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Let (Ey, E;) and (Fy, F;) be two Banach couples and let T': Ey+ E; — Fy+ F; be a contin-
uous map such that T: Ey— Fy is a Lipschitz compact operator and T: E; — F) is a
Lipschitz operator. We prove that if T': E; — F) is also compact or E; is continuously
embedded in Ey or F is continuously embedded in Fy, then 7': (Eq, E1)g, — (Fo, F1)g 4is also
acompact operator when 1 < g < ooand 0 < § < 1. We also investigate the behaviour of the
measure of non-compactness under real interpolation and obtain best possible compact-
ness results of Lions—Peetre type for non-linear operators. A two-sided compactness result
for linear operators is also obtained for an arbitrary interpolation method when an
approximation hypothesis on the Banach couple (Fy, F;) is imposed.
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1 INTRODUCTION

In 1960 Krasnoselskii [18] proved the following theorem:if 7" : L,, — Ly,
is a compact linear operator, T': L, — L, isa bounded linear operator,
1 <po,p1,91 <oo and 1< gg<oo, then T:L,— L, is also a compact
linear operator where 1/p = (1 —6)/po+ 0/p1, 1/g= (1 — 0)/q0 + 0/q, and
0<o<1.
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228 AJ.G. BENTO

With the development of the abstract interpolation theory,
Krasnoselskii’s theorem leads to the question if the result is also true
if we replace the Banach couples (L,,, L,,) and (L, L,,) by general
Banach couples (Ey, E;) and (Fy, Fy).

The first abstract results were obtained in 1964 by Lions and Peetre
[19] for the case Ey = E; or Fy=F; and by Persson [22] for Ey# E; and
Fy+# Fy but with an approximation hypothesis on the Banach couple
(Fy, Fy), corresponding to go < oo in Krasnoselskii’s result.

In 1969 Hayakawa [17] proved a general result for the real method
without any approximation property. However it was necessary to
impose an additional condition: both operators T:Ey— F, and
T:E,— F, are compact.

The paper by Cobos et al. [7] opened a new era in the research of this
problem. After that there were several papers dealing with the same
subject (see [4,5,8,12,13]).

In 1992 Cwikel [14] (see also [10]) showed that if T: Ey— Fy is a
compact linear operator and if T': E; — F) is a bounded linear operator,
then T:(Ey, E1)gq— (Fo,F1)o, is also a compact linear operator,
(Eo, E1)e,q and (Fy, F)g 4 being the real interpolation spaces.

Related with this work is the behaviour under interpolation of the
measure of non-compactness. The first results in this direction were
obtained by Edmunds and Teixeira [16]. Their results are the analogues
of the results of Lions—Peetre and that of Persson.

Recently, Cobos et al. [9] proved, for the real interpolation method, a
logarithmic-convex inequality for the measure of non-compactness.

Using measures of non-compactness, Cobos et al. [6] obtained optimal
compactness results of Lions—Peetre type for linear operators.

The behaviour of compact non-linear operators under interpo-
lation did not receive much attention. The only paper dealing with
this case of which we are aware is that of Cobos [5] where it is
shown that the results of Lions and Peetre are also valid for Lipschitz
operators.

In this paper we generalise some of the results proved by Cobos et al.
[6,11] for non-linear operators.

We also prove that if (Ey, E1) and (Fy, F) are two Banach couples and
T:Ey+ E; — Fy+ F; is a continuous map such that 7T: Ey— F, is a
Lipschitz compact operator and T': E; — F; isa Lipschitz operator, then
T:(Ey, E1)g,q — (Fo, F1)g 4is also compact when T': E; — F iscompact or
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E, is continuously embedded in Ey or F; is continuously embedded in Fy,
with1<g<ooand0<f< 1.

We close the paper with a two-sided compactness result for an arbi-
trary interpolation method. For this we need to impose an approxi-
mation property in the Banach couple (Fy, F;). This approximation
property is of the same kind as that required by Persson, but is a little
stronger.

2 PRELIMINARIES

We start by recalling some notions of interpolation theory. The standard
references are [1,2,23]. A pair E = (Eq, E;) of Banach spaces Ey and E;
is called a Banach couple if E, and E; are continuously embedded in
some Hausdorff topological vector space. Then Ep = Ey N Ej and Ex, =
E\ + E) are Banach spaces with the norms

Ixllz, = max{]|x|g,, x|l }
and
llxll g, = inf{[|xoll 5, + Ix1l g2 x = X0 + X1, X; € Ej, i =0, 1},

respectively.
For each ¢ > 0, we define

J(t,x) = J(t, x, E) = max{||x|| g, {]I ]| g, }.

for every x € Ep and

K(t,x) = K(t,x,E)
= inf{||x0||EO + t”X] ”E.: XxX=Xxo+x1,x€E;,i=0, 1},
for every x € Ex. Then {K(z,-): t >0} and {J (¢, -): ¢ > 0} are families of
equivalent norms in Ex and E, respectively.

A Banach space E is said to be intermediate with respect to a Banach
couple E = (Ey, Ey) if

En— E— Ey,
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where < means continuous inclusion. To each intermediate space E,
there are two other intermediate spaces related with E. The first is the
closure of EgN E; in E. This space is called the clintersect of £ and is
denoted by E°. The second is the space of all x € Eq + E; for which there is
a sequence (X,)nen in some bounded set of E which converges to x in Ex,.
This space is denoted by E~ and is called the Gagliardo completion of E.
It is normed by

||x|| g~ = inf{sup{||xx||z: n € N}: x, converges to x in Ex}.

If E is an intermediate space with respect to E = (Eq, E;), then for
each 1 > 0 we set

U(t) = (1, E, E) = sup{K(t, x): ||x||; = 1}
and
p(t) = p(t, E,E) = inf{J(t,x): x € EyNEy, ||x||p = 1}.

It is easy to prove that () and p(7) are strictly positive and non-
decreasing, while v(¢)/t and p(#)/t are non-increasing.

An intermediate space E with respect to E = (Ep, E}) is said to be of
class €k (0, E ) (resp. %,(6, E ))if there is a constant Csuch that 4(¢) < Ct°
(resp. p(1) > C1%) for every 1 > 0.

Let F = (Fy, F) beanother Banach couple. We denote by £(E, F) the
class of all linear operators T': Ey+ E; — Fy + F such that the restriction
of T to E; is a bounded operator from E; into F;, i=0, 1. The space
#(E, F) is a Banach space with the norm

TNz p = max{|I Tl g, o I T Ml i }-

The class of all continuous maps 7T': Ex,— F; such that the restriction
of T to E; is a continuous map from E; into F;, i=0, 1, will be denoted
by €(E,F).If Ey=E,=E or Fy=F,=F, then we write Z(E, F) and
%(E, F) or, respectively, Z(E, F) and ¢(E, F).

