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In this note we localize ordered real numbers through their upper and lower bounds solving
a class of nonlinear optimization problems. To this aim, a majorization technique, which
involves Schur-convex functions, has been applied and maximum and minimum elements
of suitable sets are considered. The bounds we develop can be expressed in terms of the mean
and higher centered moments of the number distribution. Meaningful results are obtained
for real eigenvalues of a matrix of order n. Finally, numerical examples are provided,
showing how former results in the literature can be sometimes improved through those
methods.
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1 INTRODUCTION

Given a set of ordered real numbers x; > x, > - - - > x,, and their mean y
and standard deviation o, it is well known (Wolkowicz and Styan [16])
that, by Chebychev and Cauchy—Schwarz inequalities, for any real
number x; the following inequalities hold:

k—1 \? n—k\"/?
_ - < < _ <k<n. .
7 U(n—k+1> _xk_,u—l—a< A ) , 1<k<n (1.1)
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A meaningful application of these inequalities concerns the localization
of eigenvalues of a real spectrum matrix, for example a symmetric matrix
or, more generally, a symmetrizable matrix (Engel and Schneider [4],
Stefani and Torriero [12], [13]). Indeed, in this case, the mean and the
standard deviation can be directly computed using the matrix and its
second power traces respectively. In this framework, better lower and
upper bound of {xy, x,, . . ., x,} have been found by Tarazaga[14,15]and
Merikoski et al. [8]. More recently Bianchi and Torriero [3] have shown
that by using higher moments of the distributions of x; (where x; are not
necessarily eigenvalues of a matrix of order »), tighter bounds for x; are
provided which include the ones previously found in the literature as a
particular case. Those bounds are obtained by means of nonlinear global
optimization problems solved through majorization techniques, which
involve Schur-convex functions[9]. Obviously, if x; are the eigenvalues of
arealspectrum matrix A, then the sthmoments u” of their distribution[5]
can be expressed as functions of the traces of the matrix itself and of its
powers as follows:

n r r
o _ i1 X _ tr(4") _
n === r=1,2,3,4,... (1.2)
Furthermore
n L 2 2 2
0.2 — Zi=1 (xl /‘l’) — tI'(A ) _ (tr(A)) , (13)
n n n

where p = puV. In this paper we extend some results due to Bianchi and
Torriero [3] and upper and lower bounds for all x; (i=1,2,...,n)
throughout the solution of a class of suitable nonlinear optimization
problems are obtained. In addition, some numerical examples are pre-
sented in order to compare our bounds with the known ones.

Finally, even though our results have been obtained by requiring the
nonnegativity of x;, we will show later on that this assumption can be
relaxed.

2 NOTATIONS AND PRELIMINARY RESULTS

Lete’,j=1,...,n, be the fundamental vectors of R” and set

J
s’=§ e, j=1,...,n,
=1

v =g" ¢/
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Assuming that the components of the vectors x,y € R” are arranged in
a nonincreasing order, the majorization order x <,, y means:

(x,s") < (y,sk), k=1,...,(n—-1),
(x,sn> = <y’sn>’

where (-, -) denotes the inner product in R"[1], [2], [11].

We recall that for the set E={xeR™ x1>x>-->x,>0,
(x,s8") =a} as is well known (Marshall and Olkin [7]), the maximum
and the minimum elements with respect to the majorization order are
respectively

x*=ae' and x, = (a/n)s".

Thus x € ¥ implies x,, <,,, X <, X*.

DEFINITION 2.1 A function¢: A — R, A CR", is called Schur-convex, on
A if x<,,y implies ¢(x) < &(y). ¢ is said to be strictly Schur-convex if
d(X) < ¢(y) and x is not a permutation of y. ¢ is called Schur-concave on A
if Xx<p,y implies ¢(x) > ¢(y). ¢ is said to be strictly Schur-concave if
d(x) > &(y) and x is not a permutation of y.

Thus, the Schur-convex functions preserve the ordering of
majorization.

