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In Section relations between various forms of Landau inequalities
,Xllyll mlly(")llm and Halperin-Pitt inequalities Ily(m)ll _< elly(")l[ + s(e)llyll are discussed,
for arbitrary norms, intervals and Banach-space-valuedy. In Section 2 such inequalities are
derived for weighted LP-norms, Stepanoff- and Orlicz-norms.
With this, Esclangon-Landau theorems for solutionsy oflinear neutral delay difference-

differential systems are obtained: Ify is bounded e.g. in a weighted Lp- or Stepanoff-norm,
then so are the y(m). This holds also for some nonlinear functional differential equations.
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0 INTRODUCTION AND NOTATIONS

To prove that bounded solutions of certain linear differential equations
are quasiperiodic, Esclangon [6,7] needed and demonstrated that such
bounded solutions have bounded derivatives. This result was later used
by Bohr and Neugebauer [4] to get the almost periodicity of bounded
solutions of nth order linear equations with constant coefficients and
almost periodic right-hand side.
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346 H. GONZLER

Landau [21] extended Esclangon’s result on the boundedness of the
derivatives of bounded solutions to linear differential equations with
only bounded coefficients. In the following we will call such theorems
"Esclangon-Landau-" or "EL-results". They have played an important
role in the discussion of the asymptotic behaviour of solutions of
differential equations, see e.g. Basit and Zhikov [2], Levitan and Zhikov
[22, p. 95 and 97], and the references in [3, p. 596]. In [3] EL-results were
obtained for difference-differential equations and the sup-norm.
For his EL-results Landau showed, under some additional assump-

tions and with the sup-norm, for a compact interval,

[lY(m) I1" An l[ylln-mllY(n) [I m, 0 < rn < n (0.1)

([20, 1913 for n 2, 21, 1930 p. 182, Hilfssatz 3]); a qualitative form can
be found in Hardy and Littlewood [12, p. 422, Theorem 3])
We will call results of this type Landau inequalities; a thorough

discussion ofthe many results in this direction can be found in Chapter
of Mitrinovi6, Pe6ari6 and Fink [25], mostly for scalar-valued y and
unbounded intervals.
To get EL-results for LP-bounded and Banach-space-valued solutions,

one needs however (0.1) or related inequalities for bounded intervals and
such norms, then not so much can be found in the literature.

In Section we discuss first the relations between various forms of
(0.1), especially the asymptotic form (for compact intervals approaching
the boundary) needed later, for vector-valued y.

It turns out that a stronger version of (0.1) is a Nirenberg inequality
[26, appendix],

[lY(m)ll  n-mlly(n)II + ge-mllY[I, 0 < o

a weaker variant is obtained by replacing Ke --m by an arbitrary function
S(e) (Halperin and Pitt [11]). Again relations, also with asymptotic
versions, are discussed, for general intervals and norms.

In Section 2 we obtain Nirenberg and then Landau inequalities for
weighted Lp or Stepanoff-norms, arbitrary intervals and vector-valued
functions. From the explicit form ofthe constants Kand A there (usually
not optimal) we can deduce the asymptotic forms needed. For Orlicz-
norms we get at least Halperin-Pitt inequalities, for bounded intervals.
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This is applied in Section 3 to linear delayed neutral difference-
differential equations and systems, with bounded operator-valued
coefficients: For weighted LP-norms or weighted Stepanoff SP-norms
still an EL-result is true, <p < o, if the weight function does not
oscillate too wildly, similarly for Orlicz norms (Corollary 3.2). These
results seem new and non-trivial even for bounded intervals and scalar-
valued solutions. With an asymptotic Landau inequality even some non-
linear functional differential equations can be treated (Proposition 3.6).

In the following X is a Banach space over K IR or C. Jc is an
interval with endpoints a and/3, - <_ a </3 _< . For f:JX and
MCJ

g fM means g f on M, g 0 else in J; (0.3)

If[ is defined by Ifl(x):-Ilf(x)ll, x J. III is the length of the interval
Ic JR; "a.e." is with respect to Lebesgue measure on IR. Integrals are
usually (Bochner-) Lebesgue integrals (Hille-Phillips [15]). A seminorm

is a norm without "[[x[[ 0 implies x 0". For n natural

C(n) (J, X):= {f E Cn-1 (X’, j):f(n-1) locally absolutely continuous and

f(,-l/’ exists a.e. in J}; (0.4)

then

f(n)(x) := f("-l)’ (x) where it exists in J, else := 0. (0.5)

The LP-spaces are spaces of measurable functions, not equivalence
classes.

1 LANDAU, NIRENBERG AND HALPERIN-PITT INEQUALITIES

With the notations of the introduction we assume in the following:

V linear C Xs (pointwise operations), II" v [0, )
seminorm satisfying: if y E c(1) (J, x), I compact c J, yI
and y’I V and [[yI[[ 0, then [[y’I[[ 0; n integer _> 2.

(1.1)

Here Vcan be e.g. LP(J, X), with
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DEFINITION 1.1 We say that the strong Landau (or Kolmogorov)
inequality L Un(A Un(A, II) holds (for V) ifO <_ A < oo and

[ly(m)[[" _< A[lyll"-mlly(")[[m for 0 < m < n

and ally E cn)(J, X) with y(m) V, 0 <_ m < n (see (0.4), (0.5)).

The weak Landau inequality Lw L’(A, 7-, II) holds if with A,7-E
(0, ] one has (1.2) with y as after (1.2) and with the additional
conditions

Ily<"/ll > 0 and (llYll/llynlll) 1In -. (1.3)

The Landau inequality L,, Ln(A, 7", II) holds if A, 7- (0, cx] and for y
as after (1.2) with 0 < Ilyll -< a, 0 _< Ilyll _< b, 0 < b, where a, b [0, ),
and with (a/b)l/n < 7-, one has

Ily(m) I1" /an-mbm, 0 < m < n. (1.4)

The asymptotic Landau inequality Zna=Z(,ll II) holds, with
0 < A <, if to each y COO(J, X) with y(m) I V for 0 < m < n and all
compact I c J and for which furthermore Ily)III is 0 in I there exists
a compact interval I(y) C J such that (see (0.3))

Ily(m)IIIn < Allyllln-mlly(n)IIIm, 0 < m < n, I(y) C I C J (1.5)

(the y(m) need not be in V).
Landau inequalities have been introduced in [20, n-- 2, 21, p. 182,

Hilfssatz 3], where Landau showed that L holds for compact J,
Ilfll-suplfl, x-t, with A2=4, )in 2n’2n, -(1/2)1JI; this implies
immediately a strong Landau inequality for unbounded J. Kolmogorov
[16] determined the optimal An (even An, m) in LS for J= X, Ilfll
supRlf], v= bounded functions. The asymptotic form L, can be traced
back to Hardy and Littlewood [12, p. 422, Theorem 3], it was used in
[3, Lemma 2.5] for general Xand I1.

