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1. INTRODUCTION

Let [a, b] be a bounded, closed interval of the real axis and let n be a

positive integer. Consider the following integral

bu(x)g(x)dx (1.1)

where u E C’([a, b]) and g(x) Ll(a, b). g(x) is the weight function and
is supposed to be non-zero on a set of positive measure.

Denote by xl,..., Xm rn different points of the interval [a, b] such that

a xo <_ x < < Xm Xm+ b (1.2)
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and denote by E a linear differential operator of order n:

dn dn-k
E + a(x) dxn_ (1.3)

k=l

where ak(x) E cn-k([a, b]), k 1,..., n.

In [4] Ghizzetti and Ossicini consider the following general quad-
rature formula:

/a u(x)g(x) dx Ahiu(h-1)(Xi) At- R[u],
h=l i=1

(1.4)

relevant to the integral (1.1), to the nodes (1.2) and to the differential
operator (1.3), with the following condition:

e[u] 0 0 (1.5)

that is (1.4) is exact when u is solution of the linear differential equation
=0.

Fixed the weight g(x), the nodes x,..., Xm and the operator E, in [4]
a method to determine all the quadrature formulae of type (1.4), which
satisfy condition (1.5), is given. In order to do that, consider the adjoint
operator of E:

E*-(-1)
dn n dn-k

+ (- 1)-k dx,,_k ak(x)
k=l

and the reduced operators

d dr-k
Er --dx -+- ak(x) dxr_k r 0,... n-

k=l

with their adjoint operators

Er* -(_1)
dr dr-k
-dxr -+- (- )r-k

dx r-k ak (X),
k=l
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Let 0(x) and gm(X be the solutions of the equation

E*[] g

which satisfy, respectively, the initial condition

(1.6)

h) (a) O, q(mh)(b) O, h-- 0,...,n-

and let l(X),..., m-l(X) be rn- arbitrary solutions of (1.6).
By assuming in (1.4)

Ahi "-E;_h[i--i_l]x=xi h 1,...,n; i= 1,...,m (1.7)

and

rn rxi+

R[U] E/ i(x)E[u(x)] dx
i=0 xi

(1.8)

the quadrature formula (1.4) satisfies condition (1.5). Conversely, if(1.4)
and (1.5) hold true, then there areuniquely determined 1,..., m-1,
solutions of (1.6), such that, together with qa0 and qam, make valid (1.7)
and (1.8) [4, pp. 27-32].

Appropriately choosing the weight functiong(x), the nodes x,..., Xm,
the differential operator E and the functions q,...,m_ many of
the known quadrature formulae can be found as particular cases (see
[4, pp. 80-147]).

Since (1.4) depends on (m- 1)n free parameters, it is natural to try
to determine these parameters in such a way quadrature formula (1.4)
is optimal in some sense.

This problem has been investigated by many authors, see e.g.
[1,2,5,6,8,11,12,19,20]. The first result of the present paper is that there
is one and only one way ofmaking (1.4) optimal in Sard’s sense 11, p. 38,
16, p. 176] by choosing in a suitable way all the free parameters. This is
shown by Theorem 2.I.
Moreover in Section 2 we consider the quadrature formula

n-p

u(x)g(x) dx E Ahiu(h-)(Xi) + R[u],
h=l i=1

(E[u] 0 = R[u] 0), (1.9)
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for a fixed p: <p < n 1, and we investigate the existence and unique-
ness of the best quadrature formula in the sense of Sard. This problem
has already been discussed by several authors, mainly concerning the
operator E-d"/dx" (see [11,13-15,18] and their references).
We remark that formula (1.9) is interesting in the applications,

especially if we require only the knowledge of the function’s values at
given points.