Observing that permutation preserves majorization, it follows that a
function ¢, defined on a symmetric set A4, is Schur-convex on A4 if ¢ is
Schur-convex on DN A, where D={xeR" x1>x,>--->x,}. As a
consequence, we may assume later on, without loss of generality, that the
coordinates of vectors are arranged in nonincreasing order.

In the present paper we only deal with Schur-convex functions.
Analogous results can be proved for Schur-concave functions.

Let us firstly recall some basic results proved in Bianchi and Torriero
[3]. Let g be a continuous function, homogeneous of degree p, p real, and
strictly Schur-convex. Let us assume

S=XnN{xeR" g(x) =b},
where b € R is fixed such that S# 0 and

YT={xeR:x1>2x> - >x,2>0,(x,5") =a}.
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The following fundamental lemma holds:

LEMMA 2.1 Let S=XN{xeR™ g(x)=>b}+#0, being g a continuous
Jfunction, homogeneous of degree p and strictly Schur-convex and b€R
fixed. Then either (a’/n?)g(s")=>b or there exists a unique integer
1 < h* <n such that

a?
(hy

aP

mg g(Sh')' (2.1)

(sh*—H) <b<

Let us now introduce the following sets:

SZ(@)=ZN{xeR™ x;>qa,i=1,...,h,b0<a<a/h},1 <h<n

SS(@)=ZN{xeR™: x;<a, i=h,...,n},1 <h<n

Denoting with x*(a) and x.(c) the maximum and the minimum elements
of the previous sets with respect to the majorization order, we get:

for S=(a):

x*(o) = (a — ha)e' + os”,

x.(a) = (a/n)s" if a < (a/n),

x,(a) = os" + pv" if o> (a/n), being p= (a — ha)/(n — h).
for S=() and A~ > 1:

x*(0) = ae’,

x.(@) = (a/n)s" if a > (a/n),

x, (@) = ps" 1+ av*ifa < (a/n), being p= (a — (n — h+ D) /(h— 1),
and finally
for S=(a) and h=1:

x*(a) = as* + 0e**!, being k=[a/a] and =a — ak.

x.(a) = (a/n)s".

Asobserved in the previous section, the hypothesis of nonnegativity of
x;(i=1,...,n)is not restrictive and can easily be dropped out by means
of the following proposition:

PropoSITION 2.1 (Bianchi and Torriero [3]) Let S C X be a subset with
maximum and minimum elements, with respect to the majorization order,
given by x*(S) and x,(S) respectively. For r€R let S'=S+rs". Then
x*(§")=x*(S) +rs”" and x,(S") =x,(S) +rs".
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Indeed, if S’ is the original set, the nonnegativity of the elements of S
is assured by taking r=p — o(n— 1)/? according to (1.1). Hence, by
Proposition 2.1, maximum and minimum elements for S’ easily follow.

3 A CLASS OF CONSTRAINED OPTIMIZATION PROBLEMS

In this section we develop some new bounds for x, (h=1,...,n)
throughout the solution of two nonlinear optimization problems. To
this aim, we shall follow the same methodology applied in Bianchi and
Torriero [3] for providing upper and lower bounds for x;.

More precisely, each bound can be obtained by taking advantage of
some results on majorization order applied to the following optimization
problems:

(P(h)) max F(x,) subject tox € S
(P*(h)) min F(xp) subject to x € S

where F: R — R s an increasing function of x;,.

It is immediate that from problems (P(k)) and (P*(h)) we can deduce
upper and lower bounds for xj, respectively.

We observe that (P(1)) will provide, as a particular case, the same
results as those obtained in Bianchi and Torriero [3].

We start from problem (P(#)). The main result follows:

THEOREM 3.1  The solution of the optimization problem (P(h)) is the hth
component of vector X, = (a/n)s” if (a’[n?)g(s”) = b. If (a®|nP)g(s™) #£ b let
h* the integer satisfying condition (2.1) with 1 < h* < n. The solution of the
optimization problem (P(h)) is o*, where

(1) for h> h*, o* is the unique root of the function f(a) =[ g(x*(c)) — b]
in I=(0,a/h], that is the hth component of the vector xX*(a*)=
(a—ha*)e' +ars".

