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Four different well-posed regularizations of the improperly posed Cauchy problem for the
backward heat equation are investigated in order to determine whether solutions of these
problems depend continuously on a perturbation parameter. Using differential inequality
techniques, we derive results implying continuous dependence in each case.
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1. INTRODUCTION

One method that has been used to construct solutions to the ill-posed
Cauchy problem for the backward heat equation is the quasireversi-
bility method (see [9,10] for references). The idea behind this method is
to perturb the ill-posed problem into a well-posed one and use the solu-
tion of the well-posed problem to construct an approximate solution
of the original problem. A number of perturbations or regularizations
have been proposed. These include a biharmonic regularization [9], a

pseudo-parobolic one [10,16], a hyperbolic regularization [2,10], and a
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regularization in which the initial condition is perturbed rather than the
differential equation [15]. Unlike the initial value problem for the
backward heat equation, each of these regularizations produces a well-
posed problem containing a perturbation parameter. One question that
arises is whether the solutions of these four regularizations depend
continuously on this perturbation parameter. Such studies have been
referred to as "continuous dependence on modeling" investigations
and have been carried out for a number ofboth well-posed and ill-posed
problems (see e.g. [3,5,6,8,11,12]).

In this paper, we shall derive inequalities from which continuous
dependence on the perturbation parameter for solutions of each of the
four regularizations of the Cauchy problem for the backward heat
equation can be inferred. We thus consider the following four initial-
boundary value problems. In each problem, D is a bounded region in ]t

with boundary OD, A is the Laplace operator, is a small positive
constant, and T is some prescribed value of time which, except in the
fourth problem, may be infinity.

PROBLEM

U,t -- An -- eA2u 0 in D x (0, T),
u 0, Au 0 on OD x [0,T],
u(x, 0)=f(x), x E D.

(1.1)

This is a biharmonic perturbation first suggested by Latt6s and Lions [9]
as a regularization of the initial value problem for the backward heat
equation. If we restrict ourselves to a finite time interval, then Ames [1]
showed that provided the solutions are suitably constrained, the
difference between a solution of (1.1) and the "solution" of the problem
with e =0 is 0(6.6(t)) in L2 norm, where 6(t) is an explicit function such
that 0<6< for 0< t< T.
The second problem we consider is

PROBLEM 2

u,t+Au-eAu,t=O inDx (O,T),
u O, on OD [0, T],
u(x, 0)=f(x), x D.

(1.2)
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Such equations have been called pseudo-parabolic by Showalter and
Ting [16] and have been considered in the context of the quasiversi-
bility method by Showalter [13,14] and Ames [1].
Our third problem involves a hyperbolic perturbation of the back-

ward heat equation, namely

PROBLEM 3

U,t "3
I- mu 6_u,t 0

u(x, O) f(x), ut(x, O) g(x),

inD (0, T),
on OD [0, T],
xD.

(1.3)

Ames and Cobb [2] have recently compared solutions of (1.3) with
"solutions" of the Cauchy problem for the case e --0.

Finally, the fourth problem is a regularization in which the initial
condition is perturbed rather than the differential equation.

PROBLEM 4

u,t + Au 0 in D (0, T),
u 0, on 0D [0, T],
u(x, O) + eu(x, T) f(x), x D.

(1.4)

Showalter [15] calls this a "quasi-boundary-value" approximation to
the initial value problem for the backward heat equation. Problem (1.4)
has been shown to bewell-posed foreach e > 0 byClark andOppenheimer
[4]. We point out that this problem is equivalent to a Tikhonov type
regularization of a Fredholm integral equation of the first kind (see [7]).
Each of the following sections is devoted to obtaining continuous

dependence on e results for the preceding four problems. Throughout
our analysis we shall employ standard indicial notation and a comma to
denote partial differentiation.

2. BIHARMONIC PERTURBATION

Let us consider two solution u and U2 of (1.1) corresponding to
two different nonzero values e and e2 but having the same initial and
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boundary data. Set

W Ul --U2

so that w is a solution of the problem

W,t -+- mW -+- 1 z2W (2 1)A2bt2
w=0, Aw=0

w(x,O) =0,

inD (0, T),
on OD [0, T],
xED.

