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quasivariational inclusions and prove its equivalence with a class of fixed point problems
by using some properties of maximal monotone mappings. We also prove the existence of
solutions for the completely generalized strongly nonlinear implicit quasivariational inclu-
sions and the convergence of iterative sequences generated by the perturbed algorithms
with errors.
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1 INTRODUCTION

It is well known that variational inequality theory and complementar-
ity problem theory are very powerful tool of the current mathematical
technology. In recent years, classical variational inequality and com-
plementarity problem have been extended and generalized to study a
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wide class of problems arising in mechanics, physics, optimization and
control, nonlinear programming, economics and transportation equilib-
rium and engineering sciences, etc. Various quasi-(implicit)variational
inequalities, generalized quasi-(implicit)variational inequalities, quasi-
(implicit)complementarity problem and generalized quasi-(implicit)-
complementarity problem are very important generalizations of these
classical problems. For details we refer to [1,3-18,20—29] and the
references therein.

Recently, Huang [15,16] introduced and studied the Mann and
Ishikawa type perturbed iterative sequences with errors for the gener-
alized implicit quasivariational inequalities and inclusions. Inspired
and motivated by recent research works in this field, in this paper, we
introduce a new class of completely generalized strongly nonlinear
implicit quasivariational inclusions and prove its equivalence with a
class of fixed point problems by using some properties of maximal
monotone mappings. We also show the existence of solutions for this
completely generalized strongly nonlinear implicit quasivariational
inclusions and the convergence of iterative sequences generated by the
perturbed algorithms with errors.

2 PRELIMINARIES

Let H be a real Hilbert space endowed with a norm || - || and an inner
product {-,-). Let f,p,g,m: H— H and N: H x H— H be single-valued
mappings. Suppose that M: H x H— 2 is a set-valued mapping such
that, for each fixed y € H, M(-, y) : H — 2" is a maximal monotone map-
ping and Range(g — m) Ndom(M(-, y)) # 0 for each y € H. We consider
the following problem:

Find u € H such that

(& —m)(w) N dom(M(-,u)) # 0,
0 € N(f (), p(w)) + M((g — m)(u), u),

where g — m is defined as

2.1)

(g —m)(u) = g(u) — m(u)

for each u€ H. The problem (2.1) is called the completely generalized
strongly nonlinear implicit quasivariational inclusion.
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Now, we give some special cases of the problem (2.1) as follows:

M If M(-,y)=0¢(-,y) for each y € H, where ¢: H x H— RU {+0o0}
such that for each fixed ye H, ¢(-,y): H— RU{+oc0} is a proper
convex lower semicontinuous function on H and Range(g —m)N
dom(d¢(-, y)) # 0 for each y € H and dy(-, y) denotes the subdifferen-
tial of function (-, y), then the problem (2.1) is equivalent to finding
u € H such that

(¢ —m)(u) N dom(Bp (-, u)) # 0,
(N(f (), p(w), v — (g —m)(u)) Z ©((g — m)(u),u) — p(v,u)

for all ve H, which is called the generalized strongly nonlinear implicit
quasivariational inclusion.

(D) If N(u, v)=u — v for all u, v € H, then the problem (2.1) is equiva-
lent to finding u € H such that

(& = m)(u) N dom(M(:,u)) # 0,
0 € f(u) — p(u) + M((g — m)(w),u),

(2.2)

(2.3)

which is called the generalized nonlinear implicit quasivariational inclu-
sion, which was considered by Huang [16].

(1) If N(u,v)=u—v for all u,ve H, m=0 and M(x, y) = M(x) for
all y € H, where M : H— 2¥ is a maximal monotone mapping, then the
problem (2.1) is equivalent to finding u € H such that

g(u) Ndom(M(u)) # 0,

0 €.£) — pla) + M(g(), 24
which was studied by Adly [1].

V) If N(u,v)=u—v for all u,ve H and M(-,y)=0p(,y) for each
Y€ H, where ¢: Hx H— RU {400} such that, for each fixed y € H,
©(-,y): H— RU{+o00} is a proper convex lower semicontinuous func-
tion on H and Range(g — m) Ndom(dy(-, y))# 0 for each y € H and
0y(-, ) denotes the subdifferential of function (-, y), then the problem
(2.1) is equivalent to finding u € H such that

(g —m)(u) N dom(dyp(-, u)) # 0,

(2.5)
(f(u) = p(u),v — (g — m) () > p((g —m)(u), u) — (v, u)
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for all v e H, which is called the generalized quasivariational inclusion,
which was considered by Ding [10].

