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We consider the Dirichlet problem for a class of nonlinear elliptic equations whose model
is -div(l7ulP-27u) --17uF /g- divf We give a priori L-estimates using,symmetriza-
tion methods. An obstacle problem for nonlinear variational inequalities is also studied.
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1. INTRODUCTION

Let us consider the following model problem:

-div(lVulP-2Vu) IX7ul + g div f,
u e n

in D’(), (1.1)

where g(x) E Lm() with m > nip andf(x) E (Lq())n, q > n/(p- 1), p > 1.
Our main result is an L-estimate for a solution u of (1.1) which is also
H61der-continuous. In the casef 0 similar results are contained in [8],
where the statements are given for any p > 1, but the proof seems to
work only for p _> 2.
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The typical result we prove can be stated as follows:/f the measure of
f and the norms offandg satisfy a suitable smallness condition, then any
solution of(1.1) is bounded in Lby a constant which depends only on the
data. According to [4,5,7,28,29] once we have an L-estimate, we
immediately obtain the existence of a solution for problem (1.1). We
remark that in general the boundedness and then the existence of u
cannot be expected if one does not put any restriction on 19t I, fand g. As
a matter of fact one can exhibit problems like (1.1) which do not have
any solution (see [1,13,20]).

After some preliminary results in Section 3 we study a problem in the
general form

-div a(x, u, Vu) H(x, u, 7u) div f,

u

in V’(f),
(1.2)

where a(x, 7, O, H(x, rl, ) are Carath6odory functions satisfying sui-
table growth conditions on 11. The main tools we use are symmetriza-
tion methods based on rearrangement properties (see e.g. [1,14,
29,31,32]). In Section 4 we show how the same method permits to study
a class of variational inequalities with an obstacle in the form

)fa(x, uVu)V(v u) dx > AfH(x,
+ [f V(v u)dx, Vv E K(I),
J

u, Vu)(v u) dx

where r/E L(a)and K(r/)- {v L(a) n W01’P(f), v _> r/a.e, in f).
As regards the case of an equation, the problem of finding a priori

estimates for solution of problems like (1.2) has been studied by many
authors, under various assumptions on H (see e.g. [1,14,20] for p= 2,
and [8,18,21,25] for p > 1). We would like to remark that there exist
various papers where estimates and existence results are proved
for problems of the form (1.2) when H satisfies a sign condition (see
e.g. [3-5,7,10,28]). Estimates, existence and regularity results (like
H61der-continuity) for variational problems are contained for example
in [6,26,27,29].
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2. NOTATIONS AND PRELIMINARY RESULTS

Let ft be an open bounded set of I[{n, n > 1, and let w" f IR be a
measurable function from Ft into IR. If one denotes by [E the Lebesgue
measure ofa set E, one can define the distribution function #w(t) ofw as"

#w(t)--I(xE: w(x) > t}l, tE.

The decreasing rearrangement w* of w is defined as the generalized
inverse function of #w:

w*(s) inf{t IR: lZw(t) < s}, s (0, I1).

We recall that w and w* are equimeasurable, i.e.,

ll,w(t) #w,(t), G ].

This implies that for any Borel function it holds that

fa b(w(x)) dx fl, 2(w*(s)) as,
ao

and, in particular,

IIw*ll/ /0,1 l/- Ilwll  < /, <p < (2.1)

The theory of rearrangements is well known and exhaustive treatments
of it can be found for example in [12,19.,22,30].
Now we recall two notions which allow us to define a "genera-

lized" concept of rearrangement of a functionfwith respect to a given
function w.

DEFINITION 2.1 (see [2]) Letf LI() and w E L(f). We will say that
a functionfw L (0, Ifl) is a pseudo-rearrangement offwith respect to
w if there exists a family {O(s))s0,1l) of subsets of f satisfying the
properties:

(i) IO(s)l- s,
(ii) s < s2 => D(s) C D(s2),
(iii) D(s)= {x f: w(x) > t} if s- #w(t),
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such that

d f f(x)dx, in D’(2).

DEFINITION 2.2 (see [23,24]) LetfE Ll(f) and w E L1(2). The follow-
ing limit exists"

lim
(w + Af)* w*

\0 A =f’

where the convergence is in LP(Ft)-weak, iff LP(V), <p < Do, and in
LO(Ft)-weak*, if fL(). The function f] is called the relative
rearrangement off with respect to w. Moreover, one has

where

dG
f (s) ds’

in V’(),

Z foS_i{w>w,(s)}f(x) dx + f
]
(o)dr.

