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In Section 1 relations between various forms of Landau inequalities [y™|"<
M|~ ™|l»®|I™ and Halperin—Pitt inequalities [|y™|| <e||y™|| + S(e)|ly| are discussed,
for arbitrary norms, intervals and Banach-space-valued y. In Section 2 such inequalities are
derived for weighted L”-norms, Stepanoff- and Orlicz-norms.

With this, Esclangon—Landau theorems for solutions y of linear neutral delay difference-
differential systems are obtained: If y is bounded e.g. in a weighted L?- or Stepanoff-norm,
then so are the y™, This holds also for some nonlinear functional differential equations.
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0 INTRODUCTION AND NOTATIONS

To prove that bounded solutions of certain linear differential equations
are quasiperiodic, Esclangon [6,7] needed and demonstrated that such
bounded solutions have bounded derivatives. This result was later used
by Bohr and Neugebauer [4] to get the almost periodicity of bounded
solutions of nth order linear equations with constant coefficients and
almost periodic right-hand side.
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346 H. GUNZLER

Landau [21] extended Esclangon’s result on the boundedness of the
derivatives of bounded solutions to linear differential equations with
only bounded coefficients. In the following we will call such theorems
“Esclangon—Landau-” or “EL-results”. They have played an important
role in the discussion of the asymptotic behaviour of solutions of
differential equations, see e.g. Basit and Zhikov [2], Levitan and Zhikov
[22, p. 95 and 97], and the references in [3, p. 596]. In [3] EL-results were
obtained for difference-differential equations and the sup-norm.

For his EL-results Landau showed, under some additional assump-
tions and with the sup-norm, for a compact interval,

0" < Aally "IN, 0 <m<n (0.1)

(20, 1913 for n=2, 21, 1930 p. 182, Hilfssatz 3]); a qualitative form can
be found in Hardy and Littlewood [12, p. 422, Theorem 3])

We will call results of this type Landau inequalities; a thorough
discussion of the many results in this direction can be found in Chapter 1
of Mitrinovi¢, PeCari¢ and Fink [25], mostly for scalar-valued y and
unbounded intervals.

To get EL-results for LP-bounded and Banach-space-valued solutions,
one needs however (0.1) or related inequalities for bounded intervals and
such norms, then not so much can be found in the literature.

In Section 1 we discuss first the relations between various forms of
(0.1), especially the asymptotic form (for compact intervals approaching
the boundary) needed later, for vector-valued y.

It turns out that a stronger version of (0.1) is a Nirenberg inequality
[26, appendix],

Iy < ey + Ke ™™y, 0<e<eo (0.2)

a weaker variant is obtained by replacing Ke ~™ by an arbitrary function
S(e) (Halperin and Pitt [11]). Again relations, also with asymptotic
versions, are discussed, for general intervals and norms.

In Section 2 we obtain Nirenberg and then Landau inequalities for
weighted L? or Stepanoff-norms, arbitrary intervals and vector-valued
functions. From the explicit form of the constants K and A there (usually
not optimal) we can deduce the asymptotic forms needed. For Orlicz-
norms we get at least Halperin—Pitt inequalities, for bounded intervals.
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This is applied in Section 3 to linear delayed neutral difference-
differential equations and systems, with bounded operator-valued
coefficients: For weighted L-norms or weighted Stepanoff $P-norms
still an EL-result is true, 1 <p < oo, if the weight function does not
oscillate too wildly, similarly for Orlicz norms (Corollary 3.2). These
results seem new and non-trivial even for bounded intervals and scalar-
valued solutions. With an asymptotic Landau inequality even some non-
linear functional differential equations can be treated (Proposition 3.6).

In the following X is a Banach space over K=R or C. JCR is an
interval with endpoints o and 3, —o0 <a << 0. For f:J— X and
McJ

g=/fM means g=f on M,g=0 else in J; (0.3)

|/ is defined by | f|(x):=||f(x)||, x € J. |I] is the length of the interval
ICR; “a.e.” is with respect to Lebesgue measure on R. Integrals are
usually (Bochner-) Lebesgue integrals (Hille—Phillips [15]). A seminorm
|I| is a norm without “||x|| =0 implies x=07". For n natural

C"(J, X):={fe C" (X, J):f"Vlocally absolutely continuous and
£V exists a.e. in J}; (0.4)

then
F®(x) == £ (x) where it exists in J, else := 0. (0.5)

The IP-spaces are spaces of measurable functions, not equivalence
classes.

1 LANDAU, NIRENBERG AND HALPERIN-PITT INEQUALITIES

With the notations of the introduction we assume in the following:

V linear C X’ (pointwise operations), | ||: ¥ — [0, 00)
seminorm satisfying: if y € CV(J, X), I compact c J,yI (1.1)
and y'I € V and ||yl|| = 0, then ||y']]| = 0; n integer > 2.

Here V canbe e.g. L(J, X), with || || = || ||
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DEefFINITION 1.1 We say that the strong Landau (or Kolmogorov)
inequality LS = L5 (X\) = L5(\, || ||) holds (for V) if 0 < A < oo and

Iy < Mpl™" Iyl for 0 <m < n (1.2)

and all y € C"(J, X) with y™ € V, 0 < m < n (see (0.4), (0.5)).

The weak Landau inequality LY = LY(\, 7, || ||) holds if with A\, 7€
(0, 00] one has (1.2) with y as after (1.2) and with the additional
conditions

ly®1l >0 and (Iyll/ Iy )" < 7. (1.3)

The Landau inequality L, = L,(\, 7, || ||) holds if A, 7 € (0, oo] and for y
as after (1.2) with 0 < ||y|| <@, 0< ||| < b, 0 < b, where a, b € [0, 0),
and with (a/b)"/" < 7, one has

ly™|" < Aa* ™", 0<m<n. (1.4)

The asymptotic Landau inequality L% = L3()\, | ||) holds, with
0 <\ < o0, if to each y € C™(J, X) with y™ I € V for 0 <m<n and all
compact I C J and for which furthermore ||y®™1I]| is # 0 in 7 there exists
a compact interval I(y) C J such that (see (0.3))

0" < Mpf" " ly®0", 0<m<n, Iy)cIct (L)

(the y™ need not be in V).

