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In this note we localize ordered real numbers through their upper and lower bounds solving
a class of nonlinear optimization problems. To this aim, a majorization technique, which
involves Schur-convex functions, has been applied and maximum and minimum elements
ofsuitable sets are considered. The boundswe developcan be expressed in terms ofthemean
and higher centered moments ofthe number distribution. Meaningful results are obtained
for real eigenvalues of a matrix of order n. Finally, numerical examples are provided,
showing how former results in the literature can be sometimes improved through those
methods.
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1 INTRODUCTION

Given a set of ordered real numbers X X2 __’’" Xn and their mean #
and standard deviation a, it is well known (Wolkowicz and Styan [16])
that, by Chebychev and Cauchy-Schwarz inequalities, for any real
number Xk the following inequalities hold:

(/k- )1/2 (n_k)l/2#-r -k+
_< xk _< #+r k

<k_<n. (1.1)
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A meaningful application of these inequalities concerns the localization
ofeigenvalues ofa real spectrum matrix, for example a symmetric matrix
or, more generally, a symmetrizable matrix (Engel and Schneider [4],
Stefani and Torriero [12], [13]). Indeed, in this case, the mean and the
standard deviation can be directly computed using the matrix and its
second power traces respectively. In this framework, better lower and
upper bound of{x, x2,..., x} have been found by Tarazaga [14,15] and
Merikoski et al. [8]. More recently Bianchi and Torriero [3] have shown
that by using higher moments of the distributions of xi (where xi are not
necessarily eigenvalues of a matrix of order n), tighter bounds for Xl are
provided which include the ones previously found in the literature as a
particular case. Those bounds are obtained by means ofnonlinear global
optimization problems solved through majorization techniques, which
involve Schur-convex functions [9]. Obviously, ifxi are the eigenvalues of
a real spectrummatrixA, then the rthmoments #(0 oftheir distribution [5]
can be expressed as functions of the traces of the matrix itself and of its
powers as follows:

](r) EiLI x tr(Ar)
=, r--1,2,3,4,... (1.2)

n n

Furthermore

o:2_-]i=l(Xi-#)2_tr(A2 (tr(nA))
2

n -------- (1.3)

where #- #. In this paper we extend some results due to Bianchi and
Torriero [3] and upper and lower bounds for all xi (i= 1,2,...,n)
throughout the solution of a class of suitable nonlinear optimization
problems are obtained. In addition, some numerical examples are pre-
sented in order to compare our bounds with the known ones.

Finally, even though our results have been obtained by requiring the
nonnegativity of x, we will show later on that this assumption can be
relaxed.

2 NOTATIONS AND PRELIMINARY RESULTS

Let ej, j-- 1,..., n, be the fundamental vectors ofRn and set

J
SJ= -ei, j= l,...,n,

i=1

yj__ sn _$J.
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Assuming that the components of the vectors x, y E Rn are arranged in
a nonincreasing order, the majorization order x mY means:

(x,sk)<(y,sk), k=l,...,(n-1),
(x, s n) (y,

where (.,.) denotes the inner product in Rn [1 ], [2], [11].
We recall that for the set E={xER: xl>xa>...>xn>O,

(x, s ) a} as is well known (Marshall and Olkin [7]), the maximum
and the minimum elements with respect to the majorization order are
respectively

x*=ae and x,=(a/n)s n.

Thus x E implies x. --(m X --(m X*.

DEFINITION 2.1 Afunction A R, A C_ R, is calledSchur-convex, on
A if x <_mY implies b(x)< b(y). b is said to be strictly Schur-convex if
b(x) < b(y) andx is not apermutation ofy. ck is called Schur-concave on A
if x <_mY implies b(x)>_ b(y). b is said to be strictly Schur-concave if
b(x) > b(y) and x is not a permutation ofy.

Thus, the Schur-convex functions preserve the ordering of
majorization.