V) If N(u,v)=u—v for all u,ve H and M(-,y)=0y for all ye H,
where d¢ denotes the subdifferential of a proper convex lower semi-
continuous function ¢ : H— RU {400}, then the problem (2.1) is equi-
valent to finding u € H such that

(& — m)(u) N dom(dy) # 0,
(f(@) —p(),v = (g —m)(w)) = p((g —m)(w)) — ¢ (¥)

for all v € H, which was studied by Kazmi [18].

(VI) If K: H— 2" is a set-valued mapping such that, for each x € H,
K(x) is a closed convex subset of H and, for each fixed y € H, M(-,y)=
0¢(:, »), ¢(-, ) = Ix(,)() is the indicator function of K( y) defined by

0, if x € K(y),
T () = {+oo, if x¢ K(y),

then the problem (2.1) is equivalent to finding u € H such that

8(u) —m(u) € K(u),
(N(f (), p(w)),v — (g —m)(w)) >0,

(2.6)

(2.7)

for all v € K(u).

It is clear that the completely generalized strongly nonlinear implicit
quasivariational inclusion problem (2.1) includes many kinds of
variational inequalities, quasivariational inequalities, complementarity
problems and quasi-(implicit)complementarity problems of [1,6,13—
16,25-27] as special cases.

3 PERTURBED ITERATIVE ALGORITHMS

LEMMA 3.1 wue€ H is a solution of the problem (2.1) if and only if there
exists u € H such that

u=Flu) & u— (g —m)u) + I ((g — m)(u) — aN(f (u), p(w))),
3.1)

where o> 0 is a constant and J2'C" (I+ aM(-,u))" is the so-called
proximal mapping on H.



NONLINEAR IMPLICIT QUASIVARIATIONAL INCLUSIONS 385

Proof Let uc H be a solution of the problem (3.1). From the defini-
tion of the proximal mapping J2* ¢ it follows that

(g —m)(u) — aN(f(u),p(w)) € (g — m)(u) + aM((g — m)(u),u)
and so

N(p(u).f () € M((g —m)(w), ).

Thus u € H is a solution of the problem (2.1).
Conversely, if u € H is a solution of (2.1), we have u € H such that

(g — m)(u) N dom(M(-,u)) # 0
and

0 € N(f(u),p(u)) + M((g — m)(u), u).

Hence we have
(g —m)(u) — aN(f(u),p(u)) € (g — m)(u) + aM((g — m)(u),u).

From the definition of the proximal mapping J (""), we know that
u € H is a solution of the problem (3.1). This completes the proof.

Based on Lemma 3.1, we now suggest and analyze the following
new general and unified algorithms for the problem (2.1).

(A) Mann Type Perturbed Iterative Algorithm with
Errors (MTPIAE)

Let f,p,g,m:H— H and N: H x H— H be mappings. Given uy € H,
the iterative sequence {u,} are defined by
Unp1 = (1 — Oy — "Yn)“n + a"[u" - (g - m)(u,,)
+ J:{"(.’u")((g —m)(un) — aN(f(un), p(un)))] + men  (3.2)
for n=0,1,2,..., where M": Hx H—2" is a set-valued mapping

such that, for each ye H, M"(-,y): H— 2" is a maximal monotone
mapping for n=0,1,2,..., >0 is a constant, {e,} is a bounded
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sequence of the element of H introduced to take into account possible
inexact computation and the sequences {a,}, {7} in [0, 1] satisfying
the following conditions:

M) o+ <lforn=0,1,2,...,
2) a,—0asn— oo,
(3) 2ol an =00, 3 20 M < 00.