Landau inequalities have been introduced in [20, n=2, 21, p. 182,
Hilfssatz 3], where Landau showed that L, holds for compact J,
If]l =supslf], X=R, with \y=4, )\, = 2"'%, 7=(1/2)|J]; this implies
immediately a strong Landau inequality for unbounded J. Kolmogorov
[16] determined the optimal ), (even ), ,,) in LS for J=R=X, || f| =
supr|f|, V= bounded functions. The asymptotic form LJ can be traced
back to Hardy and Littlewood [12, p. 422, Theorem 3], it was used in
[3, Lemma 2.5] for general X and || ||oo-

Obvious relations, for fixed J, ¥, || ||, n, A, any 7> 0:

L(A) = Ly(A, 00) = L¥(\,00) = L,(A\,7) = LY(\, 7). (1.6)
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Also
LA\ = L)) for [|y™] >0, (1.7)
provided V satisfies
fE€V,IcompactCJ = fIe€ Vand |fI|—|f||lasI—J. (1.8)

Even with (1.8), L5(\) = L2(\ + ¢) follows only for y with y™ € V; see
Remarks 2.17(a) and (c).

Example 1.2 y(t)=t+esint shows that already L5 and therefore L§
are false for any bounded J, any A, any V'=I* with || || 5, 1 < p < oo (see,
however, Proposition 2.16, but also Example 1.13).

So for bounded J for (1.2) additional conditions are necessary. We
work here with Landau’s condition (1.3); for other types of Landau
inequalities in this situation see Gorny [9], Levitan and Zhikov[22, p. 95],
Redheffer and Walter [27].

Throughout each of the following lemmas, J, X, ¥ and its seminorm
|| || are fixed and satisfy (1.1).

LemMA 1.3 If L5 holds with \y>1, then L% holds for n>2, with
Ao = NIV,
Proof By induction one can show (see [18, p. 232, (2.14)]), for A=\, ,,
in (1.5)

M SN0 <m<n, 2<n. (1.9)

LEMMA 1.4 If L5 holds with A\>1 and n> 2, then L, holds with )\, as
in Lemma 1.3.

Proof Asfor Lemma 1.3.

LEMMA 1.5 If Ly(\y,7) holds with >0, A\;>1, and n>2, then
Ln()\m 7') holds with A\, = )\32”" .

Proof This has been shown by Landau [21, pp. 182-183], for || [|co»
compact J, X =R, 7= (1/2)|J], A\, =4. His ingenious proof works also in
our more general situation, for the x on p. 182 e.g. one has to use
x 1= max(\2"", max{|y™|: 0 < m < n}).
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Question: Can one improve thisto )\, = 4 - Ag'"’ asin Lemma 1.3?
(Yesunder the assumptions of Lemma 1.15via L, = N, = N, = L,, of
below.)

Example 1.6 If y()=t+k >sinkt, t€J=[0,1], k€N, with |||,
1<p<oo, and the nonlinear V containing just the y, and their
derivatives up to order 3, one can show that L§ holds, but L] holds
for no A < oc.

Do there exist such linear V asin (1.1)?

LEMMA 1.7 Assume V C L\(J, X), J bounded, V containing all bounded
continuous f, assume further the existence of Cy, C, € (0, 00) with

Cillfl < W/lly < Cosup|fl, fbounded € V. (1.10)

Then Ly(\, 7) and LY (\, ) are equivalent.

Examples are I°(J, X') or more general Orlicz-spaces with Lebesgue
measure.

Proof With y as before (1.4) with ||y”|| < b and 0 < a define w,, (1) :=
¥(t) + xusin vewith x € X, ||x|| = 1. Then w,(]l €V, withw,:= w,/(c,),0ne
has ||w, — y|| <e, ||W, = /|| < &, for 0 <& <b—|)y"||. With a continuity
argument there is s € (1, oo) with ||w!|| = b + e(b/a); then ||w;||/||w}]] <
(7l +¢€)/ (b +e(b/a)) < a/b < 7. Ly yields (Y] —¢)* < [W]I* <
(¥l +¢€)(b +¢e(b/a)), e — 0 gives L,. This works for any V containing
zwith |29 )|| < Co,0 < 6o < ||2"(v-)|| forv< 1,j=0, 1, 2, then without
(1.10).

COROLLARY 1.8 LY implies L) for n>2, with A\, of Lemma 1.5,
provided V, || || are as in Lemma 1.7.

Question: Direct proof of LY = LY, for more general V? Character-
ization of V with LY = L,?

DEFINITION 1.9 We say that a Nirenberg inequality N, = N,(K, 0)=
N(K, o, V, || ||) holds iff with K, o € [0, 00 for all y as after (1.2) one has

K
™ < e mly®l + Syl for 0 <ereal <o, 0<m<n.
(1.11)



LANDAU-TYPE INEQUALITIES 351

A strong N5, holds means N,(K, 00, V, || ||) is true.

LEMMA 1.10 IfNy(K, o) holds with4K > 1, then N,(K,,, o) holds forn > 2
with

K, =2"4(4K)". (1.12)

Proof by induction 1If N; holds for 2 <k <n, one has, with N, and
Vm:= ¥, y as after (1.2) for n+1,

Ynt S epn+ Kue' "0, 0<e<op=o,
Ke KK,
Yn S MYnst + Kynod /1 Sy + -+ 700, 0SS0
With e =1/(2K) < o one gets, with § :=2n

(2K)"K,,2”
T RAR

2KK,
Yn < 20Yn1 + 170 = 6yn1 + (1.13)

which is (1.11) for n+ 1 and m=n, with even 0 < 6§ < 20.
Substituting this in (1.11), one gets for0 <m <n
Vm < é.n—mé‘yn_'_1 + Kn((4K)n6n—m6—n 4 5_m)y0

for 0 < e <oand 0 < § <20.So § =cis possible, yielding with (4K)" > 1
ym <MDy 1+ Ku(2(4K) )™y, 0 <€ < 0py1 =03

with (1.13), this holds for0 <m<n+1.
So

K1 = 2(4K)"K, = 2(4K)"2"*(4K)® = 2"+1-4(4K)(2

(n+1

In the above, the case o = oo gives
LEMMA 1.11  IfN5(K) holds with4K > 1, then N%,(K,) holds, with (1.12).
LEMMA 1.12  For each n > 2, N;, and L;, are equivalent, with
= (1+ee K" resp. K, = n~V/ (D), (1.14)
provided K, > 1 resp. A, > 1.
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Remark For n=2, \;=4K, by (1.15); (1.14) can be improved to
K,=(1—(1/n))n=®=D)  which is optimal.

Proof We show the equivalence even for each fixed m, 0 <m <n. If,
with y;:= |||, (1.11) holds for all € > 0, the right side has its minimum
for0=mn-—m)e" """ ly,—mKe =" ygor (3,=0 = y,=0 = (1.2))
€ = (mKyo/((n — m)y,))""". This ¢ gives (1.2), with

- (( m )(n—m)/n+ (n - m)'n/n) "K:;nm. (1.15)

n—m m

With 1"/ <e'® for 1 <t < o0 and K, ,,= K, this gives Part 1 of (1.14).
Conversely, (1.2) for m implies for 0 <e < 0o

-1
n n — -
7o <l =dom(1) (1) )

< ()\n,m / (:l > ) (€ yn+€ 0)".