Observing that permutation preserves majorization, it follows that a
function b, defined on a symmetric set A, is Schur-convex on A if b is
Schur-convex on D f3 A, where D {x R": xl >_ X2 >__’’" >__ Xn). As a
consequence, wemay assume later on, without loss ofgenerality, that the
coordinates of vectors are arranged in nonincreasing order.

In the present paper we only deal with Schur-convex functions.
Analogous results can be proved for Schur-concave functions.

Let us firstly recall some basic results proved in Bianchi and Torriero

[3]. Let g be a continuous function, homogeneous ofdegreep,p real, and
strictly Schur-convex. Let us assume

S E {x Rn" g(x) b},

where b R is fixed such that S # 0 and

Y--" {X E Rn" x x2 "" Xn >_ 0, (x,sn) ---a}.
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The following fundamental lemma holds:

LEMMA 2.1 Let S E 71 {x E Rn: g(x) b} 0, being g a continuous

function, homogeneous of degree p and strictly Schur-eonvex and b R
fixed. Then either (aP/nP)g(s")=b or there exists a unique integer
< h* < n such that

ap ap

1)pg(sh*+l < b <_ (h,)pg(sh*). (2.1)+

Let us now introduce the following sets:

S>(o) 71 {x Rn" x o, i- 1,... ,h, 0 < c < a/h}, < h < n;

S-<(c)-E71(xRn: xi <_ a, h,. ,n}, <_ h <_ n.

Denoting with x*(c) and x,(c) the maximum and the minimum elements
of the previous sets with respect to the majorization order, we get:

for S>-(c0:
x*(a) (a ha)e + ash,
x,(a) (a/n)sn if a < (a/n),
x,(a) ash + pvh if a > (a/n), being p (a ha)/(n h).

for S<-(a) and h > 1:

x*(a)=ae1,
x,(a) (a/n)s" if a > (a/n),
X,(OZ) psh- q_ oh-1 ifa < (a/n), beingp (a (n h + 1)a)/(h 1),

and finally
for S-<(a) and h 1:

x*(a) as’ +0ek+l, being k =[a/a] and O=a-ak.
x,(a)=(a/n)s’.

As observed in the previous section, the hypothesis ofnonnegativity of
xi (i 1,..., n) is not restrictive and can easily be dropped out by means
of the following proposition:

PROPOSITION 2.1 (Bianchi and Torriero [3]) Let S C_ be asubset with
maximum and minimum elements, with respect to the majorization order,
given by x*(S) and x,(S) respectively. For r R let S= S+ rs’. Then
x*(S’) x*(S) + r s" andx,(S’) x,(S) + r s".
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Indeed, if S’ is the original set, the nonnegativity of the elements of S
is assured by taking r # tr(n 1)1/2 according to (1.1). Hence, by
Proposition 2.1, maximum and minimum elements for S’ easily follow.

3 A CLASS OF CONSTRAINED OPTIMIZATION PROBLEMS

In this section we develop some new bounds for Xh (h= 1,...,n)
throughout the solution of two nonlinear optimization problems. To
this aim, we shall follow the same methodology applied in Bianchi and
Torriero [3] for providing upper and lower bounds for
More precisely, each bound can be obtained by taking advantage of

some results on majorization order applied to the following optimization
problems:

(P(h)) maxF(xh) subject to x E S

(P*(h)) minF(xh) subject to x E S

where F" R -- R is an increasing function of xh.
It is immediate that from problems (P(h)) and (P*(h)) we can deduce

upper and lower bounds for xh respectively.
We observe that (P(1)) will provide, as a particular case, the same

results as those obtained in Bianchi and Torriero [3].
We start from problem (P(h)). The main result follows:

THEOREM 3.1 The solution ofthe optimization problem (P(h)) is the hth
component ofvector x, (a/n)s" if(aP/nP)g(s") b. If(aP/nP)g(sn) b let
h* the integer satisfying condition (2.1) with <_ h* < n. The solution ofthe
optimization problem (P(h)) is a*, where

(1) for h > h*, a* is the unique root of the functionf(a)=[g(x*(a))- b]
in I=(O,a/h], that is the hth component of the vector x*(a*)=
(a- ha*)e + a*sh.