An intermediate space E with respect to E = (Ey, E1) is an interpola-
tion spaceif forevery T € Z(E, E), the restriction of T'to Eisa bounded
operator from E into itself. There is a constant C such that for every
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operator T € Z(E,E),
ITllge < ClT gz (2.1)

An intermediate space E with respect to E = (Ep, Ey) is a rank-one
interpolation space or r.o. interpolation space if inequality (2.1) is
verified for operators of rank one.

Aninterpolation method is a functor ® that associates to every Banach
couple E = (Ey, Ey) an intermediate space Es = (Ey, E1)5 With respect
to Ein such a way that given any other Banach couple F = (Fy, F;) and
any operator T € #(E, F), the restriction of T to Eg is a bounded
operator from Eg into Fs.

Using the closed-graph theorem it can be proved that there exists a
constant C such that for every operator T € #(E, F),

I Tz pe < CUNT |l - (2.2)

One of the most important interpolation methods is that of real
interpolation. Let 0 < # < 1 and 1 < ¢ < oco. The real interpolation space
Egq = (Eo, Ey )0’ 7 (realised asa K-space)is the collection of all x € Ey + E,
for which the value of

00 - 1 .
Iz, = { (Cmemoo (2K, x))") " if g < oo,
. =
" SUP ez 2K (2", x) if g =00

is finite.
Let F = (Fy, F1) be another Banach couple. It is a well known fact that

ifTe L(E,F),thenT € £L(Egq, Fyq) and
1T llg < 20Tl I3,

where ||T|loq [|T|lo and ||T||; are the norms of the operators
T: Egy — Fyq, T: Eg— Fyand T: E; — F), respectively.

It was proved by Cobos in [5] thatif T € ¥(E, F) and T: Ey — F, and
T: E, — F; are Lipschitz operators, then, for g < oo, the restriction of
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T'to Ey, is a Lipschitz operator from Ejy , into Fy,. Moreover,

1T llgq < 2°UT N5~ NTIIS-
Here we denote the Lipschitz constant of an operator T by ||T'||. In fact
the Lipschitz constant is not a norm but only a semi-norm.

Let M be a bounded subset of a Banach space E. The nth entropy
number, £,(M ), of M and the nth inner entropy number, (M ), of M are
defined by

i=1

n
sf(M)=a,,(M):inf{s>O: MQU{y;+6UE},y1,...,y,,€E}

and

@nE(M) = ou(M)
=sup{p>0:3xy,...,x, € M, p>n, ||x; — x|| > 2p, i #j},

respectively, where U is the closed unit ball of E. The inner entropy
numbers and the entropy numbers are related by the following inequal-
ities (see [3] pp. 7-98):

on(M) < (M) < 20(M). (23)
The measure of non-compactness, (M ), of M is defined by

Be(M) = B(M) = lim £,(M).

n—0o0

Let us list some elementary properties of the measure of non-
compactness of a set (see [15] pp. 13—15):

(1) B(M)=0if, and only if, M is precompact;
(i) if M C N, then B(M )< B(N);
(iii) B(ci(M))= (M), where cl(M ) is the closure of M,
(iv) S(MUN)=max{B(M), B(N)};
(V) B(M+N)<BM)+B(N);
(vi) B(co(M))=B(M), where co(M ) is the convex hull of M.
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Let E and F be two Banach spaces and let 7': E— F be a continuous
map. If for every bounded subset M C E, T (M ) is a bounded subset of F
and there is a constant k > 0 such that

B(T(M)) < kB(M ),

for every bounded subset M C E, then T is called a k-ball-contraction.
The (ball) measure of non-compactness, 3(T'), of T is defined by

Ber(T) = B(T) = inf{k: T is a k-ball-contraction}.

Wesay that T'is compact if T (M )isrelatively compact for every bounded
subset M C E.

The measure of non-compactness of an operator has the following
properties (see [15] p. 17):

(i) B(T)=0if, and only if, T is compact;
(ii) if Tis a Lipschitz operator, then 8(T) < || T|;
(i) B(T1+ T2) < B(T) + B(T);
(iv) B(RS) < B(R)B(S);
W) B(T)=B(T(Ug), T € Z(E,F).

Nussbaum [21] proved thatif T € Z(E,E) and re(T) = rE(T) is the
radius of the essential spectrum, then

re(T) = lim §V"(T").

Let E = (Ey, E1) and F = (Fy, F;) be two Banach couples and let
T € Z(E,F). In[9]itis proved that there is a constant C, independent
of the spaces and the operator, such that

Baq(T) < CB(T)BI(T),

where 8y (T), Bo(T') and 3,(T') are the measures of non-compactness of
the operators T': Eg, — Fpq, T: Eg— Fyand T: E; — F, respectively.

The following two Theorems will prove to be useful in the next
sections.
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THEOREM 2.1 Let E and F be two Banach spaces and let T: E— F be a
ball-contraction. Then

B(T) = sup{ﬂ(T({x +rUs})) 1X€E, r> 0}.

r

Proof 1If Ehas finite dimension, there is nothing to prove. Suppose that
E has infinite dimension. Then

A(T) = sup{ﬁ—(ﬂ—T(f‘—;‘%ﬁ: B(M) # 0}.

Since B({x + rUg}) = r when dim E = oo, we have

B(T ({x + rUx}))

r

B(T)Zsup{ :er,r>0}.

Let M be a bounded set of E and suppose that o= 8(M) > 0. Then for
every € > 0 there exist yy, ..., y, € E such that

MC O{yi + (o +¢)Ug}.
i=1
It follows that
T00) € UT i+ o+ 0D
and, consequently,
BT (M) < max BT ({3i+ (o+ ) U})).
Therefore

B(T (M)) < max BT({yi+ (c+e)Ug}))o+e

B(M) 1<i<n o+e o

B

and the theorem is proved.
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THEOREM 2.2 Let E and F be two Banach spaces and let T: E— F be a
ball-contraction. If Ey is a vector subspace dense in E, then
T E
B(T) = sup{ﬂ( (x+rUsbn 0)): xeEyr> 0}.

r

Proof Let {a+rUg} be a closed ball in E. Since E; is dense in E it
follows that cl({a+rUgtNEy)={a+rUg and, consequently,
THa+rUgtNE) CTHa+rUg))CcT({a+rUgNEy). By the
properties of the measure of non-compactness it follows that
B(T({a+rUg}))=B(T({a+rUg} N Ey)). By Theorem 2.1 we get

/B(T({a + VUE} N E()))

B(T):sup{ :aEE,r>0}.