This gives (1.11) with

Ko = (An,m / (Z)) e (1.16)

If Ay, o= A > 1, this gives Part 2 of (1.14.)

Example 1.13 N, trivially implies N,; the converse is in general false:

J=[3,00), X=R, [fll =sup{|f(®)]/1: 3<1},
V={fe C(,R): | fIl < oo}.

ys =1+ 6sintshows, that L is false for any A € [0, o) — though |J] = co.
One can show however that N, (14, 3) is true (Landau’s L, (4, (1/2)|1])
for compact Jand || || gives L5(4) for J, || ||, then N5 (1) by Lemma 1.12
and the above remark; apply this to f=y/t.) For |J| <oo a simpler
example follows, with |||, from Example 1.2, Lemma 1.12 and
Proposition 2.1.
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LEMMA 1.14 N,(K, o) implies L,(X(T),T) for eachreal >0 andn> 2,
with

Ar) = (K+ "' max(g", g ), e=Z.  (L17)

Proof If y,,:= ™) <" "y, + Kpme "y for 0<e<o0,0<y,<b,
yo<a<o0,0<b, thenife:= —(a/b)'’", <o, one gets

(G oy VR

p
which is L,,, with (1.17).

LeMMA 1.15 IfJ,V,| || are as in Lemma 1.7 with (1.10), then for any
A, 7,0 €(0,00), LY (X, 7) implies No(K, o) with

K::max{%,a%(f'z +4/|J|2)}. (1.19)

Proof If, with y,,:= [|[y™||, yo/y2 <72 with y, >0, then 3?2 < Ayoys <
(M&)(ey,+ (1) rs)yo)2 implies even No()\/4, co).
If 0 < y» < yor ~ 2, (2.8) of Section 2 and (1.10) give

4
1 Sc(yz-i—Wyo), c:=C/C. (1.20)
So

_ _ _ _ K
y1 < ot + 4 2p0) < eya + oc(m72 + 4 )0 /o < eyn +—=0

if 0 < e <o, with K=oe(r ™2 +4]J] 7).

Remark Lemmas 1.15 and 1.14 give a new proof of LY\ 1) =
Ly(X\, 1) of Lemma 1.7, but only with A > X\ in general, even for
optimal o.

Question: Can one extend Lemma 1.15 to more general norms resp. to
LY = N,,n>2?(For norms as in proposition 2.1, N, always holds.)
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DEFINITION 1.16  We say that a Halperin— Pitt inequality H,= H,(S) =
H,(S, V, || p) holds if with S : (0, 00) — [0, 00) one has for all y as after (1.2)

P < ely®(+ SElyl. 0<m<n 0<e  (121)

An asymptotic Halperin—Pitt inequality H2(S) holds if for each
ye C(J, X) with y™I € V for 0 <m < n and all compact intervals I CJ
there is a compact I(y) C J such that

1) < ely®I) + SElIl, 0<m<n 0<e,

(1.22)
I(y) C compact I C J.

The pointwise H,? is defined as H3, but with S depending on y, similarly
for H;.

Remark 1f (1.21) holds only for 0 < ¢ < some o < oo, with S(¢) := S(0)
for € > o it holds for all e > 0, we can assume o = oo, H; = H,,.

Such inequalities seem to have been considered first by Halperin and
Pitt [11, Theorem 1, (2.1.2), Theorems 3 and 4] in their study of the
closedness of ordinary differential operators and their adjoints in L?.

LeEMMA 1.17 For any n > 2, H, implies H, with suitable S.

Proof Similar as for Lemma 1.10, with

Spr1(€) := Sy @) +28, (g) s,,(l / (252 (;))) if0<e<1/2.

(1.23)
Also similarly as Lemma 1.3, with (1.23), one gets
LEmMA 1.18 For n > 2, H5 implies H: with suitable S.
LEMMA 1.19 For n>2, H® implies H;°.
Collecting some of the above results, one has for n>2
Li=s [l N =0 <= N =N, =L, > LY (1.24)

Ny=>H,=H=>H, N=H=H=>"H,
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where N? is defined as L%, H? with o =00 and |[y™1]|£0; for * the
assumption (1.8) is needed, and only (1.7) holds;

L, <= L} <= N, if (1.10) holds. (1.25)

Question: For what V, || || is L) = H, true, at least for n=2?

2 INEQUALITIES FOR WEIGHTED L"-NORMS

In this section J, X are as in the introduction, w : J — (0, 00) is a Lebesgue
measurable weight function with

C5=sup{——(—) s, ted, |s—r|§6}, 0 <6< o0, (2.1

w(t)’

1/p
1l = ( / lfl"wdt> resp. . —supwls|  (22)

for Bochner—Lebesgue measurable f: J — X, 1 < p < 0o, u, = Lebesgue
measure; | ||, := |l |l

PROPOSITION 2.1  If'1 < p<ocoandw is a weight function with Cs, < 0o
for some 0<8y<oo, then |||, . satisfies an asymptotic Nirenberg
inequality, i.e. for any J, y € C®(J, X), I compact interval C J one has

K
1T, < lly"Tlpp +Z 11l foro<es<o (2.3)

with o, K given by (2.10) resp. (2.13), (2.14).
Independent of p and |1| > 1 one can use

K= 32C60, o= (1/2)min(b, |I|), 1<p<oo. (2.4)

The case X =C, p=2, w=1is due to Nirenberg [26, p. 671, (1)], also
for functions of several variables; see also [25, p. 11 and p. 22] for p=2,
and [25, pp. 30—33 and p. 37], recalling (1.25).

Remark 2.2 (a) In (2.3) the ||y"]||,,+ can be oo if p>1 (see Corol-
laries 2.5/6). Also, ||y"1]| > 0 is not needed.

(b) For 0 ¢ J unbounded and w real, w=* or e* we have finite Cj.
Here Cs— 1 has § — 0, so K— 24727 resp. 1 if n;— oo resp. 6o— 0.
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(c) In proposition 2.1 bounded J or §; = oo are also admissible; but
then Cs, < oo implies 0 < inf;w <sup,;w < co, one can assume w=1.
See example 2.3.

(d) For p=oco, w=1 the K=1 of (2.10) cannot be improved by
Remark 2.9. See also [25, p. 11 and p. 22].

(e) For p=0o0 and J=[a, f) with < oo, proposition 2.1 can be
extended to arbitrary decreasing w:J— (0, 00) and I=[a,x), a+6<
x< B, with o=(1/2)Céw, K=(Cw)’, w:=w(a)/wla+6), 6§&€(0,|J)),
Cc>1.

True also for p < 00?

Example 2.3 (2.3) becomes false for J=[0,1),w=1/(1—1),y=1—1t+
nsint, 1 <p <oo: Cs=o00. See Remark 2.2(e).