Obvious relations, for fixed J, V, 11, n, A, any 7- > 0:

LSn(A) Ln(, oo) L(A, oo) = Ln(A, 7-) = L(A, 7-). (1.6)
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Also

La() L,() for Ily"ll > 0, (1.7)

provided V satisfies

fE V, I compact c J =fI V and IIfIII Ilfll as I J. (1.8)

Even with (1.8), Ls(A) = L,(A + e) follows only for y with y(m) V; see
Remarks 2.17(a) and (c).

Example 1.2 y(t) + e sin shows that already L and therefore L
are false for any bounded J, any A, any V Lp with lip, 1 <p < c (see,
however, Proposition 2.16, but also Example 1.13).

So for bounded J for (1.2) additional conditions are necessary. We
work here with Landau’s condition (1.3); for other types of Landau
inequalities in this situation see Gorny [9], Levitan and Zhikov [22, p. 95],
Redheffer and Walter [27].
Throughout each of the following lemmas, J, X, V and its seminorm

II are fixed and satisfy (1.1).

If L holds with ’2 1, then L holds for n >_ 2, with

Proof By induction one can show (see [18, p. 232, (2.14)]), for A =/n,m
in (1.5)

nm(n-m)/2 (1.9)/n,m 2,1 0<m<n, 2<n.

LEMMA 1.4 If LS2 holds with ) >_ 1 and n >_ 2, then LSn holds with )in as
in Lemma 1.3.

Proof As for Lemma 1.3.

LEMMA 1.5 /f L2()2, 7") holds with 7" > 0, 2-> 1, and n >_ 2, then
Ln(,n, 7") holds with ,n )2-.

Proof This has been shown by Landau [21, pp. 182-183], for
compact J, X=, - (1/2)1JI,/2 4. His ingenious proofworks also in
our more general situation, for the X on p. 182 e.g. one has to use

2n-2X := maxl,A2 max{llY(m)ll "0 < m < n}).



350 H. GONZLER

Question: Can one improve this to An A A. n3 as in Lemma 1.3?
(Yes under the assumptions ofLemma 1.15 via La = Na= Nn= Ln of

below.)

Example 1.6 If yk(t) + k- 3 sin kt, E J= [0, 1], k E 1, with lip,
<p< o, and the nonlinear V containing just the yk and their

derivatives up to order 3, one can show that L holds, but L holds
for no A < o.

Do there exist such linear V as in (1.1)?

LEMMA 1.7 Assume Vc L (J, X), J bounded, V containing all bounded
continuousf, assumefurther the existence ofC1, Ca (0, o) with

C111flll -< Ilfll c2 sup Ifl, f bounded V. (1.10)

Then L2(), 7-) andL(A, 7-) are equivalent.

Examples are LP(J, X) or more general Orlicz-spaces with Lebesgue
measure.

Proof With y as before (1.4) with IIY"[[ < b and 0 < a define Wu,v(t):=
y(t) + xu sin vtwithx X, Ilxll 1. Then, (j)

,vu, V, withw’= w/(c2),vone
has IIw- Yll < , IIw’ < , for 0 < e < b Ily"ll- With a continuity

IIargument there is s E (1, ) with IIwZll b / (b/a); then IIwll/llWs II -<
(llyll / )/(b / (b/a)) <_ a/b <_ 2. ZW yields (lly’ll- )2 _< iiw,ll 2 <_
(llyll / )(b / (b/a)), 0 gives L2. This works for any Vcontaining
zwith II#)(v .)11 _< c0, 0 < 0_< IIz"(v.)ll for v _< 1,j= 0, 1,2, then without
(1.10).

COROLLARY 1.8 L implies L for n > 2, with ,kn of Lemma 1.5,
provided V, are as in Lemma 1.7.

Question: Direct proof of L’ = Lw, for more general V? Character-
ization of Vwith L’ = L2?

DEFINITION 1.9 We say that a Nirenberg inequality N Nn(K, or)=
Nn(g, , V, II) hods iffwith K, tr [0, cxz]for ally as after (1.2) one has

K[ly(m)[I _< n-mlly(n)l[ +- [lyl[ for 0 < e real < or, 0 < rn < n.

(1.11)
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A strong NSn holds means Nn(K, cx, V, II) is true.

LEMMA 1.10 IfN2(K, tr) holds with 4K> 1, then Nn(Kn, tr) holdsfor n > 2
with

gn 2n-4(4K) (). (1.12)

Proof by induction If Nk holds for 2 < k < n, one has, with N2 and

Ym "--[lY(m)ll, Y as after (1.2) for n + 1,

Yn-1 <_ eyn + gnel-nyo, 0 < e <_ Crn
Ke KKn

Yn <_ rlYn+l -+-Kyn-1/7 <_ rlYn+l +---Yn + e--i-_lY0,

With e r//(2K) _< r one gets, with 6 :=

2KKn (2K)nKn2n
Yn <- 2rlyn+ -]-

Te
n_ YO 6yn+ -k-

6n YO, (1.13)

which is (1.11) for n + 1 and rn n, with even 0 < 6 < 2or.
Substituting this in (1.11), one gets for 0 < rn < n

Ym

_
n-mtYn+l q- gn((4g)nEn-m6-n q- E-m)yo

for 0 < e _< cr and 0 < 6 _< 2or. So 6 e is possible, yielding with (4K)n >

Ym <_ e(n+l)-myn+l q- Kn(2(4K)n)e-myo, 0 < e <_ Crn+l

with (1.13), this holds for 0 < rn < n + 1.
So

Kn+l 2(4K)nKn 2(4K)n2n-4(4K)()= 2n+l-4(4K) (%1).

In the above, the case r gives

LEMMA 1.11 IfN(K) holds with 4K> 1, thenN(Kn) holds, with (1.12).

LEMMA 1.12 For each n >_ 2, NSn and LSn are equivalent, with

An (1 + el/e)nK-I resp. K, n-1/(n-1),n, (1.14)

providedK > resp. .n > 1.



352 H. GNZLER

Remark For n 2, A2 4K2 by (1.15); (1.14) can be improved to

Kn (1 (1/n))n- 1/(n-- 1)An which is optimal.

