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For nonlinearparabolic problems in a bounded domain under dynamical boundary condi-
tions, general comparison techniques are established similar to the ones under Neumann
or Dirichlet boundary conditions. In particular, maximum principles and basic a priori
estimates are derived, as well as lower and upper solution techniques that lead to functional
band type estimates for classical solutions. Finally, attractivity properties ofequilibria are
discussed that also illustrate the damping effect of the dissipative dynamical boundary
condition.
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1 INTRODUCTION

The aim of this paper is to develop a qualitative theory for parabolic
problems in a bounded domain under dynamical boundary conditions,
i.e. conditions of the form

crOtu + cO,u pu + h

on a part of the time lateral boundary. Throughout we deal with upper
and lower solutions or with pairs of functions with separating parabolic

* Corresponding author.

467



468 J. vor BELOW AND C. DE COSTER

defect. First, we derive comparison techniques and monotonicity
properties of the flow similar to those in the nondynamical case. Then
we establish the existence ofparticular solutions notably the infimal and
supremal solutions obtained for a comparable pair of lower and upper
solutions. These techniques are applied in order to obtain attractivity
results for equilibria for reaction-diffusion-equations, that, in turn,
illustrate the damping effect of the dissipative dynamical boundary
condition on the convergence behaviour.

Suppose f c_ IRn is a bounded domain whose boundary is decom-
posed into two disjoint parts

where 02f is ofclass t72 and relatively open in 0f. Let u" 029t --ndenote
the outer normal unit vector field on 02f and 0 the outer normal
derivative. For T> 0 we set Qr f [0, T] and introduce the para-
bolic interior QTr and the parabolic boundary qr as

Qr (ft U 02f2) x (0, T] and qr Or \ Qr.

This terminology will be justified by the results below. We consider
general parabolic equations of the form

Otu F(x, t, u, Vu, D2u) =: Flu]

and inequalities associated to them, where throughout we suppose that

F" Or IR IRn IRn2 -- IR is increasing

with respect to q D2u. (1)

Here the order ,4 < B between symmetric matrices means that the
matrix B- A is positively semidefinite. Unless otherwise stated, we do
not require strict monotonicity. Thus, many of the results below include
possible degeneracies of the principal part as e.g. the porous medium
equation.
On 01f (0, T] we prescribe an inhomogeneous Dirichlet condition,

while on 02ft (0, T] we consider the dynamical boundary condition
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B(u) 0 with

t() := (,, t)o,, + (,, t)Ou ;(, t). (2)

Throughout we will assume the dissipativity condition

c>0, r_>0 onoq2fx(0, T]. (3)

Without condition (3) blow up and nonuniqueness phenomena can
occur. Take e.g. the function u(x, t) -(T+ Xl 0-1 defined on the open
unit ball 9t {x Et Ilxl12 < }. Then u satisfies

Otu 1/2(T+ x, t+ 2)Au- 2(T+ x, t)llVull

in f x [0, T) and xlOtu + O,.,u 0 on 0f x [0, T), while u blows up for
T in f and on 0f.

2 COMPARISON AND MAXIMUM PRINCIPLES

The basic tool for comparing classical solutions is given by the following
lemma that generalizes the techniques developed in [11 and that can also
be used in more general cases [5].

LEMMA 2.1 Let o, b C(0_.7") fq C2’1 (O7) satisfy

B(qo) <_ B() on c92f x (0, T] (4)

and the test point implication

79 , 7qo 2, D2 o <_ D2
===> C9t9 < c9, at (x, t).

at (x, t) QT

Then p < b on qT- implies qo < b in Qr.