Example 2.4 For general norms Proposition 2.1 becomes false:

For any interval J, X =R, V= piecewise continuous bounded func-
tions: J — R one can construct f, € C*(J, R) with compact support and
¢n €(0,2 7 "] such that with || f]| := >_1° ¢u| f(rn)|, r, =rationals € J, one

has (1.1), (1.8), |Lf4ll = 0, £l = O, £l = Land (1£ll/11.471D" —
Soeven LY, H,, and therefore L§, LS, L,, N5, N3, N2, Hj are here false, for
any finite )\, 7, K, o, S. See Example 3.5.

Proof of Proposition 2.1 With the fundamental theorem of calculus for
vector-valued functions ([15, Theorem 3.8.6, p. 88]) one shows for
y€eCAJ, X)

) =56) + =)+ [ 7 dsds,
uxe€l:=[b—ab+ad CJ.

With v € I one gets
YO -y =0-ye+ [ [ Viedsdr. (26)

Ifv=b+z,u=b—z, 0<z<a,integration with respect to z over [0, a]
yields

/bb+ayds—/b yds = a%y (x)+// /xty”(s)dsdtdz, o

)
4
Iy ()|l SW/I|y|ds+/Ily”|ds, x € I compact C J

(2.5)

(see Brown and Hinton [5], with 9 instead of 4 and X =R).
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If v=b+a, u=b— ain (2.6), one gets, for x € ,

b+a
2a|ly (x)| < 2lIy]ll +/ [t — x| dt]ly" Il < 2[¥1lo

b—-a

+ (@ + (x = &)Yl

or
W< S Mo+ oMl w1 28)

Case p=oo: For compact intervals M, I with M CICJ and |1| <,

(2.8) gives, on M
supw ”MH (su w) M”
( ) |M| P)

M|
< o (4] 'ny”Mnm+|M|nyMn )

w1 <1

< (B0 Ml 4 ML )

Since this holds for any such M C I, one gets, with e = (1/2)C- |M|, and
now any compact interval 1 C J

S
1 o < el Moo + = W Hlloos 0 <e<o0, (2.9)

K=C% o=1C6 &:=min(|l],&), Cs< C arbitrary < oco.
2.10)

Case 1 < p < oo: Since (u+ v)? < 27~ Y(u? +v?) for u, v >0, (2.7) implies
on I with Holder

p p
wly'|? < 277! (4P|1|-2P( / Iyl ds) +( / |y"|ds) )-supw
I I I

<! (4”111'2" / |ylP sup wds + f i supwdS)
I I I I
| pu=m),
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[wrwas < zcy (@ [pwas+ i [1pwes) @
1 1 I

provided |1] < é¢; (2.11) holds also for p=1.

If now M is any compact interval in J, subdivide it into nintervals /;
of length |M|/n<8,. Adding the inequalities (2.11) for these /=1,
writing I instead of M and using (u + v)!? <u'/? +v'7_ one gets

—1p1/p _ 1/p N
/1l <2 ecife Wy, 4 20 VPC I g (212
Define
o= 2C‘/”|nﬂ, with n; € N, Cyyyn, <2C <00 (2.13)
’4

(Cs, < oo implies Cs< oo for any 0 < 6 < oo, so everything above is
defined).

Then if 0<e <o, there is m>n; with nj/(im+1)<e <n;m, so
n=m+1and C)p, replaced by 2C in (2.12) yields

K .
' Al < el T+ = 1, IO <e <o,
with
K= 16C2/1’(1 +nl) 1<p<oo. (2.14)
1
If one chooses n; with |1]/n;< 6y, one gets (2.4) from (2.13) and (2.14),
resp. (2.10).

Special case w=1: Then §o=00, Cs=1, n;=1; o=|I| and K=32 are
possible by (2.10), (2.13), (2.14) for 1 <p < oo, for p=1even K=8, and
K =1 for p= oo (see Remark 2.2(d)).

Proposition 2.1 yields, with 2C > Crin(s1,6) = Cmin(n,8) (nO con-
tinuity of Csin 6 is needed)

COROLLARY 2.5 In Proposition2.1 one can omit the Iin(2.3), with K, o of
(2.10) if p= o0, resp. (2.4), and |1| replaced by |J| (also if 6y or |J| = o).
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Special case |J| =6y= 0, i.e. w=1= Cs Then o= 00, so even N5 and
with Lemmas 1.11, 1.12 all N3, L are true, n>2, || || =] ||, 1 <p < oo,
V=I7(J,X). For J=R=X optimal A=), , for L{ have been
determined by Kolmogorov [16] for p = 0o, they are upper bounds for
the A, » by Stein [28, Theorem 2], for 1 < p < oo. However even for
monotone decreasing w the L3 is in general false by Example 1.13.
COROLLARY 2.6 Foranyinterval J,1 < p < oo, was in Proposition2.1 or
Remark 2.2(e), n>2 and y € C™(J, X), if y and y™ belong to L =
{f Bochner—Lebesgue measurable: J — X ||| f||,,, < oo}, then ym e
12, 0<m<n.

Proof Corollary 2.5 and Lemma 1.10.

For X=C and w=1 this has been shown by Halperin and Pitt [11,
Theorems 1 and 3], p= oo =|J| already by Hardy and Littlewood [12,
p. 422, Theorem 3(a)], and Esclangon [7]. J=R, 1 <p < o0, X=C and
w= 1 can also be found in Stein [28, Theorem 3].

There are two ways of getting Landau inequalities from Proposition
2.1: either N,= N,= L,, or Ny= L,= L, (Lemmas 1.10, 1.14, 1.5).

The second method gives nicer formulas, we prefer the first, it gives in
general better \,:

PROPOSITION 2.7 For J, p, w as in Proposition 2.1, n>2, and any
0 <7< 00 one has

Iy 015, < MMV, 6", 0<m<n (2.15)

W

foranyye c™J, X), Icompact CJ,0< ||y(")I||p,w <bwith0<b< oo,

(U 2l0/8) e, (2.16)

w(n) = (a0 () max((0). ) em)

2l if1<
K=K(p,w,]) = 32C7%, ffl—p<°°’ with
ac?, if p = oo, (2.18)
2C>Cs, 6:= min(|1|,60),

1/ :
o=o(p,wI) = {55”5’ :tf,; il;: % 5, Casin (2.18). (2.19)
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Proof Sincewith V := I2(I, X ) of Corollary 2.6 any y € C (1, X ) with
yP e Vfor0 < j<2canbeextended toanz e CP(J, X), Proposition 2.1
gives Nx(K, o) for this ¥ and || ||,, . restricted to 1, with K, o of (2.18),
(2.19). So Lemma 1.10 gives N,,, then Lemma 1.14 the L,, with (2.15),
(2.16). Here (2.13), (2.14), for minimal n; with ||/n; < § and 2C > Cs one
gets 2|1|/n; > 6 :==min(|1|, &) for p < o0, i.e. (2.19).