(2) for h< h*, a* is the unique root of the function f (o) = [ g(x.(c)) — b] in
I={(afn, a/h), that is the hth component of the vector x,(c*) = a*s" +
p*v" and p* = (a — ho)/(n — h).

Proof 1If (a®/nP)g(s")=b the set S is the singleton {(a/n) s"} and the
problem (P(h)) is trivial. Let S%(a)=XN{xeR™ x;>0, i=1,...,h,
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0<a<a/h}, 1 <h<nand h* the integer satisfying condition (2.1). We
prove the theorem in two steps. In the first one we use the maximum
element of $%() and in the second one the minimum element of $Z(c).

1. We know that the maximum element of the set §(c) with respect to
the majorization order is x*(e) = (a — ha)e' + as”.

We note that if x*(@)€S, then SZ()NS={x*(a)}. In fact if
x € S%(a) N S and x # x*(), we find a contradiction, since X <,, X*(c)
implies g(x) < g(x*()) = b.

Now we claim that there exists a unique o* such that x*(a*) € § and
that x*(a*) is the solution of the optimization problem (P(h)) for
h > h* > 1. The last part of the statement is immediate, since any element
of S that improves the objective function has the component 4 which is
bigger than o* and thus belongs to § = (a*) which is impossible from our
previous consideration. To complete the proof we have to prove that
function

f(e) =g(x*(a)) - b

has a unique root in the interval 7= (0, a/A] for & > h*. Since

f(a) = (Vg(X*( ), d(X*(a))/da)

= (1= % +2 e (x'())
taking into account that (Hardy ez al. [6]):
Og Og
6_x1(x)>6x2 X)>> ), (31)

forall x € S, we deduce that f'(«) < 0in I'since A > 1. Thus fhas a unique
root in the interval 7if £(0) > 0 and f(a/h) < 0. We note that

£(0) =g(ae') — b,
f(a/h) =g((a/h)s") - b.

Letx € S.If% = ae', thatisg(ae') = b, the set Sis the singleton {ae'} and
the optimization problem is trivial.

If X#ael, set W= (X/a) €Z1={XER™ x;1>x>--->x,>0,
(x,s") = 1}. Since e' is the maximum element of the set 3, with respect
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to the majorization order, it is easy to verify that g(%) < g(e'), and thus
f(0) > 0. Furthermore the integer h* satisfies the condition

a gh+1
g(h*+1 ><b

and thus f(a/h) <0 for h> h*. The continuity of f guarantees now the
existence of a solution o* of the equation f(a)=01in /.

2. We know that the minimum element of the set S = (o) with respect to
the majorization order is

= (a/n)s" if a < (a/n),
x,(a) = os" + pv* if a > (a/n) with p = (a — ha)/(n — h).
As in part 1, if x,(a) € S, then SZ () N S = {x,(a)}. Now we claim that
there is a unique o* such that x,(a*) € S for A <h* and x,(a*) is the
solution of the optimization problem (P(h)).
The last part of the statement is similar to part 1.

Because (a/n)s"¢S, we have to show that the function
f(a) = g(x,(c)) — b has a unique root in the interval 7= (a/n, a/h]. Since

f'() = (Vg(x*(e)), d(x*(a))/da>
h 6g h
;5— Xx(0)) — n—h ( (@)

)x h-l—l
we can verify f'(a) > 0 in I, by condition (3.1). Furthermore
S(a/n) =g((a/n)s") —
fla/h) = g((a/h)s") —
Letk € S. Weknow thatk # (a/n)s" and thus g((a/n)s”) < g(X), that

is g((a/n)s” ) < b. This condition implies f(a/n) < 0. From Lemma 2.1 we
also know that

s&/a) < g (")
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and thus f(a/h) > 0 for h < h*. The continuity of fguarantees the existence
of a solution of the equation f(c) =01in L