On the other hand, for every &>0, there exists x € Ey such that
lx —a|| <e.Hence T({a+rUg}) C T({x+ (r+¢)Ug}) and

B(T({a+rUg} N E)) < B(T{x+ (r+e)Ug}NEy))r+ e
r - r—+e r

Therefore

B(T ({x + rUg} N K))

B(T) zsup{ : x € Ey, r>0}

and the proof is finished.

3 BEST POSSIBLE COMPACTNESS RESULTS OF
LIONS—-PEETRE TYPE: THE NON-LINEAR CASE

In 1964 Lions and Peetre [19] proved the following theorem:

THEOREM Let (Ey, E,) and (Fy, F1) be two Banach couples and let
T € £(E, F) be an operator such that T: E; — F is compact.

() If Fy=F,=F and E is a space of class €x(0,E), then T:E—F is
compact.

(ii) If Ey=E,=E and F is a space of class €;(0,F), then T: E— F is
compact.
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In [20] Mastyto noticed that this theorem is also valid under weaker
conditions. Namely, if we substitute the hypothesis Eis of class €x(6, E)
by lim,_o (¢, E, E) = 0 and replace the assumption that F is of class
%;(0, F) by lim,_«, p(t, F, F) = oo the result still holds. The result s also
true if T': Ey — Fy is also compact. After that, Cobos et al. [6], using the
(ball) measure of non-compactness, proved that these hypotheses are
also necessary in a great number of cases.

In this section we prove that the results in Cobos et al. [6] still hold for
non-linear operators.

THEOREM 3.1 Let E = (Ey, E1) be a Banack: couple, let E be an interme-
diate space with respect to E such that EyN E; is dense in E and let F be
another Banach space. If T € 4(E, F) is an operator such that T: Ey— F
and T: Ey — F are Lipschitz operators, then T: E— F is also a Lipschitz
operator. Furthermore,

() if B, #(T) =0, then B p(T) < ||T g, p - limyoo (1, E, E) /15
(i) 7' BE, r(T) = 0, then Be,p(T) < ([T | g, p - limo ¥(1, E, E);
(iii) if B, F(T) # 0, =0, 1, then

BEF(T) < By, r(T ) (%,E, E") (1 +

T\l gyr+ 1T llg, ¢ )
BEy,r(T) + Be, r(T)

Proof We first show that T: E— F is also a Lipschitz operator. Let
x,y € EyN Eyand choose any decomposition x — y = xo + x; with x; € E},
i=0,1. Then

1Tx = Tyllp < [[Tx = T (x — x0)l|  + 1T (x — x0) — Tyl
ST g, pllxoll g, + N1 T M g, Fllxllg,
<max{[|T g r I Tllg x5, + X1, )-

Therefore, for any x, y € EoN E;
1Tx — Tyllp < max{| T ||z, r T llg, pHIx = ¥llgys,-
Hence

T:(EyNEL| - grg) = F
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is a Lipschitz operator. Since E — Ey,

T:(EoNEL|-|g)—F

is also a Lipschitz operator. Therefore T: E— F is also a Lipschitz
operator because EyN E; is dense in E.
Let {a+rUgng } be a closed ball of (EgNEy,| | ). For every
x € {a+ rUgng, } and every ¢, & > 0, there exist xo € Ey and x; € E; such
that x — a= xo+ x; and
lIxollg, + tllxillg, < (1 +€)K(t,x —a) < (1 +&)P(D)||lx — al|p,

which implies

Ixollg, < (1 +€)¥(r)r and ||x1HE,s(1+e)?—£’—)r.

Let 09 > Bg, #(T) and o1 > Bg, r(T). Then there exist y1, y2,..., Yk € F
and zy, z,,. .., z, € Fsuch that

min |7y — yil|p < (1 + €)y(e)roo,

1<i<k
forevery y € {a+ (1 +¢)y(¢)rUg, } and

Y(t)
]IEIEnHTZ_Zj“F (+5)“I*‘r‘71:

for every z € {a+ (1 +¢)(¢(¢)/t)rUg, }. Hence there exist y;, and z;
such that

17 (a+ x0) = yill r < (1 + €)3p(2)a0r
and

1T+ x2) =zl < (14 9) 2o
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Then, putting g = 0¢/(0p + 1) and a; = o1/(09 + 1), we have

| Tx — c1yiy — o0zl
< ai||Tx — T(a+ xo0)||p+ aol||Tx — T(a+x1)||p
+ 01| (a+ x0) — yiyllp + ol T (@ + x1) = 2 ||

[67i]ea]
< arl|T g, rllxill g, + @l T llg, £llxoll g, + (1 + €)¢(t)r(al<fo + T)

041||T||E.,p+04001>
b

<(1+ 5)1/)(t)r<a0|‘TllE0,F+ 109 + p

which implies

B(T ({a+rUgnk }))

CVIHTHE,,F"'04001)

<(1 +s)w(t)r(aoHTHEmermoo+ .

for every closed ball {a + rUgyng, }- By Theorem 2.2, we have

55T) < (1 900l Tl -+ g+ 2L 22070,

t

If Bg, r(T') = 0, letting oy, € — 0, it follows that

BeA(T) < T 22

and, since 1(¢)/t is non-increasing,

Ber(T) < | Tl p- lim 28

t—oo [
In the case Bg, r(T) = 0, similarly, we obtain

Ber(T) < T - i (o)
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Finally, if 8g r(T) #0, i=0,1, letting o; — Bg,r(T), i=0,1, and
e — 0 and putting t = g, r(T')/BE,r(T) we have

Be, #(T) 1T lg, r+ ”T”E.,F)
) b

Ber(T) < ﬂEo,F(T)"/)(M) (1 + Be, 7(T) + Be, (T

and the theorem is proved.

Using Lemma 3.3 of Cobos et al. [6] we obtain immediately the
following corollary.

COROLLARY 3.2 Let E = (Ey, E1) be a Banach couple, let E be an r.o.
interpolation space with respect to E such that Eq N E is dense in E, let F be
another Banach space and let T € 4(E,F) be an operator such that
T:Ey— Fis a Lipschitz operator and T: Ey — F is a Lipschitz compact
operator. Then at least one of the following conditions must hold:

(i) T:E— Fis compact;
(i) Ej—E.