In Theorem 2.111 we give necessary and sufficient conditions under
which it is possible to make (1.9) optimal in Sard’s sense. This theorem
contains some previous results" ifp n and m > n, in [7] it has been
proved that the optimal quadrature formula in Sard’s sense can be
written, in one and only one way, if the differential operator E has the
property Win the sense ofPolya (see [5,6,10]). In [17], the author extends
this result to the case of the operator E of type (1.3) under the follow-
ing hypothesis:

the only solution of the equation Eu- 0

vanishing at the nodes is u 0.
(1.10)

As far as our result is concerned, it must be remarked that if condi-
tions (2.12) are not satisfied, it is not possible to write a quadrature
formula of type (1.9). Therefore this paper provides a complete solution
to the problem of constructing quadrature formulae of type (1.9), opti-
mal in Sard’s sense. Moreover by means of our method it is possible to
obtain several new quadrature formulae.
The proofs of Theorems 2.I and 2.III lead to the explicit construc-

tion of quadrature formulae useful in the applications. In Section 3
several examples are given. In Examples (e)-(g) we consider equidistant
nodes and the operator E-- d"/dx because we want to compare the new
formulae with the classical ones. Moreover we construct other formulae
by choosing different operators and different nodes.

2. MAIN RESULTS

Let {vl(x),...,vn(x)} be a fundamental system of solutions of the
homogeneous equation

E*v-O (2.1)
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and let Vp(X) be a particular solution of (1.6). The solutions 9i(X),
1,..., m of (1.6) can be written as

i(x) lp(X) + ci)lh(X), 1,..., m (2.2)
h=l

where {ci)) (h 1,..., n, i-- 1,... ,m- 1) denote (m- 1)n arbitrary
constants.

Define the function (x) as

(x) qoi(x), x E (xi, xi+l], i= 0,... ,m.

is called the "influence function" or the "Peano kernel".
From (1.8) we deduce that

b

dx.

The remainder R[u] can be estimated in different ways.
By applying Cauchy-Schwarz inequality we deduce

1/2

IR[u]l < IlE[u]l]2 [,I,(x)] 2 dx
Xi+l

-IIE[u]ll= [/(X)]2 dx
i=0 xi

(2.3/

where

We say that (1.4), (1.5) is "optimal" in the sense of Sard [11,16] if the
(m 1)n constants {ei) } are chosen in such a way to minimize

b

[I’(X)dx.
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Of course we may also write

(/a )IR[u]l _< Ilg[u]ll(b a) 1/2 [(x)]2 dx (2.4)

where

The estimate (2.4) permits us to compare our quadrature formulae with
the classical ones, where the following appraisal for R[u] is used:

Lb 0 /’Xi+lIR[u]l < [IE[u][l Iff(x)[ dx- IIE[u]ll ]i(x)[ dx. (2.5)
Xi

Unfortunately in many cases it is not easy to study the sign of the func-
tion ff that is to apply the estimate (2.5).

THEOREM 2.1 There exists a unique quadratureformula of type (1.4)-
(1.5) that is optimal in Sard’s sense.

Set, for i= 1,...,rn- 1,

xi+

’i(Ii),,,,, ci)) [i(X)] 2 dx.
X

(2.6)

The m terms .f’i(cli),..., C(ni) are independent. Therefore to minimize

Ja[(x)] 2 dx it is sufficient to minimize each term.
If the function i(x) is zero a.e. in (xi, xi+l) (i.e. g(x) is zero a.e. in

(Xi, Xi+l) then .i(cli), (ni)) --O. Otherwise i(cli), C(ni)) O. In
this case, from (2.2), we deduce that

,n rXi+

ffSi(cli) ci)) Z .(i) (i) /ch c, Vh(X)V,(x) dx
h,k xi

..jl__2ci) Lxi+i ixi+l

Vp(X)Vh(X) dx + [Vp(X)]2 dx.
h=l xi
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It is well known that such a polynomial has a positive minimum in n
and, denoting by t?(i) (li),..., (i)) the solution ofthe following system
of n linear equations

Vh(X)V:(X) dx Vp(X)V.(x) dx,
h= xi xi

k-- 1,...,n,

we have

’i(Ii),..., (ni)) min.T’i(cli),..., C(ni)).

By choosing the constants {ci) } in (2.2) equal to {i)} we uniquely
determine the functions pi(x), 1,..., m 1, solutions of (1.6) and, by
means of (1.7) and (1.8), we uniquely determine a quadrature formula
which is exact for the solutions of the equation E[u] =0. It is the
"optimal" quadrature formula in the sense of Sard.