Now we study the problem (P*(h)) for £>1 proving the following
result:

THEOREM 3.2 The solution of the optimization problem (P*(h)) is
the hth component of the vector x,.=(a/n)s" if (a?/nP)g(s")=b. If
(@®/n?)g(s™) # b let h* the integer satisfying condition (2.1) with1 < h* < n.
The solution of the optimization problem (P*(h)) for 1 <h<h*+1 is the
unique root o* of the function f (o) = [g(X.(a)) — bl in I = (0, a/n], that is the
hth component of the vector

x (") =p's" M+ vV and p* = (a— (n—h+ o) /(h—1).
The solution of the optimization problem (P*(h)) for h > h* + 1 is zero.

Proof If (a”/n?)g(s")=>b the set S is the singleton {(a/n)s”} and the
problem (P*(h)) is trivial. Let S*(@)=LN{xeR™ x;<a, i=h,...,n},
1 <h<nand h* the integer satisfying condition (2.1).

We know that the minimum element of the set S=(«) with respect to
the majorization order is

X« () = (a/n)s” if a > (a/n),
X, (@) = ps" 1+ av" ! if a < (a/n) with
=(a-(n—h+1)a)/(h—1).
Asin Theorem 3.1,if x,() € S, then §=(a) N S = {x,(a)}. Now we claim
that there is a unique o* such that x,(a*) € S for 1 <h <h*+ 1 which is
the solution of the optimization problem (P*(h)). The last part of the
statement is similar to Theorem 3.1.

Because (a/n)s”"¢S, we have to show that the function
f(a)=g(x.(a)) — b) has a unique root in the interval 7= (0, a/n). Since

f'(@) = (Vg(xu(a)), d(x4(e))/de)

_ h
S Za—g @)+ 35 (@)
=1
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condition (3.1) yields f’(c)) < 0 in I. Furthermore

f(a/n) = g((a/n)s™) — b,
70) =g(j ") b

Letx € S. Weknow thatX # (a/n)s” and thus g((a/n)s") < g(X), thatis
g((a/n)s™) < b. Hence it follows that f(a/n) < 0. By (2.1) we get

b < g((a/h*)s")

and thus f(0) >0 for A<h*+ 1. The continuity of f guarantees the
existence of a solution of the equation f(«) = 0in /. Now we consider the
case h > h* + 1. Itiseasily verified that under this assumption there exists
avector x € S with the last (n — &) components equal to zero. In fact from
the definition of #*, it follows that g((a/h* + 1)s” *') < b. Now the vector
x(e) = ((a/h* + 1) — e/h*)s""*' + (e +¢/h*)e’ belongs to ¥ and x(e) >,
(a/k*+ s *'  for any O<e<(#*a)/(h*+1). In particular
x((h*a)/(h* + 1)) =ae'. From the previous consideration we obtain
g(x(e)) > g((a/h* + 1)s”*1) and since g(ae') > g((a/h*)s")>b, from
the continuity of g we deduce the existence of an &* such that
0<e* < (h*a)/(h* +1) and g(x(c*)) =b.

Finally, as proved in Bianchi and Torriero [3], the solution of problem
P*(1) is (a/n) if (@”/n? )g(s") = b, otherwise the first component of the
vector:

x*(a*) = a*s" 4 gre 1,

where h* is determined as in Lemma 1, o* is the unique root of the
equation

f(a) = glos” + (a— ok)e" ") — b in I
= (a/(h* +1),a/h*] and " = a — o*h*.