If, in addition the couple E satisfies E§ = Ey, then T: E— F is compact
implies at least one of the following conditions:

(") lim,ov(t, E, E) = 0;
@ii’) T: Ey— Fis compact.

THEOREM 3.3 Let F= (Fy,F;) be a Banach couple, let F be an
intermediate space with respect to F. Then every bounded subset M of Fa
is a bounded subset of F and

() ife* (M) =0, thenef (M) < 261 (M) - lim,o t/p(t, F, F);
(i) ifel (M) =0, thenef (M) < 26 (M) - lim;—os 1/p(t, F, F);
(iii) if el (M) -ef' (M) # 0, then

i 2e°(M)
M) < R ) )aF (M), F.F)

Proof For oy > skF"(M) and oy > snF' (M), there exist yy, ...,y € Fy
and zy,..., z, € F; such that

k n
MC U{yi +0oUr} and MC U{zj-i— o1UR }.
i=1 J=1
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Let x1, x5, . . ., X, € M where m > kn and put
I, = {h: Xp € {yi +00UF0}},

i=1,2,...,n. Since Y, |I;| > m > kn, there is iy such that |I;| > n.
Hence, there are r,s € I, such that x,,x; € {zj, + 01Uf,} for some
positive integer j, < n. It follows that

1
llxr = x| < m-’(’: Xr = Xs)
1
< SLEF) max{||x, — x|, t]l%r — x|, }

< 2 max{oy, to1}
> p(t, F,F) 0, t01

and letting o9 — ¢,°(M ) and g1 — €] (M ) we have

¥, = 5l < s max{ef (M) ] (1)}

o(t,F, F)

Therefore

Prn(M) < S FF) max{e* (M), 1} (M)}.

By the inequality (2.3) we have

2
E{,;(M) S/)(Z’—Rl—?—)max{sﬁ(M),tsf'(M)} (31)
Since p(2)/t is non-increasing and p(¢) is non-decreasing, from inequality
(3.1) we obtain (i) and (ii) when ekF °(M)=0and ef"(M) = 0, respec-
tively. For (iii) we put t = ¢/°(M) /e ' (M).

THEOREM 3.4 Let F = (Fy, F\) be a Banach couple, let F be an interme-
diate space with respect to F and let M be a bounded subset of F .

(@) If Bry(M) = 0, then Be(M) < 285, (M) - lim,o t/p(t, F, F).

(i) If Br, (M) = 0, then Bp(M ) < 20, (M ) - lim,_o, 1/p(t, F, F).
(iii) If Br, (M) - Br, (M) # 0, then

265,(M)
BrM) < M0 B (M) Fo )
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Proof Letting k, n — oo in the inequality (3.1), it follows that

Br(M) <

= m‘zﬂ—p) max{Br, (M), tBr (M )}. (3.2)

As in the proof of Theorem 3.3 we have (i), (ii) and (iii).

THEOREM 3.5 Let F = (Fy, Fy) be a Banach couple, let F be an interme-
diate space with respect to F and let E be a Banach space. If T € 4(E, F) is
an operator such that T: E— Fyand T': E— F) are ball-contractions, then
T: E— Fis also a ball-contraction. Furthermore,

() if Ber,(T) =0, then Bep(T) < 28er, (T) - lim,o t/p(t, If,F);
(i) if Ber, =0, then Bep(T) < 2BEr(T) - limyeo 1/p(t, F, F);
(111) ifﬂE,Fo(T) . IBE,F| (T) # 0, then

20Er,(T)
Ber(T) < p(Ber(T)/Ber(T), F,F)

Proof First we prove that T: E— F is continuous. Since T: E— Fj
and T': E — F, arecontinuous, T : E — Fx iscontinuous and thisimplies
that T': £ — Fis continuous.

Let M be a bounded subset of E. By inequality (3.2) it follows that

BH(T(M)) < ——— max{r,(T (M), tBr (T (M))}

p(t, F,F)
= o F sz 7y max{Ben(T), 18e.r (T)}OM).
Hence
B5r(T) < g max{B(T). 105 (7))

Now using the same arguments as in the proof of Theorem 3.3 we obtain
(i), (ii) and (iii).

Using Lemma 3.4 of Cobos et al. [6] we have immediately the following
Corollary.

COROLLARY 3.6 Let F = (Fy, F1) be a Banach couple, let F be an r.o.
interpolation space with respect to F, let E be another Banach space and
let T € €(E, F) be an operator such that T: E— Fy is a ball-contraction
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and T: E— F) is compact. Then at last one of the following conditions
must hold:

(i) T:E— Fis compact;

(i) F— Fy.

If, in addition the couple F satisfies F;" = Fy, then T: E— F is compact
if and only if at least one of the following conditions hold:

(1/) lirnt—»oo p(t,F9F) = 00,

(ii") T:E— Fyis compact.

Let £, be the Banach space of the absolutely summable sequences
(up)nen and let £, be the Banach space of the bounded sequences (i) nen
equipped with the usual norms.

The following two theorems are generalisations of the Theorems 3.9
and 3.10 of Cobos et al. [6] for non-linear operators. Since the proofs are
essentially the same we omit them.

THEOREM 3.7 Let E = (Ey, E1) be a Banach couple and let E be an
intermediate space withrespect to E such that Eq N E is dense in E. Suppose
that ENE, is dense in E, or EyN Ey is dense in Ey, or that

lin(}K(t,x,E‘) =0 forall x€E.
1—

Then the following are equivalent:

(i) lim,_oy(t, E,E) =0;

(i) for every Banach space F, if T € €(E, F) is an operator such that
T:Ey— F is a Lipschitz operator, and T:E,— F is a compact
Lipschitz operator, then T: E — F is a compact operator;

(iil) if T € G(E, L) is an operator such that T: Eq— Ly, is a Lipschitz
operator and T:E\— £y, is a compact Lipschitz operator, then
T: E— £, is a compact operator.

THEOREM 3.8 Let F= (Fy, F)) be a Banach couple and let F be an
intermediate space with respect to F. Then the following are equivalent:

() lim, e p(t, F, F) = 00;

(ii) for every Banach space E, if T € €(E, F) is an operator such that
T: E— Fy is a ball-contraction operator and T: E — F is compact,
then T: E — F is a compact;

(i) if T€ €, F) is an operator such that T:£,— Fy is a ball-
contraction and T: {1 — F is compact, then T : £y — F is compact.
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4 FURTHER RESULTS IN THE CASES E,=E; AND F,=F,

In this section we generalise some of the results obtained by Cobos et al.
[11] for the measure of non-compactness of Lipschitz operators.