Since

..i(li, (ni,) i) Ixi+’ Ixi+’

Vp(X)Vh(X) dx + [Vp(X)] 2 dx
h= Xi Xi

from (2.3) we obtain

(2.7)

In this way it is possible to construct a lot ofnew quadrature formulae
(see, e.g., Examples (a)-(c) in Section 3). Formulae obtained in this way
have the disadvantage that the derivatives up to the order n- of the
integrand function appear in the nodes. The choice of the (m- 1)n
arbitrary constants in the classical formulae is based on the requirement
that the derivatives of u have not to appear in (1.4). In the following
we will see how it is possible, by virtue of the arbitrary choice of the

Since {lh}h= ...... is a system of linearly independent solutions of (2.1) in [a,b] then
{1)h}h=l ...... are linearly independent functions in [xi, xi+l], Vi= m- 1.
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functions {i}i---1 m--l, to avoid the presence of the derivatives of u(x)
in the nodes and, at the same time, to "optimize" the quadrature formula.
Suppose thatwe have fixed a differential operator (1.3), the nodes (1.2)

and the weight function g(x) in the interval [a, b]. Consider the quad-
rature formula (1.4), together with (1.7) and (1.8). Let us fix an integer
<p < n- 1. In [4] the authors give necessary and sufficient condi-

tions in order to write a quadrature formula where the values u(h)(xi)
of the derivatives of order higher than n-p- are dropped, that is a

quadrature formula of the following kind"

nU(x)g(x) dx Ahiu(h-1)(Xi) -4- R[u],
h-1 i=1

0 g[u] 0). (2.8)

If some conditions are satisfied, the functions 1,..., (/gm-1 (solutions
of (1.6)) can be determined in such a way

Ahi En*-h[i i-1]x=xi O, h=n-p+l,...,n; i-- 1,...,m

(2.9)

that is to say we can write a quadrature formula of type (2.8).
Let (ul(x),..., u,,(x)) be n linearly independent functions, solutions

of Eu 0. Assume u us., (j 1,..., n) in (2.8):

n-P

_
(h_l)Z hiUj (Xi)-- uj(x)g(x)dx, j-l,...,n.

h=l i=1

(2.10)

It is possible to write a quadrature formula of type (2.8) if and only if
the n linear system (2.10) with m(n- p) unknowns {Ahi} has solutions.
In order to discuss this system, consider the transposed homogeneous
system

(h-l) (2.11)cju) (xi)--O, h--1,...,n-p; i--l,., m
j=l

If the rank of the matrix (ulh-l) (Xi)) (with n rows and m(n-p) col-
umns) is equal to n (it must be m(n p) >_ n) then (2.11) has no non-trivial
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solutions and the linear system (2.10) has m(n-p)- n linearly indepen-
dent solutions. Then a quadrature formula of type (2.8) depends on

m(n -p) n free parameters.
(h-l)If the rank of the matrix (,j (xi)) is less than n, that is n q, q _>

(it must be m(n -p) >_ n q) then (2.11) has q linearly independent solu-
tions Cr=(Crl,..., Crn), (r= 1,...,q). In this case (2.10) has solutions
if and only if the following compatibility conditions are satisfied:

/a
b

Cj uj(x)g(x) dx O,
j--1

r 1,..., q. (2.12)

Then it is possible to write a quadrature formula of the type (2.8) in
0(3

m(n-p)-(n-q) different ways.
Consider the following homogeneous boundary value problem

o,
(2.13)

U(h) (Xi) 0, h 0,..., n p 1; 1,..., m.

The general solution of the equation Eu-O is given by u(x)-
-4 cjuj(x), (cl,... ,c,,) denoting arbitrary parameters. By imposing
the boundary conditions we obtain exactly the system (2.11). In [4] the
authors proved the following.

THEOREM 2.11 Ifproblem (2.13) admits only the solution u(x)-0, it is

possible to write a quadrature formula of the type (2.8) in ocre(n-p)-"

different ways (it must be n < m(n-p)). Ifproblem (2.13) has q (q >_ 1)
linearly independent solutions vr(x) jn= Cjuj(x), (r 1,..., q), for-
mula (2.8) can be written only if the conditions (2.12) are satisfied. Then
we may get a quadratureformula (2.8) in O0m(n-p)-n+q different ways and
it must be n p < n q <_ m(n -p).

Set s m(n p) n + q, where we assume q 0 if (2.13) has only the
solution u 0.
Suppose that it is possible to write quadrature formula of type (2.8).
Ifq 0 it is sufficient to assume the number ofthe nodes m > n/(n p).