Proof We show the equivalence even for each fixed m, 0 < m < n. If,
with yj := Ilyll, (1.11 holds for all e > 0, the right side has its minimum
for 0 (n m)en m lyn mKe m ly0 or (Yn 0 Ym 0 = (1.2))
e (mKyo/((n- m)yn))TM. This e gives (1.2), with

)nm__ (( m ) (n-m)/n (n--m)m/n)
n

n m
+ Knn,-mm. (1.15)

m

With tl/t_ eTM for _< < o and gn.m--gn this gives Part of (1.14).
Conversely, (1.2) for m implies for 0 < e <

-1
.n-m.m (n)ynm < ,’n,m.,V0 .,vn ,n,m "c myo

n-m En-myn m

m m

--(An,m/())(En-mynq-E-myo)n.
This gives (1.11) with

( /( (1.16)

If An, m An 1, this gives Part 2 of (1.14.)

Example 1.13 Nn trivially implies Nn; the converse is in general false:

J-- [3, cxz), X-- IR, Ilfll- sup(lf(t)l/t" 3 <_ t},
v= {fE c(J, IR). Ilfll < ).

Y6 + 6 sin shows, thatL is false for any A E [0, o) though [J[ .
One can show however that N2 (14, 3) is true (Landau’s L2 (4, (1/2)]I[)
for compactland IIo givesL(4) for J, IIo , then N(1) by Lemma 1.12
and the above remark; apply this to f=y/t.) For [JI < a simpler
example follows, with [Ip, from Example 1.2, Lemma 1.12 and
Proposition 2.1.
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LEMMA 1.14
with

Nn(K, a) implies Ln(A(7-), 7")for each real 7" > 0 and n > 2,

,(T) (g+ o-n)n max(0n O:=-. (1.17)

Proof If Ym "= Ily(m)[[ <-- e-my, + Kn, mE -my0 for 0 < E if, 0 y _< b,
Yo <_ a < cx, 0 < b, then if "= -(a/b)TM, <_ a, one gets

(()n-m ()m)n ()l/nYn <-- + gn,m an-mbm if < 7", (1.18)

which is L, with (1.17).

LEMMA 1.15 /fJ, V, are as in Lemma 1.7 with (1.10), then for any
A, 7", cr E (0, cxz), L’(A, 7") implies N2(K, tr) with

K=max ,al (1.19)

Proof If, with Ym :: Ily(m)ll, Yo/Y2 _< 7"2 with Y2 > O, then y < AyoY2 _<
(A/4)(ey2 + (1/e)yo)2 implies even Nz(A/4, ).

If 0 < y2 < YoT" 2, (2.8) of Section 2 and (1.1 O) give

4)y < c 2 +Yo c C2/C1. (1.20)

So

K
Yl < c(y07"-2 + 4]jl-2y0) < ey2 + ac(7"-2 + 41JI-2)yo/cr < ey2 + 7yo

if 0 < e _< a, with K ac(r- 2 @ 4[Ji- 2).
Remark Lemmas 1.15 and 1.14 give a new proof of L’(A,7") =
L2(A, 7") of Lemma 1.7, but only with A > A in general, even for
optimal a.

Question: Can one extend Lemma 1.15 to more general norms resp. to

L = Nn, n > 2? (For norms as in proposition 2.1, Nn always holds.)
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DEFINITION 1.16 We say that a Halper&-Pitt inequality Hn Hn(S)
H,(S, V, P) holds ifwith S" (0, o) --* [0, o) one hasfor ally as after (1.2)

[[y(m)[[ _< ellY(,)[] + S(e)l[y[[, 0 < m < n, 0 < e. (1.21)

An asymptotic Halperin-Pitt inequality H(S) holds if for each
y E cn)(J, X) with ym)I Vfor 0 < m < n and all compact intervals Ic J
there is a compact I(y) C Jsuch that

IIY()III _< ellY(")III + S(e)IlylII,
I(y) c compact I c J.

0<m<n, 0<e,
(1.22)

The pointwise I-1na is defined as Han, but with S depending on y, similarly
for I-I’n.

Remark If (1.21) holds only for 0 < e < some cr < o, with S(e):= S(tr)
for e > cr it holds for all e > 0, we can assume cr o, H, H,.

Such inequalities seem to have been considered first by Halperin and
Pitt [11, Theorem 1, (2.1.2), Theorems 3 and 4] in their study of the
closedness of ordinary differential operators and their adjoints in Lp.

LEMMA 1.17 For any n > 2, H2 implies Hn with suitable S.

Proof Similar as for Lemma 1.10, with

if0<e< 1/2.

(1.23)

Also similarly as Lemma 1.3, with (1.23), one gets

LEMMA 1.18 For n >_ 2, H’ implies It with suitable S.

LEMMA 1.19 For n > 2, I-12a implies nna.

Collecting some of the above results, one has for n > 2

(1.24)
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where Na is defined as Lna, H with cr o and I[y(")Ill 0; for (*) the
assumption (1.8) is needed, and only (1.7) holds;

L2 = L’ == N2 if (1.10) holds. (1.25)

Question: For what V, is Lnw = Hn true, at least for n 2?

2 INEQUALITIES FOR WEIGHTED LP-NORMS

In this section J, Xare as in the introduction, w" J (0, c) is a Lebesgue
measurable weight function with

/ }c := sup w--: s, , Is- rl _< 0 < _< o, (.)

Ilfllp,w Iflpwdt resp. L sup wlfl (2.2)
J

for Bochner-Lebesgue measurablef: J--* X, <p <, #L Lebesgue
measure; I1
PIOPOSITION 2.1 If <p <
for some 0 < 60 < c, then II lip, w satisfies an asymptotic Nirenberg
inequality, i.e. for any J, y E C(2)(J, X), I compact interval c J one has

K
Ily’lllp,w <_ elly"Illp,w +- Ilylllp,w for 0 < e < cr (2.3)

with tr, Kgiven by (2.10) resp. (2.13), (2.14).
Independent ofp and III > one can use

K= 32Co, cr (1/2)min(6o, III), <_p <_ . (2.4)

The case X= C,p= 2, w-- is due to Nirenberg [26, p. 671, (1)], also
for functions of several variables; see also [25, p. 11 and p. 22] forp 2,
and [25, pp. 30-33 and p. 37], recalling (1.25).

Remark 2.2 (a) In (2.3) the Ily"IIIp, w can be c if p > (see Corol-
laries 2.5/6). Also, [ly"III > 0 is not needed.

(b) For 0 , unbounded and w real, w or ewt we have finite Ce.
Here Ce has 6---0, so K24-2/p resp. ifnxo resp. 6040.
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(C) In proposition 2.1 bounded J or 6o c are also admissible; but
then C < implies 0 < infsw < supsw < c, one can assume w 1.
See example 2.3.

(d) For p , w the K= 1 of (2.10) cannot be improved by
Remark 2.9. See also [25, p. 11 and p. 22].