THEOREM 4.1 Let E = (Ey, Ey) be a Banach couple, let E be an
intermediate space with respect to E such that EyN E, is dense in E and
let F be another Banach space. Assume that T € €(E, F) is an operator
such that T: Eg— F and T': Ey — F are Lipschitz operators.

() If Bg, r(T) =0, then

Be.r(T) < 2[|T||E’F'max{ltir%¢(t, EE), lim M‘fﬂ}

t—o0

(i) If Bg, p(T) # 0, then

7 T _
BeA(T) < 6T 5p (%ﬂi—)E E> ,

wheren(t, E,E) = max{y(t, E, E), (¢t "\, E,E)/t'}.

Proof Let{a+ rUg,ng, } beaclosed ball of (Eo N Ey, || - || ) and put, for

every ¢t >0,
n(t) = max{«/)(r), e ’}.

t_l

Forevery x € {a + rUgg, } and every ¢, e > 0, there are x¢, x; € Ey and
X1,X] € Ey such that x —a = xo + x1 = x§ + x1,
l[xol| g, + tllx1l[g, < (1 +€)K(2,x — a)
< (1+e)y()x —alg
< (1+e)rn(t)
and
%0l + 2 M Ixillg, < (1+€)K( ™, x —a)
<1+ )yt x —allg
<(1+ 5)rt_177(t).
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It follows that
Ix%0llg, < (1 +e)rm(2),  [xillg < (1+e)re"n(),
%115, < (L +e)re™'n(@),  NIxillg < (1+€)rm(o).
Putting y = x; — x{ = x, — xo € Ea, we have

71z, <max{|[xollg + xollg» 1x11lg + %1 1l£ }
< +em(nHd + t“)

and

lx = (¥ + )l < lIxollg, + Ix{llg,
< (L+e)rmn(0) + (14 &)r(1)
=2(1 +&)rn(1).

Let o> Bg, p(T). Then there are zi,...,z, € {a+ (14 ¢e)rn(zr) x
(1+¢7")Ug, } such that

min || Tz — Tzl < 2(1 + €)rn()(1 + t o,
1<j<n

for every z € {a+ (1 +¢)rn(¢)(1 +:7')Ug, }. In particular there is z;
such that

1T (y+a) = Tzllp < 2(1 + &)r(t)(1 +t)o.
Therefore, forevery x € {a+ rUg,ng, }, thereisz;€ {z,, ..., z,} such that

1Tx = Tzllp < | Tx = T(y + )llp + T (y+ @) — Tz
ST lzpllx = (v + @), + 201+ )1 + 17
<201 +e)mIT llgp + 201 + )rn()(1 + 17
=21+ e)mO[ITllgr+ (1 +171)o]

and this implies

B(T ({a+rUsns })) < 2(1+e)m()[ITllzp+ (1+171)a],
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for every closed ball {a + rUg,ng, } in (EgN Ey, || - || £)- By Theorem 2.2, it
follows that

Ber(T) <200+ [ITgp+ (1 +17 o]
In the case Bz, p(T') = 0, letting e, 0 — 0 we have
Ber(T) < 20T ||zr

for every ¢ > 0, and, consequently,

Ber(T) < 2mf7l OIT | gp-

Since (¢) and (¢~ ')/¢~" are non-decreasing,

infn(t) = max{hmw() e _1)} :max{¥3’3¢() - w(t)}

>0 t—>0 t—oo  t

and (i) is proved.
If B, #(T) # 0, putting t = Bz, p(T)/|T||gr and letting ¢ — 0 and
o — Bg, r(T), we have

5A(T) < 2%%#) {urnw (1 52 ), T )}

_ T
< 6||T”E,Fn<@f;—ﬁ(l?—;)),

and the theorem is proved.
An immediate consequence of Theorem 4.1 is the following corollary.

COROLLARY 4.2 Let E = (Ey, E1) be a Banach couple, let E be an
intermediate space with respect to E such that EyN E, is dense in E, let
F be another Banach space and let T € 4(E, F) such that T:Ey— F
and T:E —F are Lipschitz operators. If lim,_o¢(t,E E)=
lim, o, ¥(t, E,E)/t =0, then T:E—F is compact if and only if
T: En — Fis compact.

In particular, if E is a space of class €x(6, E) the last corollary takes
the following form.
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COROLLARY 4.3 Let E = (Ey, E1) be a Banach couple, let E be an
intermediate space of class €x(0, E) such that EyN E, is dense in E, let
F be another Banach space and let T € €(E,F) such that T: Ey— F
and T:E\— F are Lipschitz. Then T:E— F is compact if and only if
T: En — Fis compact.

Using Lemma 3.3 of Cobos et al. [6] we obtain immediately the
following corollary.

COROLLARY 4.4 Let E = (Ey, E1) be a Banach couple, let E be an r.o.
interpolation space with respect to E such that EgNE; is dense in E,
let Fbe another Banach space andlet T € €(E, F) be an operator such that
T:Ey—F and T:E,— F are Lipschitz operators and T : Epn — F is
compact. Then at least one of the following conditions must hold:

() T: E— Fiscompact,

(i) Ej—E;
(ili) EY — E.
THEOREM 4.5 Let F= (Fy,F;) be a Banach couple, let F be an
intermediate space with respect to F and let E be a Banach space. Assume

that T € 4(E, F) is an operator such that T: E— Fy and T: E — F; are
Lipschitz operators.

() If Bp,(T) = 0, then
. t . 1
Ber(T) < 2AT g+ (tiy s fim — ).
(i) 1f B, (T) # O, then

Bop(T) ATl
BerT) < G Y I TTer B F) oI Tnr) Br (1) EF)

Proof Let {a+rUg} bea closed ballin E. For any o > B 7. (T') there
are zy,...,z, € {a+rUg} such that

i — Tzl <
lrg}gnHTx Tzj||f, < 2ro,

for every x € {a+rUg}. Let x € {a+ rUg} and choose z; such that

][Tx — TZ/“F: S 2ro.
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For every £ >0, there are yo€ Fy and y; € F; such that Tx — Tz;=
Yo+ y1 and

[ vollg, + I71llg, < (1 +)ITx — Tzl gy < 2(1 +€)ro.
It follows that

lvollr, = ITx = Tz; =yl p,
S| Tx = Tzl g + Il
S Tgpllx = zllg +2(1 + €)ro
S 2T |lgp+2(1 + e)ro

and

yillg, = 1Tx = T2 = yoll,
<N Tx = Tzllp, + I1ll5
ST llgfllx = 2l g + 2(1 +€)ro
27| T g+ 2(1 + €)ro.