If q > 0 this is possible if and only if conditions (2.12) are satisfied and
it must be m > (n q)/(n -p).
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From Theorem 2.11, a quadrature formula oftype (2.8) can be written
in ec different ways. Then it is possible to find 1,. m-1, solutions
of (1.6), which satisfy the system (2.9).

If s-0, ,...,m_ are uniquely determined and a quadrature
formula of type (2.8) can be written in a unique way.

Suppose s > 0. Since the quadrature formula (2.8) can be written in oc
different ways, the m- functions q,..., m- depend altogether on
s arbitrary parameters: C1,..., C. These constants C1,..., C can be
uniquely determined such that the quadrature formula (2.8) is "optimal"

bthat is fa [q(x)]9 dx has a minimum. Therefore

THEOREM 2.11I Suppose that one of thefollowing two conditions holds
true:

(i) (2.13) has only the solution u=0;
(ii) (2.13) has q linearly independent solutions and the compatibility

conditions (2.12) are satisfied.
Then there exists a unique quadrature formula of type (2.8) that is

optimal in the sense ofSard.
If(2.13) has eigensolutions and conditions (2.12) are not satisfied then

quadratureformulae oftype (2.8) do not exist.

We know already that if s 0 we have only one quadrature formula
of type (2.8).

Let now s > 0. Because of Theorem 2.11, there exist 1,..., qm-,
defined as in (2.2), satisfying system (2.9). (2.9) is a linear system with
n(m-1) unknowns {c}i)} and mp equations and it has s linearly
independent solutions (it must be n(m- 1)- s _> 0). Then it is possible
to assume

c)i) aij
O + Chcti", a E N, i- 1,...,m-1; j-1,...,n.

h=l

The rank of the matrix {a} of order (m 1)n x s is equal to s (we have
s < (m 1)n).

It follows that the functions {i}i= m--l, which satisfy conditions
(2.9), can be written as

i(X) i(X) -’ Chwi) (x), 1,..., m (2.14)
h=l
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wherewi)(x)=,? ij
-1 ahvj(x), h- 1,...,s; i= 1,...,m- 1, are solu-

tions of (2.1) and {i) are solutions of (1 6).
Set wh (x) wi) (x), x E (xi, xi+ l], i= 11..., m 1; h 1,..., s.

{Wh(X)}h--1 s is a system of linearly independent functions in [a, b].
Otherwise there exist (dl,..., d) - (0,..., 0) such that

dhWh(X) O, VX E [a, b].
h=l

Then

VX (Xi, Xi+l) i= 1,... ,m-

that is

VX (Xi, Xi+l), 1,..., m 1.

Since {Vh(X)}h= are linearly independent functions in (Xi, Xi+l)
i- 1,...,m- 1,itmust be

adh-O, i= l,...,m- l, j= l,...,n. (2.15)
h=l

(2.15) is a linear homogeneous system with n(m- 1) equations and s

unknowns whose matrix has rank equal to s. Then dl ds--0.
Define

m-1

fXi+

F(C) .= axi

[i(X)]2 dx, (2.16)

where C (C1,..., Cs). We have F(C) > 0 because g(x) is not zero on a
set of positive measure.
From (2.3) it follows that

(fxX fXm+ )1/2IR[u]l <_ IIE[u][I2 2 dx + F(C) + [m(X)]2 dx
Xm
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Set

lx’+l

W(ki) Wi) Lb

Akr (x) (x) dx Wk(X)Wr(X dx,
i=1 xi

m-lixi+l(kOk .= axi

W )(X)i(X dx, k 1,..., s

k, r 1,... ,s;

and

ixi+l

D [i(X)] 2 dx.
i= xi

Therefore we have

,,s
F(C) Z AkrCkCr + 2 BkCk + D.

k,r k=l

The function F(C) has a positive minimum in s. Consider the system
OF/OCh--O, h= 1,...,s which corresponds to the following linear
system"

-AhrCr -+- Bh 0, h 1,..., s. (2.17)
r=l

Since the matrix {Ahr}h,r= is positive definite then (2.17) has one
and only one solution -{l,..., ’s} which corresponds to the
minimum of F:

F (7) min F(C ).

In this case we assume in (2.14)" Ci i, i-- 1,..., S.