(e) For p=o and J=[a,/3) with/3 < , proposition 2.1 can be
extended to arbitrary decreasing w" J (0, c) and I [a, x), a + <
x </3, with r (1/2)C6w, K= (C(.0)2, 0 w(o)/w(o + 6), 6 E (0, IJI),
C>I.
True also forp <?

Example 2.3 (2.3) becomes false for J=[0, 1), w= 1/(1 t), y= +
r/sin t, <p < z: C . See Remark 2.2(e).

Example 2.4 For general norms Proposition 2.1 becomes false:
For any interval J, X=/, V--piecewise continuous bounded func-

tions: J one can constructfn C2(j,) with compact support and
cn (0,2 -n] such that with Ilfll :- cnlf(rn)[, rn= rationals J, one
has (1.1), (1.8), Ilfnll-- 0, IIf "ll 0, Ilfn’ll- 1,and (llfnll/llf’,’ll) O.
So even L’, HE, and therefore L, L, L2, N, N, N2,H are here false, for
any finite A, 7-, K, or, S. See Example 3.5.

ProofofProposition 2.1 With the fundamental theorem ofcalculus for
vector-valued functions ([15, Theorem 3.8.6, p. 88]) one shows for
y G C(2)(J, X)

y(u) y(x) + (u- x)y’(x) + y" ds dt,
(2.5)

u,x I:= [b-a,b+a] c J.

With v E I one gets

fuVfxy() y(u) ( u)y’(x) + y" (s) as dr. (2.6)

If b + z, u b z, 0 _< z _< a, integration with respect to z over [0, a]
yields

fb+a fb
b foafb+Zfxty ds y ds a2y’(x) / y" (s) ds dt dz,

.Ib -a ,l b-z (2.7)
IlY’(x) ll -< lyl ds + ds, x e I compact c J

(see Brown and Hinton [5], with 9 instead of4 and X=
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If v b + a, u b a in (2.6), one gets, for x E L

b+a

2al[y’(x)[I < 211ylIl + It- xl dtlly"II[ <
,l b-a

-+- (a2 -t-- (x- b)2)lly"Ill

or

2
IlY’ (x)II - Ily"III + IlylIIo, x E I J. (2.8)

Case p cx: For compact intervals M, I with MC IC J and III < 6o,
(2.8) gives, on M

Since this holds for any such MC/, one gets, with e (1/2)C. IMI, and
now any compact interval Ic J

K
Ily’IIIo,w elly"Ill,w +- IlylIl,w, 0 < e < a, (2.9)

K= C2, a 1/2 C6, 6 := min(llI, +0), C+ < C arbitrary <
(2.10)

Case 1 <p < c" Since (u + v) p < 2p- (up + vp) for u, v _> 0, (2.7) implies
on I with H61der

wly’lp -< 2P-1 4PIII-v lyl ds + lY"I ds .sup w
I

_<2p-1 (4rill-2p f/[ylp suPi w ds+ 1" [ytt[p suPi wds)
IllP(-l/t’),
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f [y[Pwds< 2p-Ic[II (4Plll-P f [y[Pwds+lI[P fi [ynlPwds) (2.11)

provided 1I[ < 60; (2.11) holds also for p 1.
IfnowMis any compact interval in J, subdivide it into n intervals

of length IMl/n < 60. Adding the inequalities (2.11) for these I=/,
writing/instead ofM and using (u / v)TM < uTM + vTM, one gets

[ly,illp,w < 21-1/pc1/p I1 Ily"Zllp,w / 23-1/pc1/p n
[l[/n-- i/. lly’tllp,w (2.12)

Define

cr 2C1/p-,111 with n1 E 1I, Clq/n, _< 2C < (2.13)
ni

(C < c implies C< for any 0 < 6 < o, so everything above is
defined).

Then if 0 < e < r, there is rn > n1 with n/(m + 1) < e < nl/m, so
n rn + and Clll/n replaced by 2C in (2.12) yields

K
[[y’Illp,w < elly"Illp,w /- IlyIllp,w if 0 < e < r,

with

K=16C2/p 1/ <p<o. (2.14)

If one chooses ni with Ill/n < o, one gets (2.4) from (2.13) and (2.14),
resp. (2.10).

Special case w-- 1" Then 60 , C 1, nz= 1; tr III and K= 32 are
possible by (2.10), (2.13), (2.14) for <p< o, forp= even K= 8, and
K= forp o (see Remark 2.2(d)).

Proposition 2.1 yields, with 2C > Cmin(larl,60 >_ Cmin(ll,60) (no con-
tinuity of C6 in 6 is needed)

COROLLARY 2.5 InProposition2.1 onecanomitthelin(2.3), withK, crof
(2.10)/fp o, resp. (2.4), and III replaced by IJI (also if60 or IJI
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Special case [J] 60 c, i.e. w---- ----Ce: Then tr , so even N and
with Lemmas 1.11, 1.12 all N,, L are true, n > 2,
V= LP(J, X). For J= IR X optimal A A, m for L, have been
determined by Kolmogorov [16] for p , they are upper bounds for
the A,m by Stein [28, Theorem 2], for <p < z. However even for
monotone decreasing w the L is in general false by Example 1.13.

COROLLARY 2.6 For any interval J, 1 <p < cx, w as in Proposition 2.1 or

Remark 2.2(e), n >_ 2 and y c(n)(J, X), if y and y(,O belong to LPw :=

{f Bochner-Lebesgue measurable: J X II/llp,w <
LPw, 0<m<n.

Proof Corollary 2.5 and Lemma 1.10.

For X= C and w this has been shown by Halperin and Pitt [11,
Theorems and 3], p= o IJI already by Hardy and Littlewood [12,
p. 422, Theorem 3(a)], and Esclangon [7]. J I, <p < o, X C and
w can also be found in Stein [28, Theorem 3].

There are two ways of getting Landau inequalities from Proposition
2.1" either Nz=N=L, or Nz= Lz=L (Lemmas 1.10, 1.14, 1.5).
The second method gives nicer formulas, we prefer the first, it gives in

general better A,:

PROPOSITION 2.7 For J, p, w as in Proposition 2.1, n _> 2, and any
0 < 7" < o one has

n nmI[y(m)Zllp,w < An(-)llyZllp,w bm, 0 < rn < n (2.15)

for any y c(n)(J, X), I compact C J, 0 < I[y("l[p, w < b with 0 < b < o,

(llyI[lp,w/b) /"< -, (2.16)

/n(’r) (2n-4(4K)()+()n)nmax(()n, ()n(n-1)), (2.17)

/, ifl <p<,
withK= K(p,w,/)

4C. ifp , (2.18)
2C > C, 6 := min([I[, 0),

f C1/p6,
cr or(p, w, I) C,

if 1 <_ p < o, 6, C as in (2.18).
ifp z,

(2.19)
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Proof Sincewith V := LPw(I,X) ofCorollary2.6anyy E C(2)(I,X)with
y(J) E Vfor 0 < j_< 2 can be extended to an z C2)(J, X), Proposition 2.1
gives N2(K, or) for this V and lip, w restricted to/, with K, cr of (2.18),
(2.19). So Lemma 1.10 gives Nn, then Lemma 1.14 the Ln, with (2.15),
(2.16). Here (2.13), (2.14), for minimal niwith II[/nl < 6 and 2C > Ce one
gets 21II/ni >_ := min(lIl, 0) forp < o, i.e. (2.19).

