; d).
COROLLARY 4.2 IfdimM,(Of) < N, q E [p,p*] when p <_ N, and

a < min{p(1 dim (0f)) + dim (Of2) N, N + Np/q},

then

W’P(a; 1, d) - Lq(2).

COROLLARY 4.3 If (I), and a < (p 1)(-# N) +p N
or equivalently a < p(1 dimM,n(0f)) + dimM,s(0) N where
dimM,o (Of) < N, then

Proof Let p- be chosen sufficiently close to but less than p so that
a "-(p-/p)a satisfies the inequality assumed for a. Then if 6 > 0 is
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sufficiently small, application of Theorem 4.2 with/3 0 gives us the
embedding

WI,p-(a; d-6, da’) ._._ (4.9)

On the other hand, since we can choose < ]#l(1 -p-/p) Theorem 4.1
yields the inequality

(4.10)

But by H61der’s inequality

(4.11)

Substitution of (4.10) and (4.11) into (4.9) gives us the desired
embedding.

Remark 4.4 Since it is known (see, e.g., [7]) that the compactness of
the embedding WI’P(fl; Vo, vl) into LP(fl; Vo) implies the existence of
the Poincar6 inequality, we have at once from Corollary 4.3 another
proof of the inequality

lu ualp <_ g(p, a) d’lVulp
1/p

where u E WI’p(-’; 1, d), f is a bounded (I) domain, and a < (p 1)
(Ir,I- N) +p U.
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