(B) Ishikawa Type Perturbed Iterative Algorithm with
Errors (ITPIAE)

Let f,p,g,m: H— H and N: Hx H— H be mappings. Given uy € H,
the iterative sequence {u,} are defined by

Un1 = (1 = 0 — Ya)hn + Qa[vn — (g — m)(vn)
+ 20 (g = m)(va) = aN(f (), D)) + Ynen,

V= (1 = Bn — 6n)tn + Balttn — (g — m)(un)
+J20) (g — m) (un) — aN(f (tn), p(un)))] + 6n S

(3.3)

forn=0,1,2,..., where M": H x H— 2" is a set-valued mapping such
that, for each ye€ H, M"(-,y): H— 2" is a maximal monotone map-
ping for n=0,1,2,..., a>0is a constant, {e,}, { f,} are two bounded
sequences in H introduced to take into account possible in exact com-
putation and the sequences {a,}, {Bx}, {Vn}, {6,} in [0, 1] satisfying the
following conditions:

M) an+m<1,B,+6,<1foralln=0,1,2,...,
2) ap—0,6,—0asn— oo,
() Yoo =00, 3020 < 0.

(C) Mann Type Perturbed Ilterative Algorithm (MTPIA)

Let f,p,g,m: H— H and N: H x H— H be mappings. Given uy € H,
the iterative sequence {u,} are defined by

Uni1 = (1 — o)y + 0in[thy — (g — m) (un)

+ I3 (g — m) (un) — aN(f (un),p ()] (34)
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forn=0,1,2,...,where M": H x H— 2" is a set-valued mapping such
that, for each ye H, M"(-,y): H— 2¥ is a maximal monotone map-
ping for n=0,1,2,..., >0 is a constant, the sequence {c,} in [0, 1]
satisfying the following conditions:

(1) a,—0asn— oo,
(2) doppan = 0o
(D) Ishikawa Type Perturbed Iterative Algorithm (ITPIA)

Let f,p,g,m:H— H and N: H x H— H be mappings. Given uo € H,
the iterative sequence {u,} are defined by

Ups1 = (1 — an)tty + [y — (g — m)(vn)
+ 270 (g — m) (va) — aN(S (%), P(va)))]s

Vn = (1 = Bn)ttn + Bulthn — (g — m)(un)
+ 20 (g — m) () — aN(f (un), p ()]

forn=0,1,2,..., where M": H x H— 2" is a set-valued mapping such
that, for each y € H, M"(-, y) : H — 2¥ is a maximal monotone mapping
for n=0,1,2,..., >0 is a constant, the sequences {a,}, {B.}, {7n}>
{6,} in [0, 1] satisfying the following conditions:

(3.5)

1) a,—0asn— oo,
(2) Sopepan = 00.

Remark 3.1

) If B,=6,=0 for all n=0,1,2,..., then ITPIAE reduces to
MTPIAE.

) Ify,=6,=0foralln=0,1,2,..., then ITPIAE reduces to ITPIA.

3) Ify,=0foralln=0,1,2,..., then MTPIAE reduces to MTPIA.

(4) Our ITPIAE includes several known algorithms of[1,6,10,15,16,18]
as special cases.

4 EXISTENCE AND CONVERGENCE THEOREMS

In this section, we show the existence of a solution of the problem (2.1)
and the convergence of iterative sequence generated by ITPIAE.
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DEFINITION 4.1 Let N:HxH—Handg:H— H.

(1) g is said to be strongly monotone if there exists some 6 > 0 such that

(g(wr) — gluz), 11 — w3) > llur — wa?
forallu;e H,i=1,2,;
(2) gissaidto be Lipschitz continuous if there exists some o > 0 such that
llg(u1) — g(w2)|| < offur —u2|

forallu;e H,i=1,2,;
(3) g is said to be strongly monotone with respect to the first argument
of N if there exists some p >0 such that

(N(g(wm), -) = N(g(uz), ), — ) > pllr — o]

forallu;e H,i=1,2,;
(4) g is said to be Lipschitz continuous with respect to the first argu-
ment of N if there exists some & > 0 such that

IN(g(w1), ) — N(g(u2), )l < €ljann — |

forallu;e H,i=1,2.

In a similar way, we can define strong monotonicity and Lipschitz
continuity of g with respect to the second argument of N.

DEFINITION 4.2 Let {S"} and S be maximal monotone mappings for
n=1,2,... The sequence {S"} is said to be graph-convergence to S
(write S" Ss ) if, for every (x,y) € Graph(S), there exists a sequence
(%n, yn) € Graph(S™) such that x,— x and y,,— y in H.