Therefore

1 Tx — Tzl < || yollp + | 1l
J(7 Y, ) +J(t,y1)
p(t~1) p(t)

oty max{(1+ €)o. (Il + (1 + 0]

2r

p(t)

Letting € — 0, we obtain

<

+ max{||T|lzr+ (1+€)o, t(1 +&)o}.

I Tx — Tz|p
< 2r max{a T p—i-d]} +£r—max{[|T||E;—+a to}
~ () & p(1) ’
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and this implies

Ber(T)

2 _ 2
< Wmax{a,z 1[||T||E,p—i— a] } +;_>—(-tjmax{”T”E*F+ o, ta}.

If B 7, (T') = 0, letting ¢ — 0, we obtain

-1
BsA(T) < 2||T||E,f(p—(’,_—l)+p—25),

for every ¢ > 0. Because t~'/p(t~") + 1/p(z) is non-increasing, it follows

t 1
T) <2||T| g lim— + lim — ).
Ber(T) < 2| ||E,F(1,E%p(t)+tllgop(t))

If Bpr(T)#0, then putting ¢=||T|zz/Bgr,(T) and letting
o — Brr,(T), we have

T)< 2 7o (T), Bep (T P )
) BT Teg) max{ﬂ 1) P (1) % “T“Ef}
+ 2 ) max{|| Tl g5+ Be i (T): | Tl

P(” T“E,I'_“//BE,Fg(T)
and this proves (ii).

COROLLARY 4.6 Let F= (Fy, F|) be a Banach couple, let F be an
intermediate space with respect to F, let E be a Banach space and let
Te %(E,F) such that T:E—F, and T:E— F, are Lipschitz. If
lim,—o ¢/p(t, F, F) = lim;_ 1/p(t, F, F) = 0, then T: E— F is compact
ifand only if T : E — Fy is compact.

COROLLARY 4.7 Let F= (Fy, F;) be a Banach couple, let F be an
intermediate space of class €;(0,F), let E be a Banach space and let
T € 4(E,F) such that T:E— Fy and T:E— F, are Lipschitz. Then
T: E — Fx is compact if and only if T: E — F is compact.

Using Lemma 3.4 of Cobos et al. [6] we have the following corollary.
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COROLLARY 4.8 Let F = (Fy, Fy) be a Banach couple, let F be an r.o.
interpolation space with respect to F, let E be another Banach space and let
T € 4(E,F) be an operator such that T:E— Fy and T:E— F; are
Lipschitz operators and T: E— Fy, is compact. Then at least one of the
Sfollowing conditions must hold:

() T:E— Fis compact,
(i) F— Fy;
(i) F— Fy.

The following theorems are generalisations of Theorems 2.7 and 2.8 of
Cobos et al.[11] for non-linear operators. Since the proofs are essentially
the same, we omit them.

THEOREM 4.9 Let E = (Ey, E1) be a Banach couple and let E be an
intermediate space with respect to E such that EyN E is dense in E and

K(t

limK(t,x,E) = 1im——%]?—):0 for all x € E.

t—0 t—00

Then the following are equivalent:

() lim,o (s, E, E) = lim, 0 (¢, E, E)/t = 0;

(ii) for every Banach space F, if T € €(E, F) is an operator such that
T:Ey— Fand T: E,— F are Lipschitz operator and T : Ex — F is
compact, then T: E — F is a compact operator,

(ili) if T € G(E,Ly,) is an operator such that T: Eg— £o, and T: Ey — £,
are Lipschitz operators and T : En — Lo is compact, then T : E — £
is a compact.

THEOREM 4.10 Let F = (Fy, F1) be a Banach couple and let F be an
intermediate space with respect to F. Then the following are equivalent:

() lim,o 1/p(t, F, F) = lim, t/p(t, F, F) = 0;

(ii) for every Banach space E, if T € 4(E, F) is an operator such that
T:E— Fyand T: E— F) are Lipschitz operators and T : E — Fx, is
compact, then T: E — F is compact,

(ili) if T € €(4y, F) is an operator such that T: £, — Fyand T: £, — F, are
Lipschitz operators and T : £; — Fx is compact, then T:4,— F is
compact.
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5 MAIN RESULTS

Given a sequence of Banach spaces (W,)ncz and a sequence of
non-negative numbers (A,)mez, We write £,(\,,W,,) to designate the
vector-valued space

eq(Am Wm) = {W = (Wm)' Wy, € Wm, “Wllzq(/\me) < OO},

where

(5% o Ol Wl ) if ¢ < 0o,

||W“eq(,\,,,W,,,) = .
SUP ez, Aml[Wanll if g = oo.
THEOREM 5.1 Let 0<0<1 and 1<g<oo, let E= (EyE) and
F = (Fy, F\) be two Banach couples and let T € 6(E, F) be an operator
such that T: Ey— Fyand T : E| — F, are Lipschitz operators.

() If T:Ey— Fy and T:E, — F, are compact, then T : Egq — Fg,q is
compact.

@) If B(T)#0 or B1(T)#0, then there is a constant c¢=c(#)>0
such that

T llo + 71l

poa < 23070 (1 + EE ST 0T+ et

where 39, = Bo./T), Bo= Bo(T) and B, = B(T).

Proof PutW,, .= (Fy + F1,K(22™, -, F)), m € Z,and consider the oper-
ator j that associates to every y &€ Fo+ F; the constant sequence
J()=C(C..,».3,¥,...). The restriction of j to Fy, is a metric injection
from Fy , into 84(2_9’" W.,..). Moreover, the restrictions of j to Fy (resp. Fy)
isa bounded operator from Fy (resp. F;) into £o(W,,,) (resp. £oo(27" W)
with norm less than or equal to one. Furthermore,

(boo (Wim), boo (27" m))e,q = eq(2—0m Win)
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with equivalence of norms and the embedding
(Coo (W), loo (27" Win))g g = £ (27" W)

has norm less than or equal to one.
Let T = jT. We have the following diagram of operators:

Eo 5 Fy L £o(W)
oy R Loo (27" W)

= T £ J _
Since j is a metric injection, we have

Bog(T) < 2B94(T).