>*()

The two notions are equivalent in some precise sense (see [11,12]). For
this reason we will denote bothf andf by F. We only recall a few
results which hold for both the pseudo- and the relative rearrangements.

Iffand are non-negative and E 0’ (f) it is possible to prove the

followin properties:

d f>,f(x)dx: Fw(#w(t))(-#w(t)) for a.e. > O;
dt

IIFwllL,,(o,l.l) <- Ilfllz.(),
_
p _< oo.

(2.2)

(2.3)

The proofs of (2.2) and (2.3) can be found in [2] (for pseudo-
rearrangements) and in [28,29] (for relative rearrangements).
We finally recall the following chain of inequalities which holds for

any non-negative w W’P(f):

nC,1/n,, 1-1In d f IX7wl dxn Iw(t) d--t >t

( L(-’w(t)) /p’ d
IVwlp dx (2.4)
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where Cn denotes the measure of the unit ball in Rn. It is a consequence
of the Fleming-Rishel formula [15], the isoperimetric inequality [9] and
the H61der’s inequality.

3. A CLASS OF NONLINEAR EQUATIONS

In this section we will show how it is possible to obtain uniform L-estimates for bounded solutions of (1.2) under smallness assumptions
on the data. Let u be a solution of the problem.

-div a(x, u, Vu) H(x, u, Vu) divf in 79’(f),
u c Won’t(a)

(3.1)

where 2 is a bounded open set ofRn, and the following assumptions are
made:

a(x, s, c) ftx R x 11 ,n is a Carath6odory function which
satisfies, for a.e. x E f, any s E R and any Rn,

a(x,s,) >_ l[p,

[a(x,s,)[ <_ fl[b(x) + Is[p-1
(3.2)

for some a>0,/3>0, <p<_n,bLP’(f);
H(x, s, ) flx IR x IR" R is a Carathodory function which
satisfies, for a.e. x 9t, any s R and any Rn,

I/-/(x,,, _< + g(x), (3.3)

for some 3’ E L(Ft), 0 _< 7(x) _< A a.e., g C Lm(f), m > n/p, g(x) >_ 0
a.e.;
f(x) f --+ R" satisfies

.n
f c (tq(’))n, q > (3.4)

p-1
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LEMMA 3.1

Define
Let u be a solution of (3.1) under assumptions (3.2)-(3.4).

e klul Ap’
w- (3.)c(p- 1)

Then the decreasing rearrangement ofw satisfies thefollowing differential
inequality:

(-w*())’ < [(-w*())’]/ *(-)(w*() + )-..,t.-,1/n.l_l/nrtn

w*(s) ++ (Fw(s)) /p, a.e. in (0, [[), (3.6)p’/pnf/nsl-1/n

where *is the decreasing rearrangement of =-pg+(p’/’+)
[f[P’ and Fw is a pseudo-rearrangement (or the relative rearrangement) of
[f[’with respect to w.

Proof Let us define two real functions bl(Z), 2(2), 2 E ], as follows:

bl (z) e k(p-1)lzl sign(z),

2(z) (ekz 1)/k,
(3.7)

where k is as in (3.5). We observe that 2(0)---0 and, for z 0,
(z) > 0, (z) > 0,

4)1 (z)c’z(IZl)sign(z) I(Izl)lp,

1 (z)
p-

I, (z)l 0.

(3.8)

(3.9)

Furthermore, for > 0, h > 0, let us put

sign(z)

St,h(z) ((Izl- t)/h)sign(z)
0

if Iz[ > + h,

if < Izl < t+ h,

if Izl t.