LEMMA 4.1 [2] Let {S"} and S be maximal monotone mappings for
n=0,1,2,... Then S* % S if and only if J¥ (x) — J$(x) for every
x€Hand A>0.

LEMMA 4.2 [19]1 Let {a,}, {b,} and {c,} be three nonnegative real
sequences such that, for alln=0,1,2,...,

apy1 < (1 - tn)an + by + Cn

with 0<1,<1, Y02ty =00, by=0(t,) and > ,>,c, <oo. Then
lim,,_,o, @, =0.
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THEOREM 4.1 Let N:Hx H— H be a mapping, g,m: H— H be
Lipschitz continuous with constants o and p, respectively, f,p: H— H be
Lipschitz continuous with constants ) and € with respect to the first and
second arguments of N, respectively, f be strongly monotone with con-
stant (3 with respect to the first argument of N and g —m be strongly
monotone with constant 6. Assume that

(m(v) ~ m(u), g(u) - g()) < Mu— ] (41)

for all u,v € H and for some constant X such that Ao < A < o, where
Xo = inf{s: (m(v) — m(u),g(u) — g(v)) < sllu—v||* for all u,v € H}.
Suppose that there exists a constant £ >0 such that, for each x,y,z € H,
7210 (2) = T (@) < €llx = pll- (4.2)

If the following conditions hold:

ek (B9 — (= kC k)
e g ’

(1= K)e+ /0P - k2~ k), 1> (4.4)

(4.3)

ae<l—k, k=£64+2/1-26+02+u2+2)\ k<1, (4.5

then the problem (2.1) has a unique solution u* € H. Moreover, suppose
that M™: H x H — 2% is a set-valued mapping such that, for each y € H,
M"(,y): H— 2" is a maximal monotone mapping for n=0,1,2, ...,
M"(-,y) EA M(-,y) and, for each x,y,z € H,

172770 (2) = T ()| < €llx ~ . (4.6)

Then {u,} strongly convergences to it u*, where {u,} is defined by
ITPIAE.
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Proof First we prove that there exists #* € H which is a unique solu-
tion of the problem (2.1). By Lemma 3.1, it is enough to show that the
mapping F: H— H defined by (3.1) has a unique fixed point u* € H.
In fact, for any u, v € H, we have

F(u) = u— (g = m)(w) + 13" ((g — m)(u) — aN(f (), p(1)))

and

F(v) = v — (g =m)() + I3 ((g = m)(v) — aN(f (+),p(1)))-
From the definition of Jo' ¢4 and (4.2), we have

| F(u) — FO)|
= [lu— (g — m)(®) + I ((g — m)(u) — aN(f (u), p(x)))
—[v = (g = m)(») + J¥CI (g — m)(¥) — aN(f (), p)))]
< lu—v—((g —m)(w) — (g — m)(»)l|
+ [THC (g — m) () — aN(f (u), p(u)))
= JMC (g = m)(v) — aN(f (), p OV
+ [ THC (g — m)(v) — aN(f (), p(¥)))
— M (g = m)(v) — aN(£ (%), p D)
<2lu—v—((g—m)(w) — (g —m)())]|
+ [lu— v — a(N(f (u), pw)) — N(f (+), p()))|
+of|N(f (v), p(w)) = N(f (%), )| + Ellu — vl]. 4.7)

By (4.1), the Lipschitz continuity of f, g, m and strong monotonicity of
g —mand f, we obtain

[ — v — ((g = m)(w) — (g — m)(V)|
= [l = vII* = 2(u = v, (g — m) () — (g — m)(v))
+ [Im(u) — m)I* + llg() — gO)|?
+ 2{m(v) — m(u), g(u) — g(v))
< (1 =26+ 02+ p? + 2))||lu— v|? (4.8)
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and

llu = v — a(N(f (), () = N(f (), p)))II*
< (1 =2af+ 2 ||u— )% (4.9)

Further, since p is Lipschitz continuous with respect to the second argu-
ment of N, we get

INCf (), p(w) = N(F (), PO < €l — vl (4.10)
From (4.7)-(4.10), it follows that
1F () = FO)I| < hlju— v, (4.11)

where

h=21=26402+ p2 +2X+£&+/1 =208+ o2 + ae.

From (4.3)—(4.5), we know that 0 <A< 1 and so F has a unique fixed
point ¥* € H. By Lemma 3.1 and (4.11), we know that #* is a unique
solution of the problem (2.1).