COROLLARY 2.8 If 69 < oo or |J| < oo, Proposition 2.7 remains true if
there everywhere I is replaced by J.

If |J| =00 and w=1, (2.15) holds with I=J and y as there, but with
T =00 (i.e. without (2.16)) and

m\ n—1
=4aK)®)", Kof 218), C=3. (220)

n

A= XM(00) = n(

Proof The first part follows as Corollary 2.5. For the second part one
can take 7 = 1|I| with fixed ¢ € (0, 00); I — J gives then, for any y as before
(2.16) and §, = oo, inequality (2.15) without I (also if some terms are co,
with 0 - oo := 0); instead of \,,(7) one gets, with suitable K', A= (K’ + 1/s)"
max(s, 5" 1), s:= 270" if p< oo resp. (21)" if p=oo. The minimum
with respect to s € (0, 0o) gives (2.20).

Remark 2.9 (a) The variable in 7 in (2.16) gives less flexibility than
might appear: L,(\, 7o) already implies L,()\o-max(1, (t/70)"" ™), 7)
for any 7> 0.

(b) In Landau’s case p=o0, w=1, 7=(1/2)|1|, X=R, for n=2 our
(2.17)—(2.19) give A, =4, which is optimal by Landau [20, Satz 2]; for
n>3 our ), are much smaller than the )\, =2"" of Landau [21,
Hilfssatz 3].

(c) Even for n=2, p=o00, w=1 Proposition 2.7 is more general
than Landau’s result: y’(¢) need not exist everywhere, and in (2.15) and
1" 1||o < b only the g, — sup is used.

(d) Corollary 2.8 says that L,(A(r), 7) is true for any J, 7 and || |5,
with 6y < oo or |J|<oo, and A(r) independent of |J| > éy; however
An(T) — 00 as |J| — 0 as it should: Example 2.10.

(e) For |J|]=00 and w=1, Corollary 2.8 gives even the strong
L5 (M(00)) with explicit A for || ||, 1 <p < oo (also “Special case” after
Corollary 2.5); for p=o0c one has A\y(co0)=4, which is optimal by
Matorin [24] for J=[0, 00); for p=00 and J=R, A=2 is optimal by
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Hadamard and Kolmogorov, A=1 for p=2 by Hardy-Littlewood—
Polya [25, p. 5]. More can be found in [10, 18, p. 229, 25, pp. 2-7, 28,
30, p. 4 and p. 9].

For increasing w, |J| = 0o and 1 < p < 0o a strong Lj has been shown
by Goldstein—Kwong—Zettl [8, p. 23, 25, p. 37 (84.3)]; for w=¢° see [5,
18, p. 238 Theorem 4, 25, p. 51 no. 102]; for decreasing w this is false by
Example 1.13. See also Remarks 2.17(c) and (f), Corollaries 2.11, 2.19,
Examples 1.2, 2.3, 2.10.

(f) Proposition 2.7 and the first part of Corollary 2.8 hold also for
p=oc and J, w as in Remark 2.2(e), with suitable \.

(g) If a strong L: holds for J and the seminorm || || (as in (e)), then
for non-negative integer m the L} is also true (with the same X) for the
seminorm ||f1|, = 3/ IS 0| (Holder, p=n/(n—k)); special cases
have been treated by Upton [30]. The same holds for the later
asymptotic L of Proposition 2.16.

Example 2.10 Fornon>2,1<p<ooand fixed \, 7 a L,(\, 7) holds
for arbitrary J: J=[0,¢], y=t (+nsin?) if n=2.

Forapplications to differential equations, we need asymptotic Landau
inequalities; under additional assumptions one gets one already from
Proposition 2.7:

COROLLARY 2.11  ForJ,p,w,nasin Proposition2.1 or Remark2.9(f), to
eachy € C™(J, X) with ||y|| p,w <00 and Y £ 0 there exist \(y) < oo and
a compact I(y) such that

Iy 0y, < X)I 1y, 1) cIc, 0<m<n.
(2.21)
If |J|=00 and w=1, then |yl||,=O(|1") suffices for (2.21); if even

I¥1,=o(1]"), then any A(p) > An(c0) of (2.20) is possible in (2.21),
independent of y.

This follows from Proposition 2.7 with 7(y)=(||y||,,w/bo)'" with
bo= ||y I(»)||p, > 0 for some compact I(y), 0 < 8o < |I(y)|
If1 <p< oo, one gets e.g.

n n 1/p\"
A(y) = (2"-4(41()(2) +%) -max(s,s" '), with s > s(y) = (T;yg n ) ,
0% 5,
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with K of (2.18) with C = Cs,/2. This works also in the case ||yI|| =
O(|1]"), 8o = oo. For the case o(|1|") one can argue as in the proof of the
second part of Corollary 2.8.

The last statement of Corollary 2.11 follows for p = oo also (except for
the explicit \,(c0)) from results of Gorny [9, 25, p. 7], or Redheffer and
Walter [27].

For fe If (J,X) and w as before (2.1) the weighted Stepanoff
norm is defined by

I fllsz == sup{||l f1]|,,: |1l =1, interval IC J}, 1 <p <oo. (222)

This definition and the above results yield

COROLLARY 2.12 If |J|=00 and 1<p<oo, then Corollary 2.5,
Corollary 2.6 and Proposition 2.7 (with |I|=1 in (2.4), (2.10), (2.13),
(2.18)) hold also for || ||z instead of || ||, (also in (2.16)).

A strong Landau inequality L for Stepanoff-norms can be found in
Upton [30], for J=R, X=C,w=1.
COROLLARY 2.13  ForJ=[a,o0)resp.R, 1< p < o0o,was in Proposition
2.1, to y € C™(J, X) with y™ # 0 and Stepanoff-norm ||y|| s2 < 00, there
exist M(y) < oo and a compact interval I(y) C J such that

Iy 05y < A IyIsg Iy 15y, 10) CIC T, 0 <m<n. (2.23)

Proof By assumption there is 7o with bg := [y, |lgy >0, I,:=
[t,t+1], so ||y 1|gr > by if 1D I, =: I(y). Furthermore |yL|,, <
[l¥llsz =t a0 < oo for any t € J. With b(?) := max(|| Y"1, w> bo) one has
VL], /D) < (a/b)""" =: 7 for any £ € J.