COROLLARY 2.8 Ifo < o or IJI < , Proposition 2.7 remains true if
there everywhere I is replaced by J.

If ]JI and w 1, (2.15) holds with I= J and y as there, but with
7"- cxz (i.e. without (2.16)) and

n, ,n(O) n
n-1 2n-4(4K)()) n-1 1(2.20)K of (2.18), C .

Proof The first part follows as Corollary 2.5. For the second part one
can take 7" till with fixed (0, cxz); I Jgives then, for anyy as before
(2.16) and 0 o, inequality (2.15) without I (also if some terms are c,
with 0. := 0); instead ofAn(7") one gets, with suitable K’, A (K’ + Is)n

max(s,s-1), s:=(21/pt)n if p<oo resp. (2t)n ifp=. The minimum
with respect to s (0, o) gives (2.20).

Remark 2.9 (a) The variable in 7" in (2.16) gives less flexibility than
might appear: Ln(A0, 7"0) already implies Ln(A0. max(l, (7-/7-0)n(n- 1)), 7-)
for any 7- > 0.

(b) In Landau’s casep=, w-- 1, 7-= (1/2)1I[, X= It, for n=2 our

(2.17)-(2.19) give A2 4, which is optimal by Landau [20, Satz 2]; for
n> 3 our An are much smaller than the An- 2n2" of Landau [21,
Hilfssatz 3].

(c) Even for n 2, p c, w--1 Proposition 2.7 is more general
than Landau’s result: y"(t) need not exist everywhere, and in (2.15) and
I[y"I[[o _< b only the #L- sup is used.

(d) Corollary 2.8 says that Ln(A(7-), 7") is true for any J, 7- and [[p, w
with 60 < x or [J[ < o, and A(7-) independent of [J[ >_ 60; however
An(7-)-- cxz as IJI 0 as it should" Example 2.10.

(e) For [J[ =o and w_ 1, Corollary 2.8 gives even the strong
L(An()) with explicit A for [[p, <p _< (also "Special case" after
Corollary 2.5); for p=cxz one has A2(cxz)=4, which is optimal by
Matorin [24] for J-[0, o); for p- and J-IR, A- 2 is optimal by
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Hadamard and Kolmogorov, A for p 2 by Hardy-Littlewood-
Polya [25, p. 5]. More can be found in [10, 18, p. 229, 25, pp. 2-7, 28,
30, p. 4 and p. 9].
For increasing w, [J[ oe and <p < a strong L has been shown

by Goldstein-Kwong-Zettl [8, p. 23, 25, p. 37 (84.3)]; for w see [5,
18, p. 238 Theorem 4, 25, p. 51 no. 102]; for decreasing w this is false by
Example 1.13. See also Remarks 2.17(c) and (f), Corollaries 2.11, 2.19,
Examples 1.2, 2.3, 2.10.

(f) Proposition 2.7 and the first part of Corollary 2.8 hold also for
p and J, w as in Remark 2.2(e), with suitable A.

(g) If a strong L holds for J and the seminorm (as in (e)), then
for non-negative integer m the L, is also true (with the same A) for the
seminorm Ilflltml := "=0 Ilf(ll (H61der, p=n/(n-k)); special cases
have been treated by Upton [30]. The same holds for the later
asymptotic L of Proposition 2.16.

Example 2.10 For no n >_ 2, 1 <_ p <_ oe and fixed A, - a Ln(A, -) holds
for arbitrary J: J-- [0, e], y (+r/sin t) if n 2.

For applications to differential equations, we need asymptotic Landau
inequalities; under additional assumptions one gets one already from
Proposition 2.7"

COROLLARY 2.11 ForJ,p, w, nasinProposition2.1 orRemark2.9(f),to
each y E c(n)(J, X) with Ilyllp, w < o andy(n) 0 there exist A(y) < x and
a compact I(y) such that

Ily(m) I[[np,w <_ A(y) llylllp,w I(y) CICJ, 0<m<n.

If IJI- and w =_ 1, then [lylIIp-O(111") suffices for (2.21); /f even

IlylIIp-o(lll), then any A(y)> An(O) of (2.20) is possible in (2.21),
independent ofy.

This follows from Proposition 2.7 with (y)=(llYllp, w/bo)TM with

bo Ily()I(y)llp, w > 0 for some compact I(y), 0 < 0 < II(y)l.
If 1 <p < , one gets e.g.

A(y) n-4(4K)() + .max(s, sn-1), with s >_ s(y):=
6oCfp j
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with K of (2.18) with C Co/2. This works also in the case I[yI[I
O([I[n), 0 c. For the case o(1I[n) one can argue as in the proof of the
second part of Corollary 2.8.
The last statement ofCorollary 2.11 follows forp also (except for

the explicit An(c)) from results of Gorny [9, 25, p. 7], or Redheffer and
Walter [27].

For fE Lfoc (J, X) and w as before (2.1) the weighted Stepanoff
norm is defined by

[[f[lSw := sup{[lfI[Ip,w: [I[ 1, interval I c J), _< p < cx. (2.22)
This definition and the above results yield

COROLLARY 2.12 If [J[ o and <_p < c, then Corollary 2.5,
Corollary 2.6 and Proposition 2.7 (with [I[ in (2.4), (2.10), (2.13),
(2.18)) hold alsofor [[Sw instead of[[ [[p,w (also in (2.16)).

A strong Landau inequality L for Stepanoff-norms can be found in
Upton [30], for J-, X C, w 1.

COROLLARY 2.13 ForJ= [a, o) resp. I, <p < o, w as in Proposition
2.1, to y c(n)(J, X) with y(n) 0 and Stepanoff-norm Ilyllsw. < o, there
exist A(y) < o and a compact interval I(y) c Jsuch that

Ily(mIllnsw < A(y)llylllnswmlly(Ills, I(y) C I C J, 0 < m < n. (2.23)

Proof By assumption there is to with b0 := Ily(Iollsw > o, I:=
It, t/ 1], so Ily(IIIs >_ bo if I D Ito =: I(y). Furthermore IlyI, IIp,w <_
Ilyllsw -: ao < o for any J. With b(t):= max(llY(Illp, w, bo) one has
(llyIllp, w/b(t))TM <_ (ao/bo)TM =: ro for any J.

nSo Proposition 2.7 gives, with 6 := min(1, 6o), Ily(mlItllp,w <_ An(r0)
n-m n-m rnIlyltllp,w b(t)m <_ An(ro)llyll[s max(lly(n)lllsg,bU) for any J, It c I.