(2) for h < h*, a* is the unique root ofthefunctionf(a) [g(x,(a)) b] in
I= (a/n, a/h], that is the hth component of the vector x,(a*)= a*$h +
p*vh and p* (a ha*)/(n h).

Proof If (aP/nP)g(sn) b the set S is the singleton {(a/n) sn } and the
problem (P(h)) is trivial. Let S>-(a)= E fq {x E Rn: xi > a, i= 1,... ,h,
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0 < a < a/h), < h < n and h* the integer satisfying condition (2.1). We
prove the theorem in two steps. In the first one we use the maximum
element of S>-(a) and in the second one the minimum element of S>-(a).

1. We know that the maximum element ofthe set S>-(a) with respect to
the majorization order is x*(a) (a ha)e + ash.
We note that if x*(a)ES, then S>-(a)fqS={x*(a)}. In fact if

x S>-(a) fq S and x x*(a), we find a contradiction, since x _<m x*(a)
implies g(x) < g(x*(a)) b.
Now we claim that there exists a unique a* such that x*(a*) S and

that x*(a*) is the solution of the optimization problem (P(h)) for
h > h* _> 1. The last part ofthe statement is immediate, since any element
of S that improves the objective function has the component h which is
bigger than a* and thus belongs to S -> (a*) which is impossible from our
previous consideration. To complete the proof we have to prove that
function

f(a) g(x*(a)) b

has a unique root in the interval I-- (0, a/h] for h > h*. Since

taking into account that (Hardy et al. [6]):

Og
(x)>

Og Og
0X1 2X2 (X) > > Xn (X), (3.1)

for all x E S, we deduce thatf’(a) < 0 in/since h > 1. Thusfhas a unique
root in the interval ! iff(0) > 0 andf(a/h) < O. We note that

f(0) g(ae1) b,

f(a/h) g((a/h)s h) b.

Let E S. If ae thatisg(ae1) b, the set Sis the singleton {ae } and
the optimization problem is trivial.

If ae, set # (Y/a) Y]I (X E Rn: Xl x2 Xn O,
(x, s n) }. Since e is the maximum element of the set E with respect
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to the majorization order, it is easy to verify that g() < g(e ), and thus
f(O) > O. Furthermore the integer h* satisfies the condition

h
a h’+l)g +1 s <b

and thus f(a/h) < 0 for h > h*. The continuity off guarantees now the
existence of a solution a* of the equationf(a) 0 in I.

2. We know that the minimum element ofthe set S -> (a) with respect to
the majorization order is

if a < (a/n),

if a > (a/n) with p (a- ha)/(n h).

As in part 1, if x,(a)E S, then S>-(a)NS= {x,(a)). Now we claim that
there is a unique a* such that x,(a*)E S for h < h* and x,(a*) is the
solution of the optimization problem (P(h)).
The last part of the statement is similar to part 1.
Because (a/n)snqS, we have to show that the function

f(a) g(x,(a)) b has a unique root in the interval I (a/n, a/h]. Since

we can verifyf’(c0 > 0 in L by condition (3.1). Furthermore

f(a/n) g((a/n)sn) b,

f(a/h) g((a/h)s h) b.