(2.2)

We assume without loss of generality that el > e2. Consider the fol-
lowing functional defined on solutions of (2.2):

(t) w2 dx. (2.3)

Our aim is to derive a differential inequality from which our continuous
dependence results can be obtained. Differentiation (2.3) and substitut-
ing the differential equation (2.2), we see that

’’ t) 2 fD WW,t dx

2/ w[-Aw IA2W (1 2)A2u2] dx

Integration by parts leads to

62(t) -2e /(Aw)2 dx- 2 Aw[w + (e e2)Au2]dx

and an application of the arithmetic-geometric mean inequality gives
the inequality

’(t) < (1 +a)fD w2dx + (1 + a) 2 )22e 2ae,
(1 2) (Ab/2 dx (2.4)

for an arbitrary positive constant a. Thus, we have

’(t) _< 12el+ + 12ae,+ a
(e 2)2 (AU2)2 dx. (2.5)
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Integration of this inequality results in the bound

(t) _<
\2ael J

(2.6)

We proceed by multiplying the equation
u2exp{(1 + a)(t- r/)/2e} and integrating the result.

This gives

for U2 by

u22dx- exp f2dx2e

+ 4

+ exp
2el

f0tfD { (1 -1- Og) )+ e2 exp (t- r/) (AU2)2 dx dr/- 0.

It then follows that

exp u dx dr/
4el 2el

d- 2 exp
2el

exp (l+a)(t_r/) udxdr/2e2 2el

2 fot {(l + a) (t_ r/)}(Au2)2 dxdr/+-- exp 2e,

+ exp dx

D

(2.7)
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for an arbitrary positive constant/3. The choices/3 1, a (2el 2)/2
lead to the inequality

2 exp (t- q) (ZU2)2 dx dr/< et/‘2 f2 dx.
2e

(2.8)

Consequently, (2.6) becomes

e2(2e e2)
dx e t/e2 (2.9)

which is the desired continuous dependence result. We note that if we
choose fl=e2(1 + o0/(2el and then choose a appropriately, we can
obtain a symmetric version of (2.9), namely

l{et/q e t/- } f’(0 -< 1(2 ) +( )
(1 ) f d. (.10)

3. PSEUDO-PARABOLIC REGULARIZATION

For Problem 2, suppose u and v are two solutions corresponding to the
parameters el and e2, respectively, where e2 )e1. Then the difference
w v- u satisfies the initial-boundary value problem

W,t -+- Aw e2mw,t (e2- el)Au,t
w=O

w(x, O) =0,

inDx (0, T)
on OD x [0, T]
xcD.

(3.1)

We now define a functional

(I)(t) (W2 q- e2w,iw,i dx d/, (3.2)
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which we show satisfies a first order differential inequality. Differ-
entiating (3.2), we have

’(t) 2 (ww, + 2W,iW,il)dx dr (3.3)

Substitution of the differential equation in (3.1) and integration by
parts leads to

’(t) 2 W,iw,idxdr/-- 2(e2 el) W,ibl,ildxdr/.

Then an application of the arithmetic-geometric mean inequality
gives

(+)  o"/o’-t() <
2

’2
) + --OZ (2 1 bl,iTU,# (3.4)

for a positive constant c. We now need to bound the second term on
the right side of (3.4) in terms of data.

Multiplying the differential equation in (1.2) by u,n and then
integrating over D and with respect to r/, we see that

fOtfD fOtfD fOtfDe bl,iTbl,i7 dx dr u2, dxd + u,iTu,i dx dr/. (3.5)

Application of Schwarz’s inequality and the arithmetic-geometric
mean inequality to the second term in this expression leads to

U,#lU,i dx dr < U,iU,i dx dr (3.6)

Integration of the identity

0 u[u, + Au- e Au,,] dx dr/
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results in

dx + bl,iH,i dx dl.
o

(3.7)

If we now set

G u,iu,idxdr

then (3.7) yields the inequality

dG
el--< Q+2G (3.8)

where the data term Q fz U2(0) dx. We integrate (3.8) to find that

(3.9)

and in view of this bound and (3.6) we have

Q e2t/qU,#lU,irl dx dl < (3.10)

Thus, we obtain from (3.4) the differential inequality

’(t) _< (2 +,c) + (e2-el)2

f’2 2oe
Qe2t/e’ (3.11)

which, upon integration gives

Q2(2-1)2

b(t) _<
2ce [(2 + c)e 2e2] {e((2+)/e2)t- e2t/e’} (3.12)
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where we have assumed that a is chosen so that (2+a)el > 2e2.
Inequality (3.12) is the desired continuous dependence result. We note
that in the limit as a tends to 2(e2-el)/el, (3.12) becomes

Q(e2 -e)te2t/‘’
I, (t)_< (3.13)

4el

4. HYPERBOLIC REGULARIZATION

To handle Problem 3, we again assume that u and v are two solutions
corresponding to the parameters e and e2, respectively. Again, let
us assume e2 > e. We then introduce two new functions u* and v*
defined as

u* udr/, v* vdr/. (4.1)