So Proposition 2.7 gives, with §:=min(l, &), ||y('")l,||1';,w < Xu(m0)
LB < M) %" max(y11Z, bf) for any (€ J, L, 1
For I(y) C Ithisyields(2.23), with \(y) = \,(7o) onlydepending on ¢, p, 6.
LemMA 2.14 If 1<p<oo, w:J—(0,00) with w(s)>w(t) if s<t,

J=la,B), y€ COU, X), y;(x):= Iyl xlllp,w for x€J, and y,£0,
one has for =00

(2p)7 P, if 1 <p<oo,
’
— yo(x) _1_+ “y (a)”w(oo) , ifp=1,
> if p = o0.

If B< 00, at least limy_,3y0/y2 < x = x(p, /], w,») < o0.
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Proof Since w and y, are monotone, the limits w(oco)>0 and
0 < y5(00) < 0o are defined. We prove only the case w = 1 needed below.
If p < 00, to € >0 there is C (=2((1 +¢)'/7 — 1) "P) with

(u+vP <A +eu? +Cv?, u,vel0,00). (2.25)

This and (2.5) with x = « yields, with 4 :=||[y(a)||, B:= ||y (&)]|

PIP < CA+ (x— a)BY + (1 +&)(x - o) ( [ dz)p

< C(A+ (x—0)BY + (1 +¢)(x — o)™/ / “yPdn (2.26)

Integrating, one gets for xe Jand 1 <p < oo

1/
Jo(x) < CVP (A + (x — ) B)(x — )7 + (1—;;—) ’ (x = a)a(x).
(2.27)

Since ¢ is arbitrary, one gets (2.24) for p < 0.
p =00 has been shown in [3, (2.13)].
If B < 00, (2.27) resp. (2.26) gives at least lim yo /3, < 00, 1 <p < o0.

Remark 2.15 (a) At least for p=1 and oo the constants “1/2” in
(2.24) cannot be improved; see also (2.13) in [3].

(b) Lemma 2.14 becomes false for increasing w, any p (see Remark
2.17(e)).

(c) For J=RR one can show that (2.24) still is true, with o =0 and
yi(x):= ”J’(j)[ =%, X}l p, w- _

(d) For Stepanoff-norms one has lim yo(x)/(x*y2(x)) < 1/2 for
1<p<oo, w as in Lemma 2.14, with I,:=[a,x] resp. [—x,x] and
(%) = [y L gp.

PROPOSITION 2.16 If J=[a,f], n>2, 1<p< o0, ye C"J, X) with
Y20, y;:=|[yPle, x]|| ps € >0, there exist x. ,, € J with

Im(x)" < A+ )y (x)""y2(x)", Xy <x<B, 0<m<n. (2.28)
Here for =00
A= Mp) = Oa(p))"™", (2.29)
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Noo) =5, D) = (32 (%)1/(2p)+(1—2’)” (2"’>2

for 1 < p < oo, (2.30)

X(1) = (64(1 + A()))*/AB),
A@) =2+ 2]y ()] /y2(c0).

For B< oo one has (2.28) only with some A= X(n,p, |J|,¥(a),y(c),
y2(00)) <00, 1 <p<oo.

The proof follows for n =2 from Proposition 2.7 withw=1, C=1/2,
So=o00, I=[a,x], o=(1/2)"?|I] resp. (1/2)|I], b=yx(x), using
7= +/x(p) + n|I| with x(p) = right-hand side of (2.24) if 3= 00, > 0;
by the assumptions, y,(oo) is defined € (0, oo]; for |J| < oo, 7= /X + 7
independent of I, || > x., —a >0 gives A <oco. Lemma 1.3 gives the
general case.

Remark 2.17 (a) Proposition 2.16 says that for unbounded J and
V=1I(J,X) with 1 <p<oo an asymptotic Landau inequality L? is
true. For p = oo this generalizes Lemma 2.5 of [3]. For p=1 or bounded
J only a “pointwise L;*” holds, the A depends on y; in all these cases
exist y € C* with arbitrarily large A. These examples and Corollary 2.8
show also that L = L2 is false for p=1, |J| =00, n=2.

(b) (2.30)yields Ap(1H) = 1441 < Ay(p) < Apy(00—) = 332for1 < p < 0.

(c) Corollary 2.11 gives more general (pointwise) asymptotic
Landau inequalities if y is bounded in some way; for example if
yo(x) = o(x?) in Proposition 2.16, then A = \,(co) of (2.20) is possible in
(2.28), which is in general better than the A of (2.29). See Remarks 2.9
and after (1.8), and (1.7).

(d) Proposition 2.16 and the remarks hold also for /=R with e.g.
yj(x) := ||y —x, x]|| 5, and the same \,(p) if 1 < p < co. This, (a), (1.7)
and Lemma 1.4 give again L] (for 1 <p<oo) of Remark 2.9(¢).

(e) In all four cases J bounded or unbounded and w decreasing or
increasing, there exist w and y showing that for no A < oo and no p an
asymptotic Landau inequality L§ is true for V = L2 (J,R).

(f) The examples (€) show also that for no A and p a strong Landau
inequality Lj holds for general || ||, ,, except in the case |J|=oco and w
increasing (the ) of (e) are € L2 except: [8], Remark 2.9(¢)).
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For the following Halperin—Pitt inequality we assume:
Jinterval C R, V' K-vectorspace C X’ with monotone seminorm || ||, i.e.
I/l < ligllif £, g € V' with | f| < |g|, and with 17 € V for I compact interval
cJ,

17]] = 0 as |I] — 0, (2.31)
C / |fldx < ||fI|| iffIe VNL!, 0< C; independent of f; I.
1
(2.32)

PROPOSITION 2.18 For J,V,| || as above and 0 <r < oo there exists
S:(0, 00) — (0, 00) such that for any compact interval I C J with |1| > r and
ye COJ, X) withyNI e V,0<j<2 (see (0.3)), I compact C J, one has

IY'1 < elly”1ll + S(e)lIyIll, 0<e < oo, || >r. (2.33)

Proof To e>0 choose §, with | 1M|| < Cie if |M| <., M compact
interval C J,thennminimal € Nwith |/|/n < § := min(é,, r),and compact
intervals I, with |I| = |I|/n, I=J I, With (2.7) one gets for y € CO(J, X)
with yWT e vV

W< || S Wi < S < S WELIL < 3 1L Cre
< clez< / V| dx + 4111 /m) / |y|dx)
<Cie( [ b1ex+4012)7 [ bldx) < el + S,
with

S(e) : 16e with ||1M| < Cie if [M] < 6.,

~ (min(é,,r))*’ (2.34)
M compact interval C J.

Special case V=L Then one gets Proposition 2.1, p=1, w=1, with
K=16,0=r=]|I.