3. EXAMPLES OF OPTIMAL QUADRATURE FORMULAE

In this Section we shall give some examples of quadrature formulae of
type (1.4) (see Examples (a)-(d)) and (1.9) (see Examples (e)-(i), (1))



ON OPTIMAL QUADRATURE FORMULAE 213

obtained by applying the methods of Section 2. Observe that if Xl a,
from (1.7) and (1.8) it follows that the function 0 must not be
considered. Analogously if Xm-b it is not necessary to consider the
function m.
Example (a) Let us assume in (1.4) g(x) /x/x a, n 2, E d2/dx2,
m 2, xl a, x2 b. A quadrature formula of type (1.4) can be written
in 2 different ways. The "optimal" one is:

dx 3- v/b a [24u(xl) + lu(x2)]

4
(b a)3/214u’(xl) u’(x2)]-+- R[u]+-i-

By applying (2.3) we deduce

IR[u]l E[u] 1[2 (b a)2.

Example (b) For the sake of simplicity consider the interval [a, b]
[0, 1]. Let us apply the general rule by assuming g(x)= 1/x/Y, n 2,
E---dZ/dx2, m--3 and the nodes: x =0, x2 an arbitrary point of the
interval (0, 1), x3 1. Then

4 [ l+2v/-4x-2+ 4 u ’(0) + 4
(1 / v/-2S)

u

3 + 12V/ + 16x:z + 42 ]u’(1) +R[u]
(1 -+- V/Y):

From (2.3)

2 V/ T(XflIR[u]l <_ IIE[u]ll: 1- (1 + x/)
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where

7-() 9 + 27- 372 183 + 1284 + 448
4486 1287 + 192 8 + 649.

Example (c) Assume n-- 2, E- d2/dx
x2- 1, g(x)= in [a, b]--[0, 1]. Then

3(d/dx) + 2, m-- 2, xl 0,

U(X) dx
3(e2 1) ( 3e

2(e + 4e + 1)(u(0) + u(1)) +
e2 + 4e +

(u’(0) / u’(1))/ R[u]; [R[u][ < IIE[u]ll=g

where

K- /2i+2e- ez
+ 4e + e)-) -< 0.03512.

Example (d) Let E, [a,b] and g(x) be the one considered in the
Example (c).
Assume m- 3, xl -0, x2- 1/2, x3 1. Then

3(e- 1)u(x) dx 2(e + 4v/ + 1)
(u(0) + 2u(1/2) + u(1))

e + 4x/ +13x/-) (u’(0) u’(1))+ R[u]’,

IR[u]l IlE[u]ll2K.

where

K- 4+ 4x/- 5e

+ 4x/- + e) -< 0.009184.

Assume n >_ 2, m >_ 2 and

R

dx n (3.1)
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We investigate if there can exist quadrature formulae of the follow-
ing type:

fab U(X)g(x) dx Aliu(xi) -+- R[u],
i=1

(E[u] 0 = R[u] 0);

(3.2)

this is equivalent to consider (2.8) withp n 1.
In the case we are considering, the homogeneous boundary value

problem (2.13) becomes

dn

Tx" u(x) o,

u(xi) O, i-- 1, m.

(3.3)

If m > n, problem (3.3) has no non-trivial solutions that is condition

(1.10) is satisfied. It follows that it is possible to write a quadrature
formula of type (3.2) in m-n different ways.

If n _> 3, consider (2.8) with p n- 2. We investigate if it is possible
to write a quadrature formula of type

u(x)g(x) x
m

Z[Aliu(xi) + A2iut(xi)] -+- R[u]
i=1

(e[u] o n[u] o). (3.4)

If n _< 2m the homogeneous boundary value problem

dn

xn u(x) O,

U(Xi) U (Xi) 0,

has no non-trivial solutions. Therefore we may get a quadrature formula
of the type (3.4) in OQ

2m-n different ways.
In the following we give several examples of quadrature formulae

obtained by applying the method given in Section 2 to these particular
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cases, for different values of n and m and for different choices of the
weight function g(x). In the Examples (h), (i) and (1) we consider more
general cases. The optimal quadrature formula can be written in one
and only one way. Ofcourse it is possible to find a lot of other formulae.