(3.10)

We use in (3.1) the test function v W’P(f)fL(f) defined by

v ()s,,h(w) ()s,,h(+(ll)),
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where w is given in (3.5). Using (3.10) we get

1 ft< a(x, u, Vu)Vu dpl (u)4(lul) sign(u) dx
h w<_t+h

fw (H(x, u, Vu)bl (u) a(x, u, Vu)Vu Ck’l (u))St,h(W) dx
>t

+ fw>tfdptl (u)St,h(w)Vudx
+ -1 Jj<w<_t+hfqS1 (u)(lul) sign(u)7u dx. (3.11)

Taking into account (3.8) and Young’s inequality, the last two terms in

(3.11) can be estimated as follows:

f< fbl (u)b’
>t

2(lU[) sign(u)Vu dxfdfl (bl)St,h(W)Vbl dx + - w<t+h

o-p /p

p! fw IVulP’ (u)S’h(w) dxtflP’l (u)S,,h(w) dx +- >t>t

+ ph w<_t+h

(3.12)

Now (3.11), (3.12), (3.3), (3.8) and the ellipticity condition in (3.2)
imply

12(lul)lPdx < l(u)l-l(U) IVuPa,,h(w)dx
p’h w<_t+h >t

+ fw g --’f’P’] ’dpl(u)lSth(w)dx-k-
o-P’/Pft<>t oPl ffh w<_t+h

Using (3.9) and the definition of 1, t2 in (3.7), the above inequality gives

h w<_t+h
[Vw[p dx <_ fw (kw + 1)p-lSt,h(w) dx

>t

+ -1 ftt<w_<_t+h IflP’(kw -4- 1)p dx, (3.13)
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where b=a-p’g+(Ap’/aP’+)lflp’. Letting h go to 0 in a standard
way we get

d fw Iwlpdxdt >t

<_ f b(kw 4- 1)p-ldx-k-
>t aP’ -t >

Using Hardy-Littlewood inequality and (2.2) it follows that

d
IX7wIp dx < (s)(kw(s) / 1)p- as

dt >t .to

+ (ktap,+ 1)p (-#w(t))Fw(#w(t))’ (3.14)

where Fw is a pseudo-rearrangement (or the relative rearrangement) of

Iflp’ with respect to w.

Inequalities (2.4) and (3.14) give

nCln/nlzw(t)l-1/n <_ (-dw(t)) /’ ( "w(t)
b*(s)(kw*(s) + 1) p-1 ds)

kt+l
At- oP’/P (-lZw(t))(Fw(#w(t)))l/P

1/p

and then, using the definition of w*(s) we have

(-w*())’ _< [(-w*())’]’/
*nCln/nsl_l/n (7-) (kw* (7-) + 1)p-’ dr

kw*(s) ++ (Fw(s)) ’/p,
op’/PnC /nsl-1/n

that is (3.6).

In the case f=0 in (3.1), Lemma 3.1 can be slightly improved to
obtain:

LEMMA 3.2 Let u be a solution of (3.1) under the assumptions (3.2)-
(3.4) andf O. Define

e klul A
w

k
k (3.15)

(p- 1)
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Then the decreasing rearrangement ofw satisfies thefollowing differential
inequality:

(-w*(s))’< g, p-1

o(nCln/nsl_l/n)p (-)(kw*(-) + 1) d- (3.16)

for a.e. s E (0, If[).

Proof We use the same arguments ofthe proofofLemma 3.1. The only
difference is that now we take k as in (3.15). Instead of (3.11) we obtain

1 Ji< a(x, u, Vu)Vu1 (u)z(lUl) sign(u) dx
h w<_t+h

f (n(x, u, VU)l (u) a(x, u, Vu)Vu c’, (u))St,h(w) dx.
dw>t

By ellipticity condition in (3.2) and assumption (3.3) we get

f< lTulPldP(]ul)lP dx < fw g[dpl (u)lSt’h(w) dx"
h w<t+h >t

Letting h go to 0 and then using (2.4) we have

nt.; #w(t) /p,
Uw(t)

g* (s)(kw* (s) + 1)p-1 ds

The assertion follows easily.

An immediate consequence of the above results is the following
uniform L-estimate for solutions of (3.1).

THEOREM 3.3 Let u be a solution of (3.1) under the assumptions (3.2)-
(3.4). Iffand g satisfy the inequality

(P___ /Pt llP/n-p’/ql[fl[Pq’l
p’/p

na(Ppcr 1) iflp/n_,/mllgllm+ap,+n

P’ (n(e: 1) 1).)I-P’/(qP) (p 1)

(3.17)
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where cr min(m, q/pt), then there exists a constant M, which depends only
on n,p, q, m, I], ]]fllq, [[gllm, such that

Ilu[Io M. (3.18)