COROLLARY 2.19  Proposition 2.18 holds for || |5, w, 1 <p < oo and the
weight functionw satisfying inf;w > 0 andw integrable over J, with |J| < oc.
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Proposition 2.18 can be applied to Orlicz-norms (see [17,23,31]): A
®:[0,00) — [0, 00] will be called an Orlicz-function (OF) iff ®(0)=0,
P #£0, dZ oo on (0,00), and @ is convex. Then for a measure space
(Y,Q,pm), L%y, X):={f:Y—X| f Bochner — u — measurable,
Je@ fDdp<1 for some t1€(0,00)}, Orlicz—Luxenburg norm
I/ llo:=inf{s > 0: f&(|f)/s)du<1}.

For OF ®, L® is a K-vectorspace and || || 2 monotone seminorm on
L®, with || f||¢ =0 iff f=0 u-a.e. For any OF ®, ¥(¢) := sup{st — &(?):
0<s<oo} defines a “conjugate” OF such that for fe L®(u, X), ge
L*(u,K) one has fg € L'(u, X) (usual L") and [y | /2] du<2[|/|lzlglle-

For Y=interval JCR, Q=Lebesgue measurable sets CJ and
p=Lebesgue measure y; we write L® = L*(J, X) := L®(u, | J, X), then
0<||1|leg< oo if 0<|J| <00, so (2.32) holds with C;=1/(2||1J]|).
(2.31) is true if ®(¢) < oo for 0 < ¢ < o0:

COROLLARY 2.20 If®is an OF with ®(f) < oo for0 <t < oo and|J| < oo,
then Proposition 2.18 is true for || | = || |lo» V= L*(J, X).

Question: Is such an asymptotic Halperin—Pitt inequality also true for
|J] = 00? By Ha Huy Bang [10] at least a strong Landau inequality holds
for /=R, X =C and Orlicz-norms.

3 ESCLANGON-LANDAU THEOREMS FOR
NEUTRAL SYSTEMS

In the following, we consider neutral delay differential-difference
systems

n m
> > aw()y® (e —1) =f); (3.1)
k=0 j=1
heren>1, m>1, J=[a,B) with —co<a<f<o0, Hh1=0<<7<00
for 1<j<m, J':=[a—7,0), f:J— X Banach space over K, ay:J—
L(X) := {continuous linear operators: X — X } with operator norm. t;
are not more general.
yis called a solution of (3.1) on Jif y € C™(J’, X) and (3.1) holds a.e.
on J, with y™ of (0.5).
Systems of such equations are included: aj =r X r-matrix (@, uv),
y =column vector (yy,...,¥,).
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Furthermore we assume that ¥ is a K-linear space C X’ with
monotone seminorm || || satisfying

f,8 €V, |f] =g a.c. implies || /]| = llgl, (3-2)

there is D, < oo with ||g.f|| < D|\gl,|| for 0 < ¢ <7, I compact (3.3)
interval with I,I,CJ and g : J'— X with g, I|J and gI,|J € V,

where gs):=g(s— 1), I,:={s—t:seI}.

THEOREM 3.1 Assume m,n,t,J,X,V,| | as above with (3.2), (3.3);
assume further that the coefficients aj in (3.1) are bounded on J, with

m
D, - ngp lai| <1, ain=1. (3.4)

=
Assume finally that a pointwise asymptotic Halperin— Pitt inequality H3*
holds for V, || || (Definition 1.16). If then y is a solution of (3.1) on J,
with f1, yg‘)l | J € V for all compact intervals ICJ, 0<k<n,1<j<m,
such that || fL| and ||yLJ|J|| are O(¥(x)) for x— @ with some non-
decreasing U > 0 for I, = [a, x], then also || y®I.| J|| = O(¥(x)),0 < k < n.

Proof With (3.2) and |ig|| < |#l| = ||(|ADI| if |g| <|h| on J, g,k € V" one
gets for a < x < G, if ||au(?)|| < 4 for ¢ € J (measurability of the aj is not
needed)

6P L) 11 = J]

m n—1 m
S — (Z aj,,yg.") + Z Z ajkyfjk)) I,

= k=0 j=1

m
< Ki() + 3 sup lapl - [ L] )
j=2

+mnAmax{l|y§f)Ix [JI:1<j<m, 1<k<n}.
(3.3) and the monotonicity of || || give, for 1 <j<m,0<k<n
k k
16572 171 < 1040 few @+ ) | 7] + Dol 0B L) 1],

Soifall ||(¥?[a, & + 7]) | /]| < B, < oo by assumption, with suitable K;
one gets forx e J

10 1) |71 < Ki @ (x) + (i sup |ajn|) (B+ D[ L) |J1l)
2

+ mnA(B + max{||(®1,) | J||: 0 < k < n}).
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By assumption 27 := 1 — D, "' sup; |a;s| > 0, one has for x € J

20|/ E) )| < m(n+ 1) 4B + Ki ¥ (x) + mnAmax | ®)1) | .
n
(3.5)

H3" and Lemma 1.19 imply H}?, so to the given y there exist c(y) € J
and S: (0, 00) —[1, 0o0) with

I6®L) |71 < el (1) 1] + SE) (L) 11,
c(y)<x<fB, 0<k<n O<e.

Choosing € = n/(mnA), (3.5) yields

(L) ||| < m(n+ 1)AB + Ky¥(x) + mnd - S(e)||(vx) | J]),
c(y) <x<B.

Since by assumption ||(yI,)|J]|=O0(¥(x)) and ¥ is non-decreasing
> ¥(a) > 0, one gets with suitable K, < oo

6L | )| < Kp¥(x), x€J.
H?° gives the same for y®), 0 <k < n.

COROLLARY 3.2 Theorem 3.1 holds in the following cases, with
m,n,J, t;, X, (3.1), (3.4) as there

@ [[l|=1llpw of 2.2), 1 <p<oo, w as in Proposition 2.1, and only
W) |J € V=1LL(J,X); here D,=C. of (2.1), Ip=[a,a+
min, < ¢] resp. 0.

(®) |||l = Stepanoff-norm || ||gr of (2.22),1< p < 00,J=[a, 00), wand D,
as in (a).

(¢) || || asin Proposition2.18 with(3.3); special case: Orlicz-norm || || with
Lebesgue measure as in Corollary 2.20, |J| < oco. (Then D,=1 in
3.4

@) || llcow> W decreasing, (3.4) with D, =1.

(e) J=R and m=1, with I,=[—x,x] (all t;=0, ordinary differential
system (3.1), so D.=1 in (3.4)); especially for seminorms as in (a)
and (b).
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COROLLARY 3.3  Withm,n,t;,J, X, (3.1), (3.4) as in Theorem 3.1 and y
a solution of (3.1) on J with y® |[a—T,a]€L?, if fand y|J €V =
L2(J,X), then also y®|JeV, 0<k<n, with p,w as in Corollary
3.2(a). A corresponding result holds for V={g:J-X
Bochner—Lebesgue measurable: ||g||s» < oo} (as in Corollary 3.2(b),
resp. Orlicz-space L*(J, X) with |J| < oo (Corollary 3.2(c)), resp. J=R
etc. as in Corollary 3.2(e).