Next we prove that the iterative sequence {u,} defined by ITPIAE
strongly converges to u*. Since »* is a solution of the problem (2.1),
we have

Fu) = u" — (g — m)(@*) + T (g — m) (") — aN(f (u), p()))-
(4.12)

It follows from (3.3), (4.12) and Lemma 3.1 that

llttns1 — o
= [|(1 = o — W) ttn + oin[vn — (g — m) (va) + J(yn(.’vn)((g — m)(vn)
— aN(f (%), ()] + men = (1 — o — )u*
~ onlu* — (g —m)(") + T30 (g — m) (")
—aN(f (@), p(u"))] + "l
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< (1= an = Y)lltn — || + nllva — (& —m)(v)
— (" = (g = m) (@) + mmllen —u*l| + anllJ2" ) (g — m)(va)
— aN(f (), p(1))) = J21) (g — m) (") — aN(f ("), p(*)))]
< (1= on = )lltn = || + l|vn — " — ((g — m) ()
— (g = m) (@) +wllen — || + anll T3 (g — m)(va)
— aN(f (), p(W))) = IO ((g — m) (") — aN(f ("), p(u")))|
+ an|lJ3 0 (g — m) (") — aN(f (), p(u))
= I (g = m)(u") — aN(f (), p())|
+aullJ3 (g — m)(u") — aN(f ("), p(u")))
= IO (g = m) ") — aN(f ("), p()))l
< (1 = an = Vo) lltn — || + 2000 | v — " — ((g — m) (¥n)
— (& =m)@))| + Eanllvn — || + mllen — ]|
+ anllvn — " = a(N(f (%), p(¥)) = N(f (), p(va))) |
+ aay||N(f (), p(v)) = N(f ("), p()) |
+ o |73 (g — m) (") — aN(f (u"), p(u*)))

— T (g — m)(u) — aN(f (), pu )] (4.13)

By (4.1), the Lipschitz continuity of f, g, m and strong monotonicity of
g—m and f, we obtain

[[vn = u* = (g = m) (va) — (&g — m) ("))
< (1 =264 0% + p? 4+ 2))||vn — *|)? (4.14)

and

[Vn — 0" — «(N(f (vn), P(vn)) = N(f (), D))
< (1 =208+ 2)||vn — |- (4.15)
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Further since p is Lipschitz continuous with respect to the second argu-
ment of N, we get

IN(f ("), p(vn)) = N(f ("), p()I| < €llvn — 277 (4.16)
From (4.13)—(4.16), it follows that

lnir — || < (1 = an — ) |lthn — @] + ho||ve — ||
+ anby + Yullen — u*||, (4.17)

where

b = 9270 (g — m) (") — aN(f ("), p(u"))
=71 (g ~ m) (") — aN(f ("), p(u"))]-

Similarly, we have

[[vn — @] < (1= B — 8n)lutn — 0| + ABulltn — "]
+ Bubn + 6ull fr — u"|. (4.18)

It follows from (4.17) and (4.18) that

”un+1 - u*H < (1 —Qy —Ynt han(l — Bp =0 +h/8n))“un - u*”
+ hoy (Babn =+ 6l f — 0 ||) + cnbn + mllen — ||

Let M, =sup{||f, —u*||: >0} and M,=sup{|le, —u*||: n>0}. Since
0<h<1, we have

ltnr1 — || < (1 = an(1 = h))||un — 7|
+ an(h6uMy + (hBy + 1)by) + yaM>.  (4.19)
Using Lemma 4.1, we know that b, — 0 as n— oo. If follows from
(4.19) and Lemma 4.2 that u,, — u* as n — oo. This completes the proof.
Remark 4.1
M IfB,=6,=0foralln=0,1,2,..., then Theorem 4.1 gives the con-

ditions under which the sequence {u,} defined by MTPIAE strongly
converges to u*.
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) Ify,=6,=0foralln=0,1,2,..., then Theorem 4.1 gives the con-
ditions under which the sequence {u,} defined by ITPIA strongly
converges to u*.

3) Ify,=6,=6,=0foralln=0,1,2,..., then Theorem 4.1 gives the
conditions under which the sequence {u,} defined by MTPIA
strongly converges to u*.
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