Example (e) Assume, in (3.1), n= 2 and let g(x) in [a, b]. Consider
the following equidistant nodes xi of the interval [a, b]"

b-a
X a + (i 1)h, 1,..., m, h

(m 1)" (3.5)

These particular formulae (with m < 19) were already obtained by Sard
in [10].
By assuming, in (3.5), m-- 2 we may get a quadrature formula of the

type (3.2) in only one way: we obtain the classical trapezoidal rule.
Ifm 3 the optimal quadrature formula of the type (3.2) is

u(x) dx 1---- 2 b) (b)t ++ 3u R[u].

From (2.3) and (2.4) we get

(b-a)5/2 (b-a)IR[u][ < IIE[u]12 32/ <lE[u]ll 32---" (3.6)

Now assume m 4 in (3.5). By applying the general rule we obtain the
following optimal quadrature formula:

fa
g

b-a[4u(a)+llu(2a+b)u(x) dx
30 3

+1 lu(a +2b)3
+4u(b) + R[u].

(2.3) and (2.4) give the following estimates for the remainder:

(b-a)5/IR[u]I _< IIE[u]ll2 < IlE[u]ll (b-a)
54v (3.7)



ON OPTIMAL QUADRATURE FORMULAE 217

Assume, in (3.5), m-- 5. We may get the quadrature formula (3.2) in
3 different ways. The optimal one is

fab b-a[llu(a)+32u(3a+b) (a+u(x) dx 11---- 4 + 26u
2

4 + lu(b) + R[u]

with

(b a)5/2 < IIE[u]ll (b a)IR[u]I IIE[u]ll2
32lx/]-0 32lx/]-

Finally assume, in (3.5), m--6. We have the optimal formula:

fab b-a[15u(a)+43u(4a+b) (3a + 2b)u(x) dx 190 5 + 378
5

+378(2a+3b) (a+54b) 15
+438 +15u(b) +R[u]

(3.8)

with

[R[u]l [Ig[u]ll= (b a)5/ (b a)
50i-i

IIE[u]ll
50lT (3.9)

Now we compare all the formulae obtained up to now with the
classical composite trapezoidal rule [3, pp. 40-42]:

z u(x) dx u(x) + 2Z u(xi) + u(x) + R[u];
i=2

(b a) (3 10)IR[u]l _< g[u]ll
12(m- 1)’

(3.6), (3.7), (3.8) and (3.9) give better estimates for R[u] than (3.10)
for m- 3, 4,5, 6, respectively. In fact, estimates (3.6), (3.7), (3.8) and
(3.9) give:

m=3:

m=4:

m--5:

m=6:

IR[u]l IIE[ulll(b- a) 0.01398;

IR[u]l IIE[u]ll(b- a) 0.00586;

IR[u]l <_ IlE[u]l[(b- a) 0.00305;

IR[u]l _< IIg[u]ll(b- a) 0.00188,
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while (3.10) gives, respectively,

m--3"

m--4’

m--5"

mm6

[R[u][ <_ IIE[u]ll(b- a) 0.02084;

IR[u]l IIg[u]ll(b- a) 0.00926;

IR[u31 <_ IIg[u]ll(b- a) 0.00521;

IR[u]l _< IIg[u311(b- a) 0.00334.

Example (f) Assume, in (3.1), (3.2), n 4, g(x)= in [a, b] and the
nodes (3.5).

Consider the quadrature formula (3.4). If m > 2 then we may get a
quadrature formula in O3

2m-4 different ways. If m- 3, among the z2

different quadrature formulae the "optimal" one is the following:

b

u(x) dx
b a [149u(a) + 326u(a + b)624 2 + 149u(b)

15
(b a)Z[u’(a) u’(b)] + R[u]+

with

1 (b -a)9/2
< E[u]] 1 (b- a) (311)IR[u]l _< IIE[u]ll 4608 4608

Compare the last formula with the trapezoidal rule with "end
correction" (see [3, p. 105; 21, p. 66])"

fa
g

b-alu(a)+2u(a+b)u(x) dx
2 + u(b)

+ (b -4_______a)2 [u’(a) u’(b)] + R[u]’,

IR[u]l < IIg[u]ll (’ a)5
11520

(3.12)

(3.11) provides better estimate for R[u] than (3.12) because (3.11) gives

IR[u]l g[u]l (b- a) 7.5451 x 10-4
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while (3.12) gives

IR[u]l [IE[u]ll (b- a) 8.6856 x 10-4.