ForeveryneN, let P,, Q) and Q, be linear operators on the Banach
couple (Uoo( W), £oc(27"W,,)) defined by

(um) = ( 0 0 U pnyU_pils. .5 Up—1,Upn, 0’ 07 .. ')1
( ) = s Upy1, Upt2, .. .),
( ) = ( S U_p2,U_n_1,0,0,. )

These operators have the following properties:

(I) the identity operator on Loo(W,,) + £oe(2™"W,,) can be decom-
posed as

I=P,+0 +0Q,, n=12,...;

(I) they are uniformly bounded

1 Pall e (wiy, e (wm) = I Palle, @-mw,) b 2-mmw,y = 1
and similarly for Q;" and Q;;

(III) the operator Q;F maps £o.(W,,) boundedly into £,(2~"'W,,), the
operator O, maps ¢..(2~" W,,) boundedly into £.,(W,,) and

105 e Wyt 2-mw) = 1@ e ommwy ey = 27"
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The operator T can be decomposed as

T=P,T+Q T+0,T
and this implies

ﬁﬂ,q( ) < ﬂ(?,q(P T) + ﬂ&q(Qn )+ ﬂo,q(Q;T)-

We will now estimate each one of the terms on the right hand side of the
last inequality. For that, let oo > Bo(T) and o, > B:(T).

Let us start with 85,(Q; T). Let Ej and E7 be the closures of Ey N E; in
Eyand in Ey, respectively, and put E° = (Ey, EY). Since Ej . Ey 4 with
equivalence of norms, we have

Boq(Q T) = Bi,, 4,0-mmw,) (@5 T)
< B 0w, (Qn T)

< mllQ“T B q(z—mowm)
<ol Tl (o2 Wi)
< C2||Qn ce(W,,,)“T“E,,F.

Given ¢ > 0, choose x, y € Ej such that

||Q;Tx - Q;TJ’”em(W,ﬂ)

105 Fllgs 1.y <

Put z=(x+y)2 and r=|x- y||E°/2 Since ¢ > Bo(T) >
ﬂEg,zw(Wm)(T), there are xy,...,x; € {z+ rUEo} N Ej such that

lrgglk 7w — Txill,, (w,) < 2roo,

for every w € {z + rUg; }. In particular, there are x; and x; such that

”Tx - Txl‘”ew(Wm) S 27’0’0 and ”Ty — ij”foo(Wm) S 2r0'0.
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By property (II1), it follows that

19, Txi — @ ij”zw(w,,,) < ”Q;sz(z—mwm),ew(w,,,)”Txi - ij”ew(z—mwm)

<27\ Tx; - ij”zm(z—mwm)-
Hence, there is Ny € N such that, for every n > Ny,
10, Tx; — O, ij”em(w,,,) <re.

Therefore, for every n> N,

0, Tx — Q;T}’”zw(WM)
<@, Tx = @, Txilly w,) + 195 Txi — Q5 Txilly o,
+ 110, Tx - 0, Ty“ew(Wm)
< 4roy + re,

and this implies, for every n > N,
125 Tl 2 ey < 200 +e.
Consequently,
(@, T) < 2| T (200 + €)' .
Similarly, for every € > 0, there is N, € N such that, for every n > N,
Bog(OF T) < cal| T'llg~" (201 +€)°.
W\ Xn 0
We now estimate G, (P,T). Let qz”“ be R*"*! with the £,-norm. Since

£27+1is finite dimensional, given any e > 0, there exist p1, ..., g € £
such that

k
UqurH-l - U{;L,- + EUZ;"“}'

i=1
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Let {a + rUE(,nEl} be a closed ball in (Eo N Ey, || - [ g,,) and take vEZ
such that 2"~! < 01/0¢ < 2”. Then, for every x € {a + U EE; }s

) . 1/q
( Z (2—0(m+u)K(2m+",x - a)) ) <|lx- a”Eeq <7

m=-—n
and this implies that there is some u; € {1, . . ., pi} such that
270m ) g x —a) < r(,uf,? +¢€), m=-—-n,...,n,

where p; = (u', . .., u{). It follows that

K(2’”?,x—a) < K™Y, x—a)
0

< P20 ) (U9 4 g)
o
<r2? (2’” (—7—1-) (19 +¢),
o0

m=—n,...,n. By the definition of the K-functional there exist xf,(,) ) ¢ E,
and xﬁ,],) € Eysuchthatx —a = xm (1 and

0 4 1 P o1
00, + 2" 2, <02 (202 ) (W) +2),

m=—n,...,n. From the last inequality we get
X1, < r2°2™0y ot () +€)
and
i 1, < r2927CVog=od ! (u) +€),

m=—n,...,n. Because oy > (g, Fo( ) and o1 > Bg, 5 (T) there exist

ygl,)m""’ 1(7()t)mEFOanle)m"‘ z ),()mGFl such that

< 2027 1 ] (i)
nin 1Ty - Pullgy < 1272 o7 (ks +€),
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for every y € {a + r292mo5%04 (b + €)Ug,} and

() < 6m(0—)160
lgslél;l(l) HTZ Zs,m“F1 - r2’2 (y'm + 6)

for every z€ {a+r202m0-Dgl-08-1(uD L\ ULY. Let ap=

oo/(g0+ 1), let ay = o1/(o0+ o1) and let ul)y = W m) be the vector-

valued sequence defined by

(@)

) 0 ifm>norm< —n,
u .
wasm = a1 Ywm + aoz(') if —n<m <n,

i=1,...,k, w=1,...,p(0) and s=1,...,6). Given any

x € {a + rUg,nE, }, there exists a u(’ such that uws,,, =q ysv),,, + aozﬁz,,,

IT (a+xD) =y, ||, < 12270500 (1) + )
and

||T(a+x(1) Z(z) “ <r292m0 1) 1 0 0(u(1)+€)

with x — a—xf,?) +x$),m=——n,...,n. From

K", Tx = ), )
= K(2", Tx — qu(’ om = aozgfzn)
< ao| Tx = T(a+ x5, + 271 | Tx = T(a+ x|
+ai||T(a+xD) = yullr, + 2 a0l T (a+x3)) — 2011,

< ool T llollx3 11, + 2"t I T [y x5

+ (00 + 01)r2°2" 000 (uf) + €)

: T T
§r292’"(’o(‘)‘oa’,’(uf,’,)+e)<l+” ﬂoiﬂ ||1),
0+ o1
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it follows that

n

1/q
~ . . q
1P Tx — ull|| = ( > (2K, Tx - u),,)) )

m=—n

1/q
n R
< r2"a(',‘0cr‘f(1 1T 0lp + 1|7 ||1) <Z (HS:;) e:)")

09 + 01 —

- Tlo+ 17 i
<r2"“”"<1+|| . L) (1 + (2n+ 1)V%).
<120y "0y ey IURAC A

Using Theorem 2.2, we obtain

T llo + 71

foa(PaT) < Xy (1 * oo + 01

)(1 +(2n+1)"4)
and this implies

> - T+ 1T
P.T) < 29 1-6 6 1 ” 0 1 ,
Bog(PnT) < 20y 04 +_—“—00+01

forevery neN.
Therefore, for every o> Bo(T), every oy > 3(T) and every € >0,
we have

_ T+ [T
T < 26+151-6,0 (1 17 o 1
Bog(T) < gy 01 +—“—_—_00+01

+ || TI200 + €)' + el Tllg (201 +¢)”.