These functions satisfy the differential equations

U*t -- AU* ll*t u(O) 1U,t(O) (4.2)

and

v*., +  Xv* v(O) (4.3)

If we now set w v* u*, then w satisfies

(4.4)

Consider the functional

((t) fD(W,iW,i + 2W2t) dx. (4.5)

Upon differentiation, we find that

d
dt

2 fD(W,itW,i + (.2W, tW,tt) dx
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and substitution of eq. (4.4) leads to the expression

d
dt fr 2 dx 2@2 el fD w’tu*’ttdx 2(E1-- E2) fD W’tU’t(O) dx"=2 w,t

(4.6)

Application of the arithmetic-geometric mean inequality yields

d<(2+a+/3)+
dt E2

(E2 --O El)2 [U*’tt] 2 dx + (E2 El)2 fD ]2[U,t (0) dx

(4.7)

where a and/3 are arbitrary positive constants. We now must establish a
bound on fD u*,tt dx. Since

D / 2 dx,[U*tt] 2 dx u,,
D

let us consider the identity

0 U,r/(U,r/ + AU E1//,r/q) dx dr/ (4.8)

to help determine such a bound. Integration of (4.8) results in the
inequality

E1 b/,t2 dx (_ el b/2,t(O) dx + b/,i(O)b/,i(O) dx + 2 u,v2 dx dr/.

(4.9)

If we let

t/D

2 dxdr/,G u, 0 E1 /,/,t(0) dx + u,i(O)u,i(O) dx,
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then (4.9) is the differential inequality

eG’ <_ 2G + 0- (4.10)

Integration of (4.10) leads to the bound

{)[e2t/e’ 1]

from which it follows that

Ut

We thus obtain from (4.7) the inequality

db
< " b + Ae2t/q -+- Bdt-

(4.11)

(4.12)

where

2 + a +/3 (e2 e)20
’7- el--

2 oel

(t52 1)2f/ aD
[u,t (0)]2 dx.B

(4.13)

If we integrate (4.12) we find

Ael< B (eTt 1) + (e2t/q eT’). (4.14)
7 2-7e

Provided we choose a and fl so that 2- ")’El O, we can surmise from
(4.14) the continuous dependence inequality

2 { e2-<(’-’ (2+.+)

+ oz[2e2 (2 + o +/3)e

e(2+a+/)t/e2 {u,t(O)]2 dx

[e2t/el e(2+a+C)t/2] }. (4.15)
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If we take a =/3 and then let/3-+ (2 1)/1, there results- [u,t(O)]2dx +
D

5. QUASI-BOUNDARY-VALUE APPROXIMATION

Consider two solutions (Ul, el) and (/12, 2) to Problem 4 and set w=

ul-u2. Then w satisfies the problem

Aw+w,t=O
w--O

W(X, O) -1
t- 6.1W(X, T) -(51 {2)z/2(x T),

inD (0, T),
on OD [0, T],
xED.

(5.1)

Defining

(t) W
2 dx (5.2)

we proceed to show that satisfies a first order differential inequality.
Differentiation of (5.2) leads to

d=dt 2Jzww’tdx-2JDW’iw’idx (5.3)

upon substituting the differential equation and integrating by parts. It
follows from Poincar’s inequality that

d > 2 (5.4)dr-

where A is the first eigenvalue for the fixed membrane problem,

Av+Av=0 inf,,

v 0 on 0f.
(5.5)
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Integrating the differential inequality (5.4), we obtain

(t) < (T)e-2a(r-’). (5.6)

We next need to find a bound for (T). We have

(T) --w2(x,T)dx l w(x, T)[w(x, O) + (e e2)u2(x, T)] dx

upon using the initial condition in (5.1). Recalling the Lagrange
identity for the backward heat equation [9] we see that

(T) -I w2(x’ T/2) dx -e2) w(x’ T)u2(x’ T)

(5.7)

Dropping the first term on the right side of (5.7) and using Schwarz’s
inequality, it follows that

(i)(Z)
(El E2) 2

E u22 (x, T)dx. (5.8)

Now a similar argument leads to a bound for fo u(x, T)dx in terms
of data, namely

f2 dx. (5.9)u(x, T)dx <_ E
Substituting (5.8) and (5.9) into (5.6), we arrive at the continuous
dependence inequality

E2)2 e-2A(T-t) fq(t) < /]2 dx. (5.10)

Remark We note that our continuous dependence results for each
of the four problems considered lose their validity when E or E2 tends
to zero.
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