Proof of Corollary 3.2(a)

(a) Since in Proposition 2.1 the K and ¢ are independent of 7C J with
|7 > some 6,>0 (and of y), one has even an asymptotic N4 and
therefore H5. For (3.3), (3.4) one can use D, = C, defined by (2.1),
< oo if some Cg, < 0. Since the y(k) are continuous for 0 <k <n,
automatically all these (y(k)I) | J € L2, or equivalently € L, (w and
1/w are locally bounded), for p=1 also (y,") h|Je LP by the
definition (0.4) of C™(J, X).

(b) Follows as (a) with Corollary 2.12, case Corollary 2.5, for || ||s and
I=1,a+1<x<o0.

(c) Proposition 2.18 gives an asymptotic Halperin—Pitt inequality H3
since in (2.33/34) the S(¢) does not depend on 7 (and y); this implies
the pointwise H3*. H4 holds especially for Orlicz-norms || || by
Corollary 2.20, here the definition of || || gives equality in (3.3) with
D.=1.

(d) Remark 2.2(e); (3.3) holds with D, =1 since w is decreasing.

(e) Use the transformation t — —t, J=[0, 00), in (a)—(d).

For Corollary 3.3, (y™[a, a + kp]) | J € L2, follows by induction on k
with (3.1) if p:=min{t,, ..., ,} >0; if ¥'=Orlicz-space L® and m> 1,
the starting assumption needed is (y,] )[a a+p))|JeL®for2<j<m.

Remark 3.4

(a) The special case p=o0, m=1, w=1, X=R is the classical
Esclangon—Landau theorem of [21, Satz 1]; in [3] this has been
extended to m > 1 and general X.

(b) Without (3.4) Theorem 3.1 and the corollaries are in general false:
Example 5.3 and Remarks 5.8 in [3].

(©) a1,=1 in (3.4) can be replaced by “a;, uniformly invertible”, i.e
lla1n(£)v]| = no||v|| for v € X, t € J, with some 79 > 0, and D, /noin (3.4)
instead of D,.
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(d) Usually the condltlon “y k) 1\J € V for all j, k, compact I” can be
weakened to (y, [a,a + p]) |J €V, p=min{t,,...,1,},soform=1
(or ¥V = L!)it can be omitted entirely: see Corollaries 3.2(a), 3.3.

(e) Corollaries 3.2 and 3.3 are even for bounded J (and m=1, X=R)
non-trivial if p <oo. For p=o0o see Remark 2.9(b) of [3]; then
essentially w=1 by Remark 2.2(c) here, except in Corollary 3.2(d).

(f) For p= o0 one can admit arbitrary variable ¢;: J— [0, 7] in corollary
3.2(a) and (d), provided y™ is continuous.

(g) Fordecreasingwasin Corollary 3.2(d)and 1 < p < 0o, one can get at
least the boundedness of w(x) - [T [y P dt, 0 <k <n, if ||yL; | J]|p, w
and || f1,||,,., are bounded: ¥ =w ', || || ,in Theorem 3.1.

(h) In Theorem 3.1 one can also use |ig]| = [{° llgll, du(p), p Borel
measure on [1, oo) with e.g. compact support.

(i) An analogue, where “bounded” is replaced by “uniformly contin-

uous”, can be found in [3, Corollary 3.3(a), Theorem 4.1].

Example 3.5 By glueing together f, as in example 2.4, to any —oo <
a < < oo one can construct f€ CX(R, R) and a monotone norm on the
piecewise continuous bounded functions: J— R with (1.8), such that
A< L LA <1, but || 1] = oo as I compact — J=[a, 3), and f=0
on some [a, a +€].

Complementing example 2.4, this shows that here the pointwise
asymptotic L3?, N3° and even S5° are false. It shows further that already
for the equation y” = f Theorem 3.1 becomes false without S5°.

With an asymptotic Landau inequality one gets Esclangon—Landau
results even for some non-linear functional differential equations/
inequalities of Landau type [21, p. 179]:

In the following we assume m, n, t;,J, X, V, || || with (3.2), (3.3) and a;,
w1th (3.4) as in Theorem 3.1, y€ C™(J', X), y,(t) = y(t — ), all
(y I|J€ V for compact ICJ, 1<j<m, 0<k<n, with y=0on 7 if
| yI | /|| =0. Then calculations similar as for Theorem 3.1 yield

PROPOSITION 3.6 Ifa.e.onJ

Za,n ¥ (1) = Ft.. ¥ [ ), (3.6)

if with finitely many constant real c,>0, v=(v; ) multiindex with
1<j<m,0<k<n—1 and~y €R one has (with 0°:=1) for all compact
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intervals ICJ

k k .
IEC, - oyllen 100 < e TP, (3.7)
’Y ]7k

wheren — 3 ; kv > e >0if ¢, #0, andif a pointwise asymptotic Landau
inequality L5° holds for V, |||, then as x— B, 0<k<n, with
6:=max{} ; r(n — k)yu: ¢y #0}, I, := [0, x]

I6® L) || = O(|(pLe) | J]| F<E/e=/m)y, (3.8)

This can be applied to systems (3.6) with y = column vector (yy, .. ., y,)
with values in X”, a;, matrix valued with components a;, ,,,(¢) € L(X),
with a;, = unit matrix, X = Banach algebra, v = (k) With vy, integers
>0, and the vth component of F a polynomial with boundet a.,, of
the form

F(ty oy ol ) = 3 ag(0) H(yf,’f,’j(z))"”*" (3.9)
¥ Joku

with n— 3", & ukvVjku > €0 >0 for all y with some a,,#0: With || || =
Il lloo = p — supyand X" instead of X in Proposition 3.6, with Proposition
2.16 one gets an extension of Theorem 2.8 of [3].

Another application is p=1, || ||;, X=C (or Banach algebra), Fas in
(3.9) and the products in [ ] %, being convolution (a = 0)

(00 = [ F)gli—s)ds, 130;

then (3.7) follows with ||(f* g)I||; < || /1|l - |lgZ]|1, L® holds by Proposi-
tion 2.16.

Let as finally remark also additional terms/variables of the form
ft'_h g(s)ds or supy_js 48, With g = yﬁj‘> or lyg‘)l and 0<h<T, are
possible, since

1 t
- ds
” h /t—hf

(Almost) Periodic solutions of such equations have been considered in
Bantsur and Trofimchuk [1] and the references there.

<|Ifl,, feLPRX), 1<p<oo, 0<h< oo.
P

(3.10)
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