By assuming in (2.8) m 3 (m 4) andp 3 the functions {i} i--1,2,3 such
that (2.9) holds are uniquely determined and we obtain the classical
Cavalieri-Simpson’s rule (3/8 rule).
Now assume in (3.2) m--5. It is possible to write this quadrature

formula in c different ways. The optimal one is

fab b-a[_ 2483 2215
u(x)dx=241----- U(Xl)%-

3
u(x2)%-

6
7832483

u(x4) 21- u(x5) + R[u]/
3

 (x3)

By applying (2.3)

(b a)9/2 ,/6557IR[u]l <_ IIE[u]ll= 24576 V15855"
Assume, in (3.2), m--6. By applying the general method described in

Section 2 we obtain the following optimal quadrature formula:

fab b- a I 110209
u(x) dx- 3674(u(x) + u(x6)) + (u(x2)+ u(xs))

54 105 8

76819
%-

8
(U(X3) %- "(X4)) %- R[u].

From (2.3)

(b a) 9/:z ,/61 633<__ IIE[u]ll= 50000 W151494

50 000
(3.13)

If we apply the 3/8 rule to the interval [Xl,X4] and the Cavalieri-
Simpson’s rule to [X4, X6] we obtain the following estimate for the
remainder:

< iiE[u]ll
(b-aj < iiE[u]ll (b-a)51 5556 l0-4
64285
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that is worse than (3.13) because (3.13) gives

IR[u]l IIE[u]ll(b- a)51.2757 x 10-4.

For m- 7 the optimal quadrature formula is

a
U(X) dx

b-a
645 007
741 681

+ 4

049 734 99_____1 (u(x:z) + u(x6))
36 37

(u(xl) + u(x7)) + 2

(u(x3) + u(xs)) + 358 707u(x4)l + R[u].

From (2.3) and (2.4)

(b a)9/2 ,/210047IR[u]l < 36 288 V7050030

IIg[u]l (b a) /. _2_! 0 _047
36 288 V7 050 030" (3.14)

Consider the compound 3/8 rule:

b [U(Xl) -+- 3U(X2) -+- 3U(X3) nt- 2U(X4)
b a

(x) dx --U-
+3u(xs) q- 3u(x6) -+- U(XT)] q- R[u];

IR[u]I < IIE[u]l (b a) < tlE[u]l (b a)59.6451 10-6.
103 680

(3.14) gives better estimates than (3.15) because (3.14) gives

IR[u]l < IIE[u]ll(b- a)54.7567 x 10-6.
Assume m 9 and, for brevity, [a, b] [0, 1]. The quadrature formula

(3.2) depends on five arbitrary parameters. The "optimal" one is

u(x) dx- 0.041393[u(xl)+ u(x9)]-+-0.165878[u(x2) + u(x8)]

+ 0.0898962[u(x3) + u(x7)] + 0.151826[u(x4) + u(x6)
+ 0.102004u(xs) + R[u];
]R[u]l < IIE[u]1121.35792 x 10-6.
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If m--11, among the 007 quadrature formulae of type (3.2), the
"optimal" one is:

u(x)= 0.033182[u(xl) + u(x)] + 0.132281 [u(x2) + u(xl0)]dx

+ 0.073287[u(x3) + u(x9)] + 0.1 lgZ85[u(x4) + u(x8)]
+ 0.087894[u(xs) + u(x7)] + 0.110141u(x6) + R[u];

IR[u]l <_ IIE[u]125.04696 10-7 < IIE[u]ll5.04696 10-7. (3.16)

Compare the last quadrature formula with the composite Cavalieri-
Simpson’s rule. In the classical formula we have the following estimate
for R[u]:

IR[u]l _< I[E[u]ll (3.17)
180(m 1)4"

For m- 11, (3.17) gives worst estimate R[u] than (3.16) because (3.17)
gives

IR[u]l IIE[u]ll5.55556 x 0-7.