Moreover, in the case wheref=_ 0, the estimate (3.18) holds if

aP’
(3.19)

nm if]p,/n_p,/(mp)llg]]p/p < A(nCln/n)P mp- n

Proof Let us first prove (3.18) under assumption (3.17). By Young’s
inequality Lemma 3.1 implies

d,r)
p’/p

Integrating between 0 and [fl we get

,p!
[Iwl[ < a(p- 1----- Allwl[ + A, (3.20)

where

A-fofll[((nCln/n-sl_l/n)Pfo * (7-) dT-
/

],/,, ..-,1In 1-1In
(Fw(s))l/P+ ds.

oP /t’nn s

Now we observe that

*(-) d- ]lll. s 1-1/

(P____.[-2[l/cr-1/m[lgl[mq AP 1/a-pt/q
p +1 I1 [Ifllq s-/,

(3.21)
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where r min(m, q/p’). Furthermore, taking into account the fact that
q > p’, property (2.3) gives

I1
(Fw(s)) /pdssl-1/n

(n (__q_( _p -_ 1) 1)’ 1-p qp

<
\ q(p--1)--n

(.nlq(_p -_<
\ q(p-1)-n

Ifl /n-p’/ (qp) IIFwII q/p’

Ifl/n-P’/(qP)llf[[Pq ’/p. (3.22)

Using (3.21) and (3.22) we can estimate the quantity A in (3.20),
obtaining that under assumption (3.17) the following inequality holds:

a(p- 1)

Then (3.20) implies (3.18).
The proof of (3.18) under the hypotheses (3.19) and f_= 0 follows

immediately from Lemma 3.2 and will be omitted.

Remark 3.1 It is easy to realize that the hypotheses ofTheorem 3.3 can
be given in terms of smallness assumption on the norms of g and f in
suitable Lorentz spaces. For the sake of simplicity we will write it

explicitly only in the case f--0. We have that (3.18) holds if (3.19) is

replaced by

; )I1
g*

P’/P ds ap (p- 1) (3.23)
(l’lCln/n) p’ dO

(7") d- spt/n-S < A

The finiteness ofthe integral on the left hand side is equivalent to the fact
that g belongs to the Lorentz space L(n/p,p/p). It is well known that
such a space contains Lm(), for every m > nip. Finally we observe that,
for p 2, (3.23) reduces to the condition given in [14].

As we observed in the introduction the uniform estimate found in
Theorem 3.3 can be used to prove an existence result for problem (3.1).
In addition we have to assume the monotonicity condition

(a(x, rl, l) a(x, rl, 2))(1 2) > 0 ’l :/: 2. (3.24)
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Indeed, using the arguments contained in [4,5,7,28] one can prove the
following:

THEOREM 3.4 Suppose (3.2)-(3.4), (3.24) hold. Under assumption
(3.17) (orf =_O and (3.19)) at least one solution of(3.1) exists.

Remark 3.2 We recall that, once a solution of (3.1) exists, then it is
automatically H61der-continuous. Such a statement is contained for
example in [28,29], where existence results are obtained under a sign
condition. However the proof of H61der-continuity does not make use
of such a hypothesis.

4. A CLASS OF VARIATIONAL INEQUALITIES

Let r/E L(a) and set K(r/) {v E L(a) 71W’P(Ft), v >_ r/a.e in f}.
We consider the following variational problem:

u

ffla(x, uVu)V(v- u)dx >_ fflH(x,u, Vu)(v- u)dx

+ [fV(v- u)dx, Vv K(7).
J

(4.1)

If u is a solution of (4.1) we still denote the function given by (3.5) by
w. Our aim is to derive for the function (w 42([IWl]))+, where 2
is defined in (3.7), a result analogous to one proved for w in Lemma 3.1.

LEMMA 4.1 Let u be a solution of (4.1) under the assumptions (3.2)-
(3.4) and let (w b2(]lr/][))+ with w and02 defined in (3.5) and (3.7).
Then the decreasing rearrangement of; satisfies thefollowing differential
inequality:

(s) <

kv* (-) + k2(llll) + ()’l/p’s"- ..-,1/nsl_l/n (4.2)
ctP /Ptlt.,n

where k, b and Fw are as in the Lemma 3.1.
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In order to prove (4.2) we need a preliminary lemma.