If Bo(T) = B1(T) =0, then letting first oo — 0 and after oy, e — 0 we have
Bo,o(T)=0. If Bo(T)#0 or 3,(T)#0, then letting 0;— B(T), i=0,1,
and £ — 0 we obtain (ii).

THEOREM 52 Let 0<6<1 and 1<g<oco, let E= (Ey,E) and
F = (Fy, Fy) be two Banach couples and let T € 4(E, F) be an operator
suchthat T: Ey— Fyand T: E; — F, are Lipschitz operators. Suppose that
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E| is continuously embedded in Ey or F, is continuously embedded in F,,.

() If T: Eo— Fy is compact, then T : Egq — Fyg is compact.
(ii) If Bo(T) #0, then there is a constant ¢ = c(6) such that

”T”O + ”THI )+ c/@(l)—e(T)”T”?.

Boq(T) <21 B5°(T)B{(T) (1+ Bo(T) + Bi(T)

Proof As in the proof of Theorem 5.1, for every o¢> Bo(T), every
01> B1(T) and every € > 0, there is N7 € N such that

Bog(Q, T) < arll T|9(200 + €)',

for any n > N; and

> - Tlo+ Tl
P.T)< 20 1-6 6 1 ” 0 1 ,
Bog(PnT) < 20y 0 +“—_00+01

for any n € N. For (g ,(Q; T'), we have
Bog( @i T) < lQF T Wl 20,2020 W)
<2%0f T“Eg, boo (W) ||Q:T||?E.,ew(2—mw,,,)
< 2T N0 TS . b (27 W)

In the case E; — E, let I: E; — E; be the embedding from E; into E,,.
Then

197 TNk, 2o 2-mwry <MDk Newwiny b 2-mw) | T gy o w1 1 1 2
<27 N T || gy o I 1 £y -
If F; — F,, we have

19 Tllg, b a-mwny < NQo e w1 g o ) 1 | 1 N T My

S 2“"_1 “J ”F] Fo “ T”E| Fpo
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where J is the embedding from F; into F;. In both cases we have

“Qn+T“E|,lZm(2-'”W,,,) -0,
when n — oo and this implies

Bog(QFT) — 0,

when n— oo. As in the proof of Theorem 5.1 we conclude (i) and (ii).

6 REMARKS IN THE LINEAR CASE

The following theorem is mentioned in the introduction of [6].

THEOREM 6.1 Let E = (Ey, E1) be a Banach couple, let F be Banach
space, let E be an intermediate space withrespect to Eandlet T € £ (E, F).
If T:Ey— Fand T: Ey— F are compact, then T: E — F is compact.

We say that a Banach couple F = (Fy, F1) has the approximation
property H if there is a positive constant ¢ such that given any £ > 0 and
any finite sets Ky C Fyand K; C Fy, thereisan operator P € £ (F, F)such
that

@) [ = Pllpr <c,i=0,1;
(i) [|x — Px|| <eforallxeK;i=0,1.

We say that the Banach couple F = (Fy, Fy) has the approximation
property H, if has the approximation property H; and
(iv) P:F;— F;iscompact, i=0, 1.

Remark 6.2 1In [16] it is proved that if X is a locally compact
space endowed with a positive measure p, then the Banach couple
(LP(X, ), LUX, 1)) satisfies the approximation property H, for
P,q €[1, 00).

We shall need the following lemma from [16]:

LEMMA 6.3 Let E = (Ey, E1) and F = (Fy, F1) be two Banach couples,
suppose that F has the approximation property Hy, let ® be an interpola-
tion method and let T € ¥(E,F). Then given any € >0, there exists
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P € Z(F, F) verifying (i), (ii), (iii) and

”T_PT“E,,F, < cﬂE;,F}(T) +e 1=0,1.

Moreover, if F has the approximation property H,, then P also verifies (iv).

THEOREM 6.4 Let E = (Ey, E\) bea Banach couple, let F = (Fy, F) bea
Banach couple satisfying the approximation property H,, let ® be an
interpolation method andlet T € ¥(E,F). If T: Ey— Fyand T: E; — F,
are compact, then T : Ey — Fg is compact.

Proof Let £e>0 and let ¢ be the constant in inequality (2.2). By
Lemma 6.3 there is P € Z(F, F) satisfying (i), (i), (iii) and

<-, i=0,L

7= PT g, <

o lm

By inequality (2.2) we have

”T— PTlIEq;,Fq; S &

ie, T:Es — Fp can be approximated uniformly by operators
PT:Ey — Fp. If we prove that the operators PT: Ey — Fp are
compact then the result follows immediately. Using the following
diagram:

we see that PT:Ey— Fs and PT:E; — Fp are compact. By
Theorem 6.1 it follows that PT : E — Fg is compact.

THEOREM 6.5 Let E = (Ey, E\) and F = (Fy, Fy) be two Banach couples,
let @ be an interpolation method andlet T € ¥ (E, F). If F = (Fy, F) has
the approximation property H,, then

ﬁEp,Fq,(T) <c max{ﬂEmFo(T)’ /BEIyFI(T)}'
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Proof Lete>0.By Lemma 6.3 there exists P € Z(F, F) satisfying (i),
(i, (iii), (iv) and

IT = PT||j, . < cBr.r(T) +e, i=0,1.

Since PT:Ey— Fy and PT:E,— F; are compact, by Theorem 6.4
PT: E; — Fp is compact. By Lemma 6.3, it follows that

By i (T) < By (PT) + T~ PT ||, 5,
< cymax{||T— PT|g g, T — PT ||, 5, }
< comax{Bg, r(T),Be.r(T)},

and the proofis finished.

COROLLARY 6.6 Let E = (Ey, E)) be a Banach couple, let ® be an
interpolation method and let T € ¥(E,E). If E= (E, E\) has the
approximation property H, then

r&(T) < max{r2(T),r5(T)}.
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