Example 3.1 Letg(x) =) 1, x?andset S=XN{xeR™ g(x)=b}.If
@/n=b, the set S is the singleton {(a/n)s"} and the problems P(k) and
P*(h) are trivial. If a®/n+ b, the integer A* such that ®/(h* +1)<b <
a2k, is h* =[a*/b).
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From Theorem 3.1, part 1 we have
f(a) = h(h—1)o* = 2a(h — Vo + (& — b)

and thus (o) =01in I=(0, a/h] if

a=%~‘/mlr—l-)-(b—%2). (3-2)

We note that the condition of reality of o implies 4> a?/b and this
condition is obviously satisfied if 4 > h* =[a?/b]. Hence x;, < a for h > h*.
From Theorem 3.2, part 2 we find

o? — 2ach + a* — b(n — h)
n—h

fla)=""

and thus f(a) = 0 in I = (a/n, a/h] if

m . YD) o3

We note that the condition of reality of « requires f(a/n) <0 and this
condition is satisfied. Furthermore we are sure that for 4 < A* the root o
belongs to 1. Hence x;, < o for A < h*.

Finally from Theorem 4.1 we get

_nln—h+1o—2ac*(n—h+1)+a>—bh—1)
f(Oé)— (h—l)

and thus f(a) =01in I=(0, a/n] if

_a J(h=1)(n—h+1)(nb—a?)
C=aT n(n—h+1) ' (34)

We note that the condition of reality of a requires f(a/n) <0 and this
condition is satisfied. Furthermore we are sure that for 1 <h <h* + 1 the
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root o belongs to I. Hence x;, > a for 1 <h < h* + 1. Observe that for
h > h* + 1 the root « becomes negative and thus we have not a significant
bound since we treat nonnegative ordered real numbers.

As a particular case, we remind that the previous results can be used to
give upper and lower bounds for the Ath eigenvalue of a symmetric
positive semidefinite matrix A, where a =tr(A) and b = tr(A?).

In particular (3.2) is derived by Merikoski et al. [8], through
optimization techniques, while (3.3) and (3.4) can be found in Wolkowicz
and Styan [16]. As special cases we find also some known upper bounds
for the maximum and the minimum eigenvalue (Wolkowicz and Styan
[16]). In fact from (3.3) and A= 1 we get

— 2
x1S2+ z l(b—g—)
n

while for 2= n from (3.2) we have

i (-3)

4 BOUNDS FOR NONNEGATIVE ORDERED REAL NUMBERS

By means of the optimization problem studied in Theorems 3.1 and 3.2
we can now find lower and upper bounds of x;, € ¥ for 2 > 1, generalizing
the results presented in Example 1. We recall that the case 2 =1 has been
already studied in [3].

To this aim let g(x) = "7, x’, being p> 1, and set S=EN{xeR™
g(x)=>b}. If b=a?/n?! then S={(a/n)s"} and the solution is (a/n).
Otherwise Lemma 2.1 implies the existence of an integer &* <n such

that
P P »
i —<b< a —; where h* = ’_\'/——
(h* + I)P (h*)P b
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is computed easily. Thus, applying Theorem 3, part 1 we get
fla,p) = (h—1)a? + (a —ha+a)’ —b

and the unique root of the equation f(c, p) = 0 in /= (0, a/h] is an upper
bound for x;, with h > h*.

We recall that the root of the function f'can be determined by applying
classical numerical methods for solving nonlinear equations.

From Theorem 3, part 2 we find

(a — ha)?

f(a,p) =ha”+(n—h)w—

b

and thus the unique root o* of the equation f(c, p) =0 in I=(a/n, a/h]
is an upper bound for x;, with 4 < k*. Finally from Theorem 4 we get

(a—(n—h-}—l)a)"_b

fla,p)=(m—h+1)a? +(h—1) Ty

and thus the unique root o* of the equation f(a, p)=0in /= (0, a/n]is a
lower bound for x;, with 1 < & < h*. We observe thatitiseasy to prove that
if ais an upper bound of x;, then (a — a)/(n — 1) is both a lower bound of
x, and an upper bound of x,,.

In the following tables, lower and upper bounds for x;,, Ai=1,...,n,
corresponding to different value of p and n, are listed. As previously
mentioned, these results are obtained by applying Theorems 3.1 and 3.2.
It can be seen that lower and upper bounds due to Tarazaga [15] and
Wolkowicz and Styan [16] are found as a particular case (p=2). Given
the set of ordered numbers {5,2.5,2,0.5} and {2.6,2.5,1.5,1.3,1,0.9,
0.2,0.1}, we find the following bounds.

