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A stronger version of matrix convexity, called hyperconvexity is introduced. It is shown
that the function A is hyperconvex on the set of Hermitian matrices A and A-1 is
hyperconvex on the set of positive definite Hermitian matrices. The new concept makes
it possible to consider weighted averages of matrices of different orders. Proofs use
properties of the Fisher information matrix, a fundamental concept of mathematical
statistics.
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1. INTRODUCTION

It is known that the functionf(A)= A2 is matrix convex on the set
of Hermitian s s matrices and fz(A) A- is matrix convex on the
set 7-/+ of positive definite Hermitian s s matrices. For analytical
proofs of these and related results see [4, Ch. 16].
The authors have recently suggested in [3] two purely statistical

proofs of the above results, one based on the Gauss-Markov theorem
for least squares estimators and the other based on properties of the
Fisher information matrix.

Corresponding author.

143



144 A. KAGAN AND P.J. SMITH

It turns out that the statistical viewpoint is not only of a

methodological interest but also prompts a stronger version of matrix
convexity where weighted averages

w1A1 + + wnAn

with

W1 > 0,..., Wn > 0, W1 +’’" -Jr Wn (1.1)

are replaced with

TBT1A1B1 + -.1- BnAnBn. (1.2)

In (1..2), Aj is an sjx s matrix, B is an s x m matrix, j 1,2,..., n and
the role of (1.1) is played by

TBTB1 +... + Bn Bn Im, (1.3)

Im being the identity m m matrix.
In Section 2 it is proved that

T 2 (BTAB +... _+_ BnAnBnBTAB1 +... + BnAnBn >_ T )2 (1.4)

for any Hermitian sj x sj matrices A, j- 1,..., n. (As usual, A >_ B
means that A- B is positive semidefinite.) We call the property (1.4)
hyperconvexity offl(A)-A2 on the set 7-/= tO7-/s of allHermitian
matrices.

2_1 then forIf sj= s and Bj- vjls,j-- 1,..., n with Vl
2 +-.. + Vn

wj- v, (1.4) becomes

w1A +"" nt- wnA2n >_ (w1A1 +... + wnAn)2, (1.5)

i.e., hyperconvexity of A2 implies convexity. Similarly, it is proved in
Section 2 that fz(A)- A-1 is hyperconvex on the set + t_Js 17-/+ of
all positive definite Hermitian matrices.
The proofs are based on basic properties of the Fisher information

matrix for normal random vectors. In Section 3 analytical proofs of
hyperconvexity of A2 on 7- and A-1 on 7-/+ are given. These proofs
were suggested by Israel Gohberg and are published here with his
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kind consent. Now a few comments on statistical approach to matrix
inequalities.

In Carlen [1] it was proved analytically that if X is an s-variate
random vector decomposed as

X= [x]X (1.6)

where X and X2 are r- and q-variate subvectors then the matrices of
Fisher information I(X), I(X1) and I(X2) (on s-, r-, and q-dimensional
location parameter) contained in X, X and X2 respectively (see
Section 2 for the definition of the Fisher information matrix), satisfy
the inequality

tr I(X) > tr I(X) + tr I(X2). (1.7)

In [2] a simple statistical interpretation and proof of (1.7) is given.
Let now A be an arbitrary positive definite Hermitian s s matrix

decomposed as

A [ AA21 A22A12] (1.8)

where A and A22 are r r and q q matrices.
Consider an s-variate normal random vector X decomposed as in

(1.6) with mean

EX=O-[O]02
and variance-covariance matrix

v(x) A.

For such X, X and X2 the Fisher information matrices I(X), I(X)
and I(X2), are easily calculated,

I(X) A-1, I(X,) A-, I(X2) A-2
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so that (1.7) results in

tr A- _> tr Ai- + tr A2 (1.9)

Certainly (1.9) can be proved analytically but the statistical inter-
pretation sheds new light on (1.9) and similar inequalities and prompts
possible extensions.

2. HYPERCONVEXITY OF A2 AND A-1

THEOREM Let Aj be a Hermitian sj sj matrix, Bj an sj m matrix,
j--1,...,n. If

BqB1 / + BqBn Im (2.1)

the identity m x m matrix, then

T 2 (BT1A1B1 /... /BnAnBnBAB1 /... / BnAnBn
_

T 2 (2.2)

Remark If AI,..., An are of different orders the standard weighted
average, WlA1 /... / WnAn, where wl > 0,... ,Wn > O, Wl /"" / Wn--
does not make sense while the matrix weighted average BA1BI+

T/ BnAnBn, where B1,..., Bn are subject to (2.1), is a well defined
m m matrix.

Proof of Theorem 1 Consider an sj-variate normal random vector Xj
with mean vector EXj--AjBO and the identity variance-covariance
matrix, V(Xj) Isj. Here

01

is an m-dimensional parameter.
The probability density function ofX is

[ I(x-AjBjO)T(x-AjBO)1pj(x; O) (27r) -s# exp x Rs./.