Example (g) Let us assume in (3.1) n 6 and, for the sake of simplicity,
[a, b] [0, ]. Let g(x) in [0, 1] and assume the nodes (3.5). For m 5
(m 6), (3.2) is the classical Boole’s rule (Newton-Cotes 6-point rule)
[3, p. 63]. By assuming m 7 in (3.5), formula (3.2) can be written in c
different ways. The "optimal one" is the following:

u(x) dx
6 574 999522 593

[u(x)+ u(x7)] + [u(x2) + u(x6)]
10482832 26207080

2 504 563 3 969 777
+ 52 414 160 [u(x3) + u(xs)] + 13 103 540 u(x4) + R[u].

From (2.3)

IR[u]l IIE[u]1124.7703 x 10-8.
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Ifm 8, the quadrature formula (3.2) depends on two free parameters.
The "optimal one" is

u(x)= 0.0441851[u(xl)+ u(xs)] + 0.20338[u(x2)+ U(XT)]dx

+ 0.0830825[u(x3)+ u(x6)]
+ 0.169352[u(x4) + u(xs)] + R[u];

IR[u]] < IIE[u]l]2.6128 x 10-8.

By assuming, in (3.2), rn--9 we may get a quadrature formula in oc3

different ways. The "optimal" one is

u(x) dx 0.0374541 [u(xl) + b/(x9)] -+- 0.187974[u(x2) + u(x8)]

+ 0.0341871 [u(x3) + u(x7)] + 0.23889[u(x4) + u(x6)]
+ 0.0299175u(x5)+ R[u];

]R[u]] < [IE[u]119.7.8991 x 10-9 _< E[u]] 7.8991 x 10-9. (3.18)

Compare (3.18) with the estimate for R[u] in the composite Boole’s rule
with nine nodes:

IR[u]l _< IIE[u][I8,073 l0-9. (3.19)

(3.18) is better than (3.19).

Example (h) By assuming n 2, m 3 and [a, b] [0, 27r], consider the
operator E d2/dx2 + 1, the nodes xl 0, x2 7r, x3 27r and the weight
function g(x)= in [0, 27r]. We investigate if there exists a quadrature
formula of type (2.8) with p= 1. The homogeneous boundary value
problem (2.13) has the solution v(x)=sin(x). Then q= and the
compatibility condition (2.12) is satisfied. Then it is possible to write a

quadrature formula (2.8) in oc2 different ways.
By assuming l(x) -cos(x) (4/7r) sin(x) + 1; (x) -cos(x) /

(4/7r) sin(x)+ we obtain the "optimal" one:

/0 u(x) dx= 1- u(0)--8u(vr)- 1+ u(27r)+R[u],
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Example (i) Let be n 4, m 3, [a, b] [0, 27r], E= (d2/dx2 / 1)(d2/
dx2+ 9), the nodes xl =0, x2=Tr, x3--27r and the weight function
g(x) in [0, 27r]. Consider the quadrature formula (2.8) withp 3. The
homogeneous boundary value problem (2.13) has three linearly inde-
pendent solutions (q= 3) and the compatibility conditions (2.12) are
satisfied. A quadrature formula (2.8) with p- 3 can be written in oe

different ways. The "optimal" one can be written in one and only in one
way, by assuming

16cos(x) cos(3x) 16sin(x) /p (x)
9 8 72 457r 1357r sin(3x);

cos(x) cos(3x) 16
sin(x)-

16
sin(3x)2(x)

9 8 7------ + i357r

Then

2 128
u(x) dx--4- [u(0)+ 2u(Tr)+ u(27r)] + R[u];

IR[u]l _< IIE[u]ll2g

where

/3_57r 512
K-

V864 36457r
< 0.28732.

Let us note that in Examples (h) and (i) the hypothesis (1.10) is not
satisfied.

Example (l) Assume [a, b] [0, 1], n 2, E d2/dx2 3(d/dx) + 2,
g(x) 1, m 3, xl =0, x2 log(2e/3), x3 and p-- 1. A quadrature
formula of type (2.8) can be written in cc different ways. The optimal
one can be written in a unique way, that is:

1 12e2 35e + 24
u(x) dx 4(e + 4)(2e 3) u(0)

9 (4e 10e2 / 7e 1)
8e(e + 4)(2e- 3)

u(log(2e/3))

-2e2 + 12e 9

4e(e / 4) u(1) + R[u]; IR[u]l I[E[u]ll2g
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where

K /-63 + 483e + 952e2 412e

768e2(e / 4)
< 0.01543.
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