Let E S. Weknowthat - (a/n)s n and thus g( (a/n)s n) < g(), that
is g((a/n)s) < b. This condition impliesf(a/n) < 0. From Lemma 2.1 we
also know that

g(r/a)<_ g(---s h*)
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and thusf(a/h) > 0 for h < h*. The continuity offguarantees the existence
of a solution of the equationf(a) 0 in L
Now we study the problem (P*(h)) for h > proving the following

result:

THEOREM 3.2 The solution of the optimization problem (P*(h)) is
the hth component of the vector x,=(a/n)s if (aP/nP)g(sn)=b. If
(aP/nP)g(s’) b let h* the integer satisfying condition (2.1) with < h* < n.
The solution of the optimization problem (P*(h)) for < h < h* + is the
unique root a* ofthefunctionf(a) [g(x,(a)) b] in I- (0, a/n], that is the
hth component ofthe vector

x,(a*) p*sh-1 + a*vh-1 and p* (a- (n h + 1)a*)/(h 1).

The solution of the optimization problem (P*(h))for h > h* + is zero.

Proof If (aP/nP)g(sn)= b the set S is the singleton {(a/n)s"} and the
problem (P*(h)) is trivial. Let S4(a) E N {x E Rn: xi _< a, i- h,..., n},
< h _< n and h* the integer satisfying condition (2.1).
We know that the minimum element of the set S -< (a) with respect to

the majorization order is

x,(a) (a/n)s n if a > (a/n),

x,(a) psh- + avh- if a < (a/n) with

p (a (n h + 1)a)/(h 1).

Asin Theorem 3.1, ifx,(a) E S, then S<-(a) N S {x,(a)}. Nowwe claim
that there is a unique a* such that x,(a*) S for < h < h* + which is
the solution of the optimization problem (P*(h)). The last part of the
statement is similar to Theorem 3.1.

Because (a/n)s".S, we have to show that the function
f(a) g(x,(a)) b) has a unique root in the interval I (0, a/n). Since

f’(a) (Vg(x,(a)), d(x,(a))/da)

(h n) Og - tgg
(h- 1) i=1

X/(X*(O)) + X/(X*(O))’
i=h
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condition (3.1) yieldsf’(a) < 0 in I. Furthermore

f(a/n) g((a/n)s n) b,

( a sh_l)-bf(0)=g h-I

Let E S. We know that - (a/n)sn and thus g((a/n)sn) < g(), that is
g((a/n)sn) < b. Hence it follows thatf(a/n) < 0. By (2.1) we get

b < g((a/h*)sh*)

and thus f(0)> 0 for h < h*+ 1. The continuity of f guarantees the
existence ofa solution ofthe equationf(a) 0 in L Nowwe consider the
case h > h* + 1. It is easily verified that under this assumption there exists
a vector x E Swith the last (n h) components equal to zero. In fact from
the definition ofh*, it follows that g((a/h* + 1)sh*+l) < b. Now the vector
x(e)=((a/h* + 1)-e/h*)sh*+l +(e +e/h*)e belongs to E and x(e) m
(a/h* + 1)sh*+1 for any 0 < e < (h*a)/(h* + 1). In particular
x((h*a)/(h*+ 1))=ae1. From the previous consideration we obtain
g(x(e)) > g((a/h* + 1)Sh*+l) and since g(ae1) > g((a/h*)sh*) > b, from
the continuity of g we deduce the existence of an * such that
0 < * < (h*a)/(h* + 1) and g(x(e*)) b.

Finally, as proved in Bianchi and Torriero [3], the solution ofproblem
P*(1) is (a/n) if (aP/nP)g(sn)=b, otherwise the first component of the
vector:

x* (*) ,_h* 0,eh*+l

where h* is determined as in Lemma 1, a* is the unique root of the
equation

f(a) g(os h* h*+ (a- ak)e +1)_bin
(a/(h* + 1),a/h*] and 0*= a- a’h*.