(2.3)
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For an arbitrary random vector X with densityf(x; 0) depending on 0,
the m m matrix of Fisher information on 0 contained in X is
defined as

I(X; O) E[(D logf)(D logf)]
/(D logf) (D 1ogf)Tf(x; 0) dx

(2.4)

where

O/m
The definition requires certain regularity conditions fromf(x; 0) that are
fulfilled for j(x; 0) (see, e.g. [5, Ch. 5].) Simple calculations lead to

I(Xj;0)- T 2Bj Aj Bj. (2.5)

Assuming Xl,...,Xn independent, consider the following statistic
T :RSl+"’WSn---Rm:

TT- BTX +... + Bn Xn. (2.6)

As a linear combination of jointly normal random vectors, T has
m-variate normal distribution with mean

T TET B’EX, +... + OnEXn (B1TA1B1 +... + BnAnBn

and variance-covariance matrix

V(T) BT V(X)B +... + BTn V(Xn)Bn Im

due to (2.1).
Applying (2.4) to T results in

T 2I(T; 0) (OqffA1Ol +... + OnAnBn) (2.7)
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Two fundamental properties of the Fisher information matrix are:

(i) For independent Xa,...,

I(Xl,... ,Xn; O) =/(Xl; 0) /... //(Xn; 0); (2.8)

(ii) For any statistic T T(X1,..., Xn),

I(T; 0) < I(X1,..., Xn; 0). (2.9)
Combining (2.5), (2.7)-(2.9) proves (2.2).

THEOIEM 2 Let Aj be a positive definite Hermitian sj sj matrix, Bj an
sj m matrix, j-- 1,..., n. IfB1, Bn are subject to (2.1) then

T -1 (BA1B1 +"" +BnAnBn (2.10)BA-{1B1 /"" / BnAn Bn >_ T -1

In other words, thefunction A-lis hyperconvex on +.
Before proving Theorem 2 notice that m m matrix B BA1B1/
/ BnAnBn is invertible. In fact, let x E R be such that xTBx- 0.

It means that

xTBTAjBjx O, j-1,...,n

or that

yAjyj 0, j-1,...,n

for y= Bx.
Since Aj is positive definite, D O, the null vector is Rs;. Then

T0 ylTyl +... + ynTyn xT(B][’B1 /...-at- BnBn)x xTx.

Thus, x O, the null vector is Rn.

Proofof Theorem 2 The idea is the same as in the proof ofTheorem 1,
though the choice of X1,...,X is different.
Namely, let X. be an s-variate normal random vector with EX. BO

and V(Xj)= A. The probability density function of X. is

(x BjO)TATI(x Bjqoj(x; 0) (2rr)-s#2(det A71/2) exp -xERS. (2.11)
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Applying (2.4) to the density (2.11) leads to

I(Xj; 0) BfA;1Bj. (2.12)

Again assuming X1,..., X, independent one gets for T defined in (2.6):

ET B3BIO + + BnBnO 0

due to (2.1), and

V(T) B’A1B1 nt- -Jr- BTnAnOn
The matrix of Fisher information on 0 in T is

T -1I(T;0) (BA1B1 +... + OnAnOn

Combining (2.8), (2.9), (2.12), and (2.13) proves (2.10).

(2.13)

3. ANALYTICAL PROOFS OF THEOREMS 1 AND 2

Let P be the orthogonal projector from RN into a subspace Rm. One
may always assume that

P
0 (3.1)

LEMMA For any Hermitian N N matrix A,

pA2p >_ (PAP)2. (3.2)

Proof of Lemma Let

A All A12 ] (3.3)A2 A
where A, A22 are m m and (N-m) (N-m) matrices respectively,
A2 A. Then

(PAp)2- AO 00]’ pA2p_ [A + A12A1T2
0

whence (3.2), since A lzA1T2 is positive semidefinite.
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For AI,..., An, B1,..., B, from Theorem let

A-diag(A1,...,An)- [/A1
l 0

an N N matrix with N- S /... + sn and

an N x m matrix. One has

TBTAB Brl A B1 -t- + Bn AnBn

and

BTB-Im
whence, by the way, m _< N.

Let II + 1,..., I/IN be (column) vectors in RN that, together with the
columns bl,..., bm of B form an orthonormal basis in RN. The matrix

/ [bl bmbm+l""" bN]

is an orthogonal N x N matrix.
If P is the projector into the m-dimensional subspace Sp(bl,..., bm)

then

so that

TpA2p[I BTA2BO 00] (3.4)

and

([rpAP[1)2 (BrAB)O O01 (3.5)
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On the other side,

([1TpAp)2 x(pAp)[T(pAp)[ T(pAp)2 (3.6)

since /T IN
By Lemma 1, pA2p >_ (PAP)2 implying

T(pA2p)[ >_ [T(pAp)2[" (3.7)

Combining (3.4)-(3.7) proves (2.2).

To prove analytically Theorem 2, we need the following analog of
Lemma 1.

LEMMA 2 IfP k the projectorfrom Lemma and A a positive definite
Hermitian N x N matrix then

pA-1p >_ (PAP)-1, (3.8)

the left and right hand side of (3.8) be&g considered m x m matrices.

Proof Represent the matrix (3.3) as

C IN-m 0 D (3.9)

where

C A21Ai-I1, CT Ai-I1A12, D A22 A21A-{llA12

Then

0 IN_m 0 D-1
’m 0]

whence

PA P A-{ + CTD C, (PAP) -1 A-I

proving (3.8).
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Starting now with (3.8) and repeating the arguments used in the
analytical proof of Theorem 1, one comes to

BTA-1B >_ (BTAB)-1 (3.11)

which is exactly (2.10).
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