By an inspection of the above tables, as p increases, both upper and
lower bounds of x; improve monotonically, showing that our bounds are
better than known ones (p =2) [15,16]. This results can also be proved
analytically, by using classical optimization methods. However it
appears that the bounds of remaining x; (i=2, .. ., n) are not necessarily
tighter than those obtained for p = 2. For example, the upper bounds of
x5 do well in Table I, but do not do well in Tables II(a) and (b), which
show improvements both for lower bounds of x;, x,, x3 and for upper
bounds of x, x5, Xs.



SOME LOCALIZATION THEOREMS 445
TABLE 1

P x1=5 X2=2.5 X3=2 x4=0.5
Lower Upper Lower Upper Lower Upper Lower Upper
bound bound bound bound bound bound bound  bound

2 39343 53062 1.5646  4.1202  0.8798 2.7324 0.0 1.5646
3 41603  5.1428 1.6191  4.1956  0.8044 2.5699 0.0 1.6191
4 42878  5.065 1.645 4.2935  0.7065 2.5268 0.0 1.645
5 43876  5.0292 1.6569  4.3882  0.61175  2.5113 0.0 1.6569
6 44689 5.013 1.6623  4.469 0.53099  2.505 0.0 1.6623
7 45347 5.0058 1.6647 4.5347  0.46529  2.5022 0.0 1.6647
8 4.5876  5.0026 1.6658  4.5876  0.41237  2.501 0.0 1.6658
9 4.6305 5.0011 1.6663  4.6305  0.36949  2.5005 0.0 1.6663

10  4.6657  5.0005 1.6665  4.6657  0.33433  2.5002 0.0 1.6665

TABLE Il(a)

)4 x1=2.6 x,=2.5 x3=1.5 x4=13
Lower Upper Lower Upper Lower Upper Lower Upper
bound bound bound bound bound bound bound bound

2 1.934 3.6 0.9143  2.7883  0.7372 23966  0.5621 2.1381
3 20664 3.247 0.9648  2.6606  0.7798 2.3617  0.583 2.1608
4 21897  3.0591 0.9916  2.6035  0.7988 23645  0.5813  2.2035
5 22453  2.9465 1.0076  2.577 0.8077 23799  0.5720  2.2475
6 22857 28736 1.0181 2.5646  0.8118  2.3981 0.5611 2.286
7 2318 2.8233 1.0252  2.5589  0.8137 24152 0.5509 2.318
8 23443  2.787 1.0304  2.5564  0.8145 24302 0.5419  2.3443
9 2.366 2.7597 1.0343  2.5554 0.8149 2.4429  0.5343  2.366

10 2.3841 2.7384 1.0374  2.5552  0.815 24536  0.5279  2.3841

TABLE II(b)

y4 X5=1 x6=0.9 X7=0.2 Xg=0.1
Lower Upper Lower Upper Lower Upper Lower Upper
bound bound bound bound bound bound bound bound

2 0.3619 1.9379 0.0 1.3994 0.0 1.1004 0.0 0.9143
3 0.3392 1.8405 0.0 1.402 0.0 1.1396 0.0 0.9647
4  0.2964 1.8193 0.0 1.4126 0.0 1.1631 0.0 0.9915
S 0.2525 1.8193 0.0 1.4228 0.0 1.1784 0.0 1.0076
6 0.2140 1.8136 0.0 14314 0.0 1.189 0.0 1.0181
7 0.1819 1.8132 0.0 1.4385 0.0 1.1967 0.0 1.0252
8 0.1556 1.815 0.0 1.4442 0.0 1.2024 0.0 1.0304
9 0.1339 1.8174 0.0 1.4489 0.0 1.2068 0.0 1.0343
10 0.1159 1.8201 0.0 1.4528 0.0 1.2103 0.0 1.0374
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