ForI(y) c Ithis yields (2.23), with A(y) A(r0) onlydependingon r0,p, 6.

LEMMA 2.14 If l_<p_<, w’J(0, o) with w(s)>w(t) if s<t,
J= [a,/3), y C(2)(J, X), yj(x):= ]]y(J)[a, x][]p, w for x J, and Y2 0,
one hasfor o

(2p) -1/p, if 1 < p < o,
[[y’(a)[lw(o) ifp (2.24)lim

yo(x) < + 2y2(c)x-oo x2y2 (X) , ifp= O.

If < 0, at least limxYo/Y2 <_ X X(P, IJ[, w, y) < 0.
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Proof Since w and Y2 are monotone, the limits w()>_0 and
0 < y2(c) _< o are defined. We prove only the case w needed below.

Ifp < o, to e > 0 there is C ( 2((1 + E)1/p- 1) -p) with

(U "-[- V)p (1 + )Up -[- Cvp, u, v [0,

This and (2.5) with x a yields, with A "= [[y(a)[[, B := [[y’(a)[[

(fax )P[ly(x)[[p <_ C(A / (x )B)p + (1 / e)(x )P [y"[dt

<_ C(A + (x a)B)p -+- (1 -+- e)(x o)p+p/q [y"lp at. (2.26)

Integrating, one gets for x E J and _< p < oe

(l+e)
1/p

yo(x) <_ C1/p(A + (x a)B)(x 0) 1/p -k-
2p

(x

(2.27)
Since e is arbitrary, one gets (2.24) forp <
p c has been shown in [3, (2.13)].
If/3 < oc, (2.27) resp. (2.26) gives at least lim yo/y2 <

Remark 2.15 (a) At least for p= and the constants "1/2" in
(2.24) cannot be improved; see also (2.13) in [3].

(b) Lemma 2.14 becomes false for increasing w, any p (see Remark
2.17(e)).

(c) For J=N one can show that (2.24) still is true, with a 0 and
yj(x) := Ily([ -x, x]llp, w.

(d) For Stepanoff-norms one has li----yo(x)/(x2y2(x))< 1/2 for
<p < oe, w as in Lemma 2.14, with Ix :=[a,x] resp. [-x,x] and

y(x) := Ily(;llxltsw.
PROPOSIrIOY 2.16 If J=[a, fl], n>2, <p<oe, yEC(’O(J,X) with

0, :- x]llp, > 0, there exist X,y J with

ym(X)n <_ (A -+- -C)yo(x)n-my2(x)m, Xe,y _< x < 3, 0 < m < n. (2.28)

Herefor oe

an(p) (2.29)
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9
,2(p) 32:() ,

for <p<oe,

,2(1) (64(1 + A(y)))2/A(y),
4(y) :- 2 / 21ly’(c)ll/y2(c).

+() 1/(2P))
2

(2.30)

For /3< oe one has (2.28) only with some ,= ,(n,p, IJI,y(a),y’(a),
y2(cxz)) < oe, <p < oe.

The proof follows for n 2 from Proposition 2.7 with w 1, C 1/2,
60=oe, I=[c,x], r=(1/2)l/plI resp. (1/2)1II, b-y2(x), using

v/x(p) / 1II with X(P) right-hand side of (2.24) if/3 ee, > 0;
by the assumptions, y2(oe) is defined E (0, oe]; for IJI < oc, - x/ / w
independent of L III >_ x,y > 0 gives , < cx. Lemma 1.3 gives the
general case.

Remark 2.17 (a) Proposition 2.16 says that for unbounded J and
V= L’(J, X) with <p < an asymptotic Landau inequality L is
true. Forp- this generalizes Lemma 2.5 of[3]. Forp= or bounded
J only a "pointwise La’’ holds, the , depends on y; in all these cases
exist y E C with arbitrarily large ,. These examples and Corollary 2.8
show also that L = L is false for p 1, J[ cxz, n 2.

(b) (2.30) yields Az(I+) 14421-< A2(p) < A2(cx>-) 33z for <p < oe.
(c) Corollary 2.11 gives more general (pointwise) asymptotic

Landau inequalities if y is bounded in some way; for example if
yo(x) o(x) in Proposition 2.16, then A A,(oe) of (2.20) is possible in
(2.28), which is in general better than the A of (2.29). See Remarks 2.9
and after (1.8), and (1.7).

(d) Proposition 2.16 and the remarks hold also for J= IR with e.g.
yj(x) := Ily(J[-x,x]llp, and the same ,,(p) if <p< oe. This, (a), (1.7)
and Lemma 1.4 give again L (for 1 <p < oe) of Remark 2.9(e).

(e) In all four cases J bounded or unbounded and w decreasing or
increasing, there exist w and y showing that for no , < and no p an
asymptotic Landau inequality L is true for V LPw(J, IR).

(f) The examples (e) show also that for no , and p a strong Landau
inequality L holds for general I1, w, except in the case IJI- and w
increasing (the y(J) of (e) are LPw; except: [8], Remark 2.9(e)).
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For the following Halperin-Pitt inequality we assume:
Jinterval C , VK-vectorspace C Xswith monotone seminorm II, i.e.
Ilfl[-< Ilgll iff, g Vwith Ifl-< Ig[, and with lIE Vfor/compact interval

Iili[1 0 as III --+ 0, (2.31)

c f/Ifl dx IlflII iffI V L 0 < C independent off, L

(2.32)

PROPOSITION 2.18 For J, V, 1111 as above and 0 < r < there exists
S: (0, ) (0, cxz) such thatfor any compact interval Ic Jwith III >_ r and
y E C(2)(J, X) with y(J)] V, 0 <j< 2 (see (0.3)), compact c J, one has

Ily’III lly"III + s()llylII, 0 < < o, III r. (2.33)

Proof To e > 0 choose 6 with II1Mll _<C if [M < 6, M compact
interval C J, then n minimal Nwith III/n < 6 := min(6, r), and compact
intervals/, with I/.1- III/n, I- I. With (2.7) one gets for y C(2)(J, X)
with y(J)7 V

< Cley( [y"[dx+4(lI[/n)- [y[ dx)
< Cle(f/ly"[dx+4(’/2)-fi

with

s() :=
16e

with MII < C if IMI <
(min(6, r))2’ (2.34)

M compact interval C J.