LEMMA 4.2 Let c2 be thefunction defined in (3.7) and let be a positive
number. If

42(1z[) > 42([111oo)/ t, (4.3)

then there exists > 0 independent ofz such that

Proof Let be a positive number. Then there exists > 0 such that

e k(lloll +4)0 t,

with k defined in (3.5). If (4.3) holds one has eklZl-ekllwll > kt, that is

e (Izl-Ilnll) > + kte-llnll > + kte > e.
Proof of Lemma 4.1 As in the proof of Lemma 3.1 we will use a
suitable test function in (4.1) making use ofthe functions defined in (3.5)
and (3.7). Setting 0- + qz([Ir/][), for 0 > bz(]lr/[Ic) and h > 0 we define

so, (w)v u 0
(u)ll (4.4)

where u E K(r/) is solution of the problem (4.1) and 0 is chosen as in
Lemma 4.2. It is easy to verify that v E LC() fq w’P(f); furthermore
we claim that v > a.e. in f (see also [29]). Indeed we observe that in
the set w < 0} we have So,h(w) 0 and then the claim is a consequence of
the fact that uK(). On the other hand we have that in {w >
0- / qz(llr/llc)} the following inequality holds"

0
(u)ll So,h(W)

which implies v >_ u-. Recalling that W--2 ([U[) and applying
Lemma 4.2 we have v > [[r/][ + and then the claim is completely
proved. We are now in a position to choose (4.4) as test function in the
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problem (4.1) obtaining

1 fo a(x, u, Vu)Vu (u)(lul) sign(u) dx
h <w<_O+h

<_ [ (H(x, u, Vu)dp, (u) a(x, u, Vu)Vudp’ (u))So,h(w) dx
l w>O

/ fw fdtl(ulS’h(W)Vudx
>o
f

/ - ,v.L-w<o+hfdPl (u)qbt2 (lul) sign(u)Vu dx. (4.5)

Proceeding as in Lemma 3.1 we get an inequality similar to (3.13), that is

1--L IVwlP dx < fw b(kw / )p-l So,h(w) dxh w<_O+h >0

lfo+- w<_O+h
(kw + 1)p dx, (4.6)

where b c-lffg + (p’/cp’/)lf[p’. Weset (w 2(llrtllo))/ and
we observe that since 0> 2(11011oo) we have {w > 0} { > t} and
So,h(w) St,h(). Then (4.6) can be rewritten as

1_ f< IVIp dx < f b(k + ])p-1St,h()dx
h #<t+h >t

(k# + )P dx,+ - <_+h

where k k(llll) + 1.
At this point by the same argument as used in Lemma 3.1 we obtain

the assertion.

The previous lemma gives the following L-estimate.

THEOREM 4.3 Let u be a solution of(4.1) under assumptions (3.2)-(3.4).
Iffand g satisfy the inequality

(4.7)
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where o min(m, q/p), then there ex&ts a constant M, which depends
only on n, p, q, m, Ifl, Ilfllq, Ilgllm, 4’2(1111) such that

Proof Using Young’s inequality in (4.2) and integrating between 0 and

I1 we obtain

where

.,,t’-’l/n,,l 1/n)P dO(t-’n
(’r)d’r

]+ (fw(S)) lip ds.
oP /Pnc /nsl-1/n

We observe that the above quantity is the same A as appearing in (3.20).
As in the proof of Theorem 3.3, assumption (4.7) implies

This means that

where C depends only on n, p, q, m, I1, Ilf[lq, Ilgllm, 2(1111). Recalling
that

e klul /+- -2(1111)

we obtain the assertion.

As in the previous section the arguments contained for example in
[6,29], allow us to get the following:

THEOREM 4.4 Suppose (3.2)-(3.4), (3.24) hold. Under assumption (4.7)
at least one solution of (4.1) exists.
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Remark 4.1 In Remark 3.1 we have observed that the smallness
assumptions on the norms of g and f in Theorem 3.3 can be given in
terms of Lorentz norms. Also in the case of variational inequalities a
similar remark holds.

Remark 4.2 As in the case of equations, Lemma 4.2 can be improved
whenf =_ 0, in the sense that a version of Lemma 4.2 similar to Lemma
3.3 can be proved. In particular, one can show that, iff 0 and (3.19) is
verified, then both Theorems 4.3 and 4.4 hold true.

Remark 4.3 As recalled in Remark 3.2 for the equations, any solution
of (4.1) is H61der-continuous under the additional assumption that the
obstacle r/belongs to Wlq(f) with q > n (see [29]).
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