Example 3.1 Let g(x) Ein=l X/2 and set S= E fq {x E R": g(x) b}. If
a2/n b, the set S is the singleton {(a/n)s"} and the problems P(h) and
P*(h) are trivial. If a2/n b, the integer h* such that aZ/(h + 1)< b _<
aZ/h*, is h* [a2/b].
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From Theorem 3.1, part we have

f(a) h(h 1)a2 2a(h 1)a + (a2 b)

and thusf(a) 0 in I (0, a/h] if

b- (3.2)

We note that the condition of reality of a implies h >_ a2/b and this
condition is obviously satisfied ifh > h* [a2/b]. Hence xh _< a for h > h*.
From Theorem 3.2, part 2 we find

f(a)
nha2 2aah + a2 b(n h)

and thusf(a) 0 in I-- (a/n, a/h] if

a v/h(n h)(nb a2)
a -4- (3.3)

n nh

We note that the condition of reality of a requires f(a/n)< 0 and this
condition is satisfied. Furthermore we are sure that for h < h* the root a
belongs to L Hence Xh < a for h < h*.

Finally from Theorem 4.1 we get

f(a) n(n h + 1)a 2aa2(n h + 1) + a2 b(h 1)
(h- 1)

and thusf(a) 0 in I-- (0, a/n] if

a v/(h-1)(n-h+l)(nb-a2)
a (3.4)

n n(n h 4- 1)

We note that the condition of reality of a requires f(a/n) < 0 and this
condition is satisfied. Furthermore we are sure that for < h < h* 4- the
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root a belongs to L Hence Xh O for < h < h* + 1. Observe that for
h > h* / the root a becomes negative and thus we have not a significant
bound since we treat nonnegative ordered real numbers.
As a particular case, we remind that the previous results can be used to

give upper and lower bounds for the hth eigenvalue of a symmetric
positive semidefinite matrix A, where a tr(A) and b tr(A2).

In particular (3.2) is derived by Merikoski et al. [8], through
optimization techniques, while (3.3) and (3.4) can be found in Wolkowicz
and Styan [16]. As special cases we find also some known upper bounds
for the maximum and the minimum eigenvalue (Wolkowicz and Styan
[16]). In fact from (3.3) and h we get

x _<-+ b-
n

while for h n from (3.2) we have

a /(n n-l)
b

4 BOUNDS FOR NONNEGATIVE ORDERED REAL NUMBERS

By means of the optimization problem studied in Theorems 3.1 and 3.2
we can now find lower and upper bounds ofxh E for h > 1, generalizing
the results presented in Example 1. We recall that the case h has been
already studied in [3].
To this aim let g(x) in=l xf, being p > 1, and set S E f3 {x E R:

g(x)=b}. If b=aP/np- then S= {(a/n)s’} and the solution is (a/n).
Otherwise Lemma 2.1 implies the existence of an integer h* < n such
that

aP aP
h* [ -]where P

(h* + 1)p-1
< b _<

(h,)p_l
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is computed easily. Thus, applying Theorem 3, part we get

f(a,p) (h |)op -[- (o hoz -[-- o) p b

and the unique root of the equationf(a, p) 0 in I (0, a/h] is an upper
bound for Xh with h > h*.
We recall that the root ofthe functionfcan be determined by applying

classical numerical methods for solving nonlinear equations.
From Theorem 3, part 2 we find

f(a,p) hap + (n h) (a hoop
(n-h) p -b

and thus the unique root a* of the equationf(a,p)=O in I=(a/n,a/h]
is an upper bound for xh with h _< h*. Finally from Theorem 4 we get

f(a,p) (n h + 1)ap + (h 1) (a (n h + 1)o) p

(h- |)P

and thus the unique root a* of the equationf(a,p) 0 in I (0, a/n] is a
lower bound forXh with < h < h*. We observe that it is easy to prove that
ifa is an upper bound ofxl, then (a a)/(n 1) is both a lower bound of

x2 and an upper bound of xn.
In the following tables, lower and upper bounds for Xh, h 1,..., n,

corresponding to different value of p and n, are listed. As previously
mentioned, these results are obtained by applying Theorems 3.1 and 3.2.
It can be seen that lower and upper bounds due to Tarazaga [15] and
Wolkowicz and Styan [16] are found as a particular case (p 2). Given
the set of ordered numbers {5,2.5,2,0.5} and {2.6,2.5, 1.5, 1.3, 1,0.9,
0.2, 0.1 }, we find the following bounds.
By an inspection of the above tables, as p increases, both upper and