Special case V= LI" Then one gets Proposition 2.1, p 1, w 1, with
K= 16, or= r 111.

COROLLARY 2.19 Proposition 2.18 holdsfor lip, w, <p < c and the
weightfunction wsatisfying infjw > Oandw integrable over J, with IJI < .
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Proposition 2.18 can be applied to Orlicz-norms (see [17,23,31]): A
if’[0, o) [0, o] will be called an Orlicz-function (OF) iff ,I(0)=0,
(b 0, ff

_
x on (0, o), and (b is convex. Then for a measure space

(Y, f, #), L(#,X)"= {f: YX] f Bochner # measurable,
fb(tlf]) d# < 1 for some E (0, o)}, Orlicz-Luxenburg norm

[Iflie := inf{s > 0: f,b([f[/s) d# _< 1}.
For OF , L is a K-vectorspace and [[ a monotone seminorm on

Le, with [[f[le =0 ifff= 0 #-a.e. For any OF I,, O(t)’= sup{st- (t)"
0 < s <} defines a "conjugate" OF such that for fE Le(#, X), g E
L(, K) one hasfg E Ll(/z, J() (usual L1) and fr [fgl d# <_ 21[fllllg[l.
For Y= interval Jc JR, f2 Lebesgue measurable sets c J and

# Lebesgue measure #L we write L L(J, X) := L(#z J, X), then
0 < [[1J[] < o if 0 < [JI < c, so (2.32) holds with C 1/(2[]lJ[[).
(2.31) is true if I,(t) < o for 0 < < :

COROLLARY 2.20 Ife is an OFwith e(t) < ofor0 < < c and [J] < c,
then Proposition 2.18 is truefor [[, V= L(J, X).

Question: Is such an asymptotic Halperin-Pitt inequality also true for
J]-- o? By Ha Huy Bang [10] at least a strong Landau inequality holds
for J Ii, X= C and Orlicz-norms.

ESCLANGON-LANDAU THEOREMS FOR
NEUTRAL SYSTEMS

In the following, we consider neutral delay differential-difference
systems

n rn

ajk(t)y(k)(t- tj) =f(t); (3.1)
k=0

here n>_ 1, m>_ 1, J= [a,3) with -c < a < _< o, tl =0 < tj<_ 7" < O
for <j< m, J’ [a 7-,/), f: J X Banach space over K, ajk" J
L(X) := {continuous linear operators" X X} with operator norm. tj
are not more general.
y is called a solution of (3.1) on J ify C(")(J’, X) and (3.1) holds a.e.

on J, with y() of (0.5).
Systems of such equations are included: aj= r x r-matrix (aj,0,

y column vector (yl,..., y,).
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Furthermore we assume that V is a K-linear space C XJ with
monotone seminorm satisfying

f,g E V, If[ Igl a.e. implies [Ifll Ilg[I, (3.2)

there is Dr < o with ]lgtIl] D.llgItll for 0 _< < r, I compact (3.3)
interval with L It c J and g- J’ X with gtI J and glt J V,

where gt(s) := g(s t), It := {s t: s /}.

THEOREM 3.1 Assume m,n, tj, J,X, V, as above with (3.2), (3.3);
assumefurther that the coefficients ajk in (3.1) are bounded on J, with

m

O- sup lanl < 1, aln 1. (3.4)
J

Assumefinally that a pointwise asymptotic Halperin-Pitt inequality I-12a
holds for V, (Definition 1.16). If then y is a solution of (3.1) on J,
with fI, ylk )II J Vfor all compact intervals Ic J, 0 < k < n, <j< m,
such that IlfIll and Ily,rlJII are O(t(x)) for x/ with some non-

decreasing t > Ofor Ix [a, x], then also Ily()I JII o((x)), 0 < k_< n.

Proof With (3.2) and Ilgll <-IIh[[--I[(Ihl)ll if Igl <-Ihl on J, g, h e V one

gets for a < x < fl, if Ila2k(t)ll <_ 4 for E J (measurability of the ajk is not

needed)

(y(n)ix) Jll fix ajnYl -+- EE tJkYtj-
() Ix J

j=2 k=0 j=l

m

< K1 (x) + j=2 supj lag[" [[yl.)I [Jl[

+ mnAmax{[[Ylk)Ix [Jtl" 1 <j < m, 1 < k < n}.

(3.3) and the monotonicity of give, for <j< m, 0 < k < n

II(ylk)I)lJII <_ II(ylk)[c, a / r])I Jll / Oll(Y(k)I)lJl[.
So if all (ylff) [a, / r]) 11 _< B, < o by assumption, with suitable
one gets for x E J

I[(Y(n)lx) J[[ <-Klt(x) + (2 sup lajn[) (B + Dr[l(Y(n)lx)

+ mnA(B + max{ll(y(kllx)[J[[ 0 < k < n)).
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By assumption 2r/’= Dr -n supj [anl > 0, one has for x E J

2[l(y(n)Ix) I111 m(n + 1)AB + Klq(x) + mnAmax II(y(Ix) Jll
k<n

(3.5)

/’2a and Lemma 1.19 imply/-/na, SO to the given y there exist c(y)E J
and S’(0,) [1, z) with

II(y(k/I) IJll l[(y(/I)IJll + s()ll(yI)[JII,
c(y)<x</3, 0<k<n, 0<e.

Choosing e rl/(mnA), (3.5) yields

II(y(Zx) rll m(n + 1)AB + KI g(x) + mnA S()II(YZx) JII,
c(y) < x < .

Since by assumption II(yI)IJl[-O((x)) and is non-decreasing
> (a) > 0, one gets with suitable K2 <

II(y("I)lJ[I K2(x), x J.

/’/na gives the same for y(k), 0 < k < n.

COROLLARY 3.2 Theorem 3.1 holds in the following cases, with
m, n, J, tj, X, (3.1), (3.4) as there

(a) lip, w of (2.2), <p < cx, w as in Proposition 2.1, and only
(yI)Io)[JV=LPw(J,X); here D=C of (2.1), Io=[a,a+
min2 _<j t] resp. .

(b) Stepanoff-norm Ilsw. of(2.22), _< p < ,j= [, ), wandD
as in (a).

