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We prove that, on an arbitrary compact subset of the complex plane, Markov’s and
Schur’s inequalities are equivalent.
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We recall first the two classical inequalities of the title.
Markov’s inequality ([5], 1889): for any polynomial P

max{lP’(x)l" x [-1,1]} <_ (degP)2 max{lP(x)l" x [-1, 11}.

Schur’s inequality ([8], 1919): for any polynomial P

max{lP(x)l" x [-1, 1]} _< (1 +degP)max{lxP(x)l" x [-1, 1]}.

These inequalities are extensively used in approximation theory and
have been widely generalized in many ways (see e.g. [1,4,6,7]).
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For example in the one-dimensional case, it has been proved for some
compact subset E of C that

I[P’IILq(E) C (deg p)ml ]lpl}zq(E) (M)

]le[ltq(E) C2(dege)m2l{(x-Xo)P(x)]ILq(E), (s)

where Xo E C and C1, ml, C2, m2 are positive constants depending only
on E and q,

[]fllLq(E) [f(x)lq dx q [1, +),

IlfllL() max{[f(x)l" x E}.

If E [-1,1], it is not difficult to show that (S) can be established
using (M) (see [2, Lemma 2]); moreover (S) implies (M).

In this note we show that for an arbitrary compact set of C, (M) and
(S) are equivalent:

PROPOSITION Let E be a compact subset ofR (or C) and q [1, +x].
Then thefollowing conditions are equivalent:

(i) There exist two positive constants C, m, depending only on E and
q such that for any polynomial P 79(R) (resp. 79(C)),

IIP’IIq(E) C1 (deg p)m, lipiltq(E)

(ii) There exist two positive constants C2, m2, depending only on E
and q such that for any polynomial P 79(R) (resp. 79(C)) and any

Xo R (resp. C),

[IPII.cE/ C2(degp)m2[l(x-Xo)P(x)]ILq(E),

(iii) There exist two positive constants C3, m3, depending only on E
and q such that for any polynomial P 79(R) (resp. 79(C)) and any
a, b, c R (resp. C),

[{(ax2+ bx + c)P’(x)IIL,,(E <_ C3(degp)m3ll(ax2+ by + c)P(x)[IL,,(E ),
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(iv) There exist two positive constants C4, m4, depending only on E and
q such that for any polynomials P and any polynomial R E P(R)
(resp. 79(C)),

IIRP’IILq(E) <_ C4(deg P -+- degR)m411RPIILq(E ).

Inequalities of types (iii) and (iv) were investigated by many authors
(see e.g. Nevai [6, Chapter 9] and Goetgheluck [1]).

Proof We will give the proof only for the real case; the complex case
is similar.

(1) Inequalities (i) and (ii) are equivalent.
The implication (i)=> (ii) is due to Goetgheluck [3].
(ii) :=> (i). We can write e(x) (x x)(x x2)... (x xk)(x2 +
bx + Cl) (x2 + b2x + c2)... (x2 + blx + cl), where x, x2,..., x:, b,
b2,...,bt, c,c2,...,c1 ER and ba2. < 4cj for everyj {1,2,...,1}.
Then we have

Thus

IIP’IIL ,(e) <-- C2k(degp)m llPllL,,( ) + 21C2(degp)mllPllL,()
C2(deg p)m +l
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(2) Inequalities (i), (iii) and (iv) are equivalent.
(i) = (iv). Fix an arbitrary unitary polynomial R. We have R(x)--
(X- Xl) (X- X2)... (X Xk) (X2 + blx + cl) (x2 -I- b2x + c:)... (x2

btx + ct), for some x, x2,..., xk, b, b2,..., bt, c, ez,..., ct, R with

b} < 4c for every j { 1,2,..., l}. Then

II(RP)’IIq>

+ () (- ( + +
"= kj=l,ji kn=l Lq(E)

+ ()( +) (-) ( + +
"= kn=l,ni Lq(E)

By (i) which is equivalent to (ii), we have

C (deg P + deg R)m’

+ C2k(deg P + deg R)m[IRPI[q(e
+ 2c2(eg e + deg R)m IIRPII Lq(E)
2max{G, C2)(eg P + degR)max{m"m+}l[RP]lcq(e

The obvious implications (iv) (iii) and (iii) (i) complete the
proof.

Remark For the complex case it is easily seen that m m2 m3 m4.
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