lower bounds ofxl improve monotonically, showing that our bounds are
better than known ones (p 2) [15,16]. This results can also be proved
analytically, by using classical optimization methods. However it
appears that the bounds ofremaining xi (i 2,..., n) are not necessarily
tighter than those obtained forp 2. For example, the upper bounds of

x2 do well in Table I, but do not do well in Tables II(a) and (b), which
show improvements both for lower bounds of x, x2, x3 and for upper
bounds of X1, X2, X5.
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Lower Upper
bound bound

TABLE

x2=2.5 x3=2
Lower Upper Lower Upper
bound bound bound bound

x4 =0.5

Lower Upper
bound bound

2 3.9343 5.3062 1.5646 4.1202 0.8798 2.7324
3 4.1603 5.1428 1.6191 4.1956 0.8044 2.5699
4 4.2878 5.065 1.645 4.2935 0.7065 2.5268
5 4.3876 5.0292 1.6569 4.3882 0.61175 2.5113
6 4.4689 5.013 1.6623 4.469 0.53099 2.505
7 4.5347 5.0058 1.6647 4.5347 0.46529 2.5022
8 4.5876 5.0026 1.6658 4.5876 0.41237 2.501
9 4.6305 5.0011 1.6663 4.6305 0.36949 2.5005
10 4.6657 5.0005 1.6665 4.6657 0.33433 2.5002

0.0 1.5646
0.0 1.6191
0.0 1.645
0.0 1.6569
0.0 1.6623
0.0 1.6647
0.0 1.6658
0.0 1.6663
0.0 1.6665

xl =2.6

Lower Upper
bound bound

TABLE II(a)

x2 2.5 x3 1.5

Lower Upper Lower Upper
bound bound bound bound

x4 1.3

Lower Upper
bound bound

2
3
4
5
6
7
8
9
10

1.934 3.6 0.9143 2.7883 0.7372 2.3966 0.5621 2.1381
2.0664 3.247 0.9648 2.6606 0.7798 2.3617 0.583 2.1608
2.1897 3.0591 0.9916 2.6035 0.7988 2.3645 0.5813 2.2035
2.2453 2.9465 1.0076 2.577 0.8077 2.3799 0.5720 2.2475
2.2857 2.8736 1.0181 2.5646 0.8118 2.3981 0.5611 2.286
2.318 2.8233 1.0252 2.5589 0.8137 2.4152 0.5509 2.318
2.3443 2.787 1.0304 2.5564 0.8145 2.4302 0.5419 2.3443
2.366 2.7597 1.0343 2.5554 0.8149 2.4429 0.5343 2.366
2.3841 2.7384 1.0374 2.5552 0.815 2.4536 0.5279 2.3841

x5=

Lower
bound

Upper
bound

TABLE II(b)

X 0.9 X 0.2

Lower Upper Lower Upper
bound bound bound bound

x8 =0.1

Lower
bound

Upper
bound

2 0.3619
3 0.3392
4 O.2964
5 0.2525
6 0.2140
7 0.1819
8 0.1556
9 0.1339
10 0.1159

1.9379
1.8405
1.8193
1.8193
1.8136
1.8132
1.815
1.8174
1.8201

0.0 1.3994 0.0 1.1004
0.0 1.402 0.0 1.1396
0.0 1.4126 0.0 1.1631
0.0 1.4228 0.0 1.1784
0.0 1.4314 0.0 1.189
0.0 1.4385 0.0 1.1967
0.0 1.4442 0.0 1.2024
0.0 1.4489 0.0 1.2068
0.0 1.4528 0.0 1.2103

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.9143
0.9647
0.9915
1.0076
1.0181
1.0252
1.0304
1.0343
1.0374
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