(c) as in Proposition2.18 with (3.3); specialcase: Orlicz-norm I1 with
Lebesgue measure as in Corollary 2.20, IJI < c. (Then Dr= in

(3.4).)
(d) lion,w, w decreasing, (3.4) with D. 1.
(e) J= IR and m= 1, with Ix=[-x,x] (all t=0, ordinary differential

system (3.1), so Dr in (3.4)); especially for seminorms as in (a)
and (b).
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COROLLARY 3.3 With m, n, tj, J, X, (3.1), (3.4) as in Theorem 3.1 andy
a solution of (3.1) on J with yn) l[a r, a] Lp, iff and y lJ V
LPw(J,X), then also y(k)lJV, O<k<_n, with p,w as in Corollary
3.2(a). A corresponding result holds for V {g" J- X
Bochner-Lebesgue measurable" Ilgllsw ) (as in CoroZary 3.2(b),
resp. Orlicz-space L(J, X) with IJI < o (Corollary 3.2(c)), resp. J-
etc. as in Corollary 3.2(e).

Proof of Corollary 3.2(a)

(a) Since in Proposition 2.1 the K and cr are independent of Ic J with

III _> some 60 > 0 (and of y), one has even an asymptotic N and
therefore H. For (3.3), (3.4) one can use D C defined by (2.1),
< o if some C < o. Since the y(k) are continuous for 0 < k < n,
automatically all these (ylk)I)lJ LPw or equivalently Lp (w and
1/w are locally bounded); for p= also (yl)/)IJ LPw by the
definition (0.4) of C)(J, X).

(b) Follows as (a) with Corollary 2.12, case Corollary 2.5, for IISw and
I=Ix, a+ <_x < o.

(c) Proposition 2.18 gives an asymptotic Halperin-Pitt inequality H
since in (2.33/34) the S(e) does not depend on I (and y); this implies
the pointwise/-P2a. H holds especially for Orlicz-norms I1 by
Corollary 2.20, here the definition of 111] gives equality in (3.3) with
/)r= 1o

(d) Remark 2.2(e); (3.3) holds with Dr since w is decreasing.
(e) Use the transformation -t, J= [0, o), in (a)-(d).
For Corollary 3.3, (y(n)[a, a + kp]) J Lew follows by induction on k

with (3.1) if p := min{t2,..., tm} > 0; if V= Orlicz-space L and m > 1,
the starting assumption needed is (yl) [a, a + p]) J L for 2 <j _< m.

Remark 3.4

(a) The special case p=z, m-1, w 1, X--IR is the classical
Esclangon-Landau theorem of [21, Satz 1]; in [3] this has been
extended to m > 1 and general X.

(b) Without (3.4) Theorem 3.1 and the corollaries are in general false:
Example 5.3 and Remarks 5.8 in [3].

(c) al,= in (3.4) can be replaced by "al, uniformly invertible", i.e.
][aln(t)vl[ >_ r/ollVl] for v E X, E J, with some r/o > 0, and Dr/rio in (3.4)
instead of
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(d) Usually the condition "ylk)I[ J E V for all j, k, compact I" can be
weakened to (yl. )[a, a + p])[J E V, p= min{t2, tm},So form=
(or V Llw) it can be omitted entirely: see Corollaries 3.2(a), 3.3.

(e) Corollaries 3.2 and 3.3 are even for bounded J (and m 1, X=
non-trivial if p < o. For p= o see Remark 2.9(b) of [3]; then
essentially w-- by Remark 2.2(c) here, except in Corollary 3.2(d).

(f) Forp o one can admit arbitrary variable tj" J [0, 7-] in corollary
3.2(a) and (d), provided y(n) is continuous.

(g) For decreasing w as in Corollary 3.2(d) and <p < cx, one can get at
least the boundedness of w(x). f [y(k)Ip dt, 0 < k < n, if [lylxlJl[p, w
and IIflxllp, are bounded" w- 1/p, lip in Theorem 3.1.

(h) In Theorem 3.1 one can also use Ilgl[ f Ilgllp d(p), # Borel
measure on [1, o) with e.g. compact support.

(i) An analogue, where "bounded" is replaced by "uniformly contin-
uous", can be found in [3, Corollary 3.3(a), Theorem 4.1].

Example 3.5 By glueing together fn as in example 2.4, to any -o <
a </3 _< o one can constructf C2(]1, ) and a monotone norm on the
piecewise continuous bounded functions: J--, IR with (1.8), such that
[[f[I < 1, [If"[] < 1, but [If’I[[o as/compact J=[a,/3), andf--0
on some [a, a + e].
Complementing example 2.4, this shows that here the pointwise

asymptoticLa, Na and even Sa are false. It shows further that already
for the equation y" =f Theorem 3.1 becomes false without Sa.
With an asymptotic Landau inequality one gets Esclangon-Landau

results even for some non-linear functional differential equations/
inequalities of Landau type [21, p. 179]:

In the following we assume m, n, tj, J, X, V, with (3.2), (3.3) and aj
with (3.4) as in Theorem 3.1, y C)(J’, X), ytj(t):--y(t-tj), all
(yl)llJ V for compact Ic J, < j < m, 0 < k < n, with y 0 on I if
IlyllJII 0. Then calculations similar as for Theorem 3.1 yield

PROPOSITION 3.6 Ifa.e. on J
m

’a(t)yl)(t) F(t,...,ylk) [a, t],...), (3.6)
j=l

if with finitely many constant real c7 > 0, 7=(’Yj, k) multiindex with
<_j <_ m, 0 <_ k <_ n and "Yjk IR one has (with 0 := 1)for all compact
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intervals IC J

7 j,k

(3.7)

where n j, k k’Tjk > e > 0 ifc. O, and ifapointwise asymptotic Landau
inequality La holds for V, II, then as x, Ok<_n, with
6 := max{_., k (n k)’jk: c. 0}, Ix [a,x]

II(ylklI) JII O(ll(yIx) JIIl/k(la/l-I1/nll). (3.8)

This can be applied to systems (3.6) withy column vector (Yl, Yr)
with values in Xr, ajn matrix valued with components an, uv(t)E L(X),
with aln unit matrix, X’= Banach algebra, ,), (’Yku) with "Yku integers
> 0, and the vth component of F a polynomial with boundet a.,v of
the form

(3.9)

with n- _,j’,k, uk’Yjku _> e0 > 0 for all "y with some a.,v 0: With It-
I1 L supsandX instead ofXin Proposition 3.6, withProposition

2.16 one gets an extension of Theorem 2.8 of [3].
Another application is p 1, II II 1, X C (or Banach algebra), F as in

(3.9) and the products in I-Iyu being convolution (a 0)

fof, g) t) := f(s)g( s) ds, > 0;

then (3.7) follows with II(f* g)II[1 -< IIflIl- IIglII , La holds by Proposi-
tion 2.16.

Let as finally remark also additional terms/variables of the form
_hg(S)ds or sup[,_,,lg, with g=ylk or [ylk)[ and O<h<-, are
possible, since

fE LP(IR, X), < p < , 0<h<cx.

(3.10)

(Almost) Periodic solutions of such equations have been considered in
Bantsur and Trofimchuk [1] and the references there.
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