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Applying Furuta’s and Hansen’s inequalities, it is shown that if T is a p-hyponormal
operator, then T is (p/n)-hyponormal. Applications are obtained.
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1 INTRODUCTION

Let H be a complex Hilbert space and L(H) be the algebra of
bounded linear operators on H. An operator TE L(H) is said to be
p-hyponormal, p > 0, if (T’T)p >_ (TT*)p. A p-hyponormal operator is
said to be hyponormal if p 1; semi-hyponormal if p 1/2. The well
known L6wner-Heinz inequality implies that every p-hyponormal
operator is q-hyponormal for any 0 < q <p. Hyponormal operators
have been studied by many authors, such as Halmos [7], Stampfli [10,11]
and Xia [13]. Semi-hyponormality was introduced by Xia [12]. See [13]
for properties of semi-hyponormal operators. For p-hyponormal
operators, see [1,2].
Throughout this paper we assume 0 <p < and use a capital letter

to denote an operator in L(H). In [7, Problem 164], Halmos gave
an example of a hyponormal operator A whose square A2 is not
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hyponormal. Here we use Furuta’s [5] and Hansen’s [6] inequalities to
show that if T is p-hyponormal, then T2 is (p/2)-hyponormal. In fact,
we will show that for any positive integer n, the operator Tn is (p/n)-
hyponormal. Applications of our result are also obtained.

2 THE RESULT

LEMMA (Furuta’s inequality [5]) IfA >_ B >_ 0, then the inequalities

(BrAPBr) 1/q B(p+2r)/q

and

A(p+2r)/q >_ (ArBPAr) 1/q

holdfor p, r >_ 0, q _> with (1 + 2r)q >_ p + 2r.

LEMMA 2 (Hansen’s inequality [6]) IfA >_ 0 and [[B][ _< 1, then

(B*AB)p >_ B*APB

forO<_p< 1.

THEOREM Let T be a p-hyponormal operator. The inequalities

(Tn* Tn)P/n >_ (T’T)p >_ (TT*)p >_ (TnTn*)p/n

holdfor all positive integer n.

Proof Let T= UITI be the polar decomposition of T. For each
positive integer n, let An=(Tn*Tn)p/n and Bn=(TnTn*)p/n. We will
use induction to establish the inequalities

An >_ A1 >_ B1 >_ Bn. (1)

The inequalities (1) clearly hold for n 1. Assume (1) hold for n k.
The induction hypothesis and the assumption that T is p-hyponormal
imply

U*AkU >_ U’A1 U >_ A1.
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Let Ck u*Akk/P U)p/k. Hansen’s inequality implies Ck >_ U*AkU >_
A . Thus

Ak+l (T*+ Tk+l) (p/k+l)

T* T*k Tk) T) (p/k+l)

([TIU*Akk/PUIT[) (p/k+l)

(A1/2prk/p All/2p)(p/k+I)""k

>_A

by Furuta’s inequality. On the other hand, the induction hypothesis
implies

Bk <_B1 <_A1.

Thus

where the inequality follows from Furuta’s inequality. Therefore,

Ak+l

_
A1 >_ B1 >_ Bk+l

and hence, by induction, inequalities (1) hold for n > 1. The proof is
complete.

COROLLARY If the operator T is p-hyponormal, then T" is (p/n)-
hyponormal.

Concrete examples of non-hyponormal p-hyponormal operators are
hard to come by. In [12], Xia gave an example of a singular integral
operator which is semi-hyponormal but not hyponormal. Corollary
allows us to give another example ofa semi-hyponormal operator which
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is not hyponormal. Let A be the operator in Halmos’ [7, Problem 164].
Thus, A is hyponormal but A2 is not hyponormal. By Corollary 1, A2 is
semi-hyponormal. Moreover, An is (1/2n)-hyponormal.

3 APPLICATIONS

In [10, Theorem 5], Stampfli proved that if T is hyponormal and Tn is
normal for some positive integer n, then T is normal. Stampfli’s result
had been extended by Ando [3] to the case where T is paranormal.
Although not as broad as Ando’s extension, Theorem can easily be
used to extend Stampfli’s result to p-hyponormal operators as follows.

COIOILARY 2 Let the operator T be p-hyponormal. If T is normal,
then T is normal.

Proof By Theorem and the assumption that T" is normal,

Whence T’T- TT*. The proof is complete.

In [9, Theorem 7], Putnam proved that if T is hyponormal, and r > 0
is such that rEr(T*T), then there is a z Ea(T) such that Izl =r.
Recently, Ch6 and Itoh [4, Theorem 4] generalized Putnam’s result
to the case where the operator T is p-hyponormal. Theorem can be
utilized to give a generalization of the result of Ch6 and Itoh as follows.

THEOIEM 2. Let T be a p-hyponormal operator and n be a positive
integer. If r >_ 0 is such that r2 cr(Tn* Tn), then there is a z or(T)
such that Izl"-r.
Proof Theorem implies T is (p/n)-hyponormal. Therefore, by
[4, Theorem 4], there is a w or(T") such that Iwl =r. Since
{z": z a(T)}, there is a z E or(T) such that z"- w. Clearly Izl"- r and
the proof is complete.

As an extension of the well-known Putnam’s area inequality for
hyponormal operators [8], Xia [13, Theorem XI.5.1] proved the
following Theorem 3 for the case in which T is p-hyponormal with
p _> 1/2 and n 1. In [4, Theorem 5], Ch6 and Itoh extended Xia’s result
to p-hyponormal operators with 0 <p < 1/2.
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THEOrtEM 3 Let T be p-hyponormal. If or(T) C_ {rei: 0 < 0 < 2Trim}
for some positive integer m, then

ii(Tn, zn)p/n (TnTn.)p/nll <_ nPTr JJ p2p-1 dpdO

(r)

for positive integers n < m.

Proof By Theorem 1, Tn is (p/n)-hyponormal. It follows from
[4, Theorem 5] that

I](Tn*Zn)p/n (ZnZ"*)P/nll <- PnTf JY" r2(p/n)-I drdqS.

o’(Z

Since cr(T {pneinO: peiO E or(T)), the result follows by the substitu-
tions r pn and b nO.
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