Proof Suppose that o < on qT. Set

t* sup{r [0, T]lo < b on (f tO 02f) x (0, r)}

and H (f2 U 02f) x {t* }. Hence 6 := b o >_ 0 on H. Suppose that
6(p)=0 for p=(,t*)H. If , then Ot6(p)<_O which is
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excluded by (5). If E 02’2, then Off(p)<_ 0, O,.,6(p)<_ 0 and (4) imply
tr(p)Ot6(p) 0 and V6(p) 0, which leads to DEt(p) _> 0. Thus Ot6(p) > 0
by (5), which contradicts Ot6(p)<_ O. We conclude < b on H, and
finally, a compactness argument yields t* T.

Lemma 2.1 yields the following comparison principles and estimates
with respect to the parabolic boundary qr.

THEOREM 2.2 Suppose that Fsatisfies a one-sided Lipschitz condition

w >_ u = F(x, t, w,p, q) F(x, t, u,p, q) < L(w u) (6)

in Q 7, I x ]1n X ]n2 for some constant L > 0, and there exists b -such that p < bcr on 02f x (0, T]. Let u, v C(07,) N C2’1 (07,) satisfy

Otu- Flu] < Otv F[v]
<_ t (v)

Then u < v on qT- implies u < v in QT..

Proof We may assume L > 1, b > 1. For e > 0 set u and b= v +
eL- e2Lbt. Then

13() 13(v) + ee2zbt(2bo" L-lp) > B() on 0:f x (0, T]

and at a test point with the hypotheses from (5) we conclude, using (1),

0 OtV OtU F[V] + Flu]
OtY OtU F[b] + Flu] + e exp(2Lbt)

<_ Otv Otu + e exp(2Lbt) < Ot2 Otp.

Lemma 2.1 implies qo < b, and, since e > 0 was arbitrary, u < v in QT,.

COROLLARY 2.3 Under the assumptions ofTheorem 2.2 the initialbound-
ary value problem (7) admits at most one solution in C(07) fq C2’1 (QT,)"

Otu F(x, t, u, 7u, D2u)
t)O,u + c(x, t)O u p(x, t)u o

U [qr 3 C(qz).

in

on 02f x (0, T], (7)
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As usual, the comparison principle assures the positivity of the flow,
if 0 has nonnegative parabolic defect.

COROLLARY 2.4 Under the assumptions of Theorem 2.2 and the addi-
tional hypothesis F(., ., O, O, O) > O, a solution u E C(T) n C2’1 (aT) of

Otu F [u] > 0 in QT,

B(u) >_ 0 on 02f x (0, T],
u>O onqr,

satisfies u > 0 in QTy.

Next, we deduce a weak maximum principle.

THEOREM 2.5 Suppose F(., ., ., O, O) < 0 (F(., ., ., O, O) > O) and p < 0 on

02f (0, T]. Let u C(Or) C2’ (QT) satisfy

Otu <_ Flu] <Otu >_ F[u]) in

B(u) < 0 (B(u) > O) on O2f (0, T].

Then

max(u, O} m_ax(u, O} (min(u, O} m_in{u, 0}).
qr Qr qr Qr

Proof For e>0, apply Lemma 2.1 to qo=u and b= et+e+
maxqr{U, 0} in the maximum case and to o minqr{U 0} e et and
b u in the minimum case.

Of course, the weak maximum principle contains a positivity con-
clusion similar to the one of Corollary 2.4 under the stronger condition
F(.,.,., 0, 0) > 0, but without (6).

Moreover, for a homogeneous boundary operator we deduce the

COROLLARY 2.6 Under the conditions of Theorem 2.5 and, in addition,
p 0 on 02 X (0, T], u satisfies

max u max u ( min u m_in u).

Another classical a priori estimate [9] can be carried over to the
dynamical case.
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THEOREM 2.7 Suppose u E C(Or) f3 C2’1 (Qr) is a solution of the IBVP
(7), where Ffulfills an Osgood type sign condition

3bl,b. >_ O, V(x,t) QT, Vz I" zF(x,t,z,O,O) <_ blz + b2 (8)

and p <_ bcr on 029t (0, T] for some constant b >_ O. Then

Or A>b,,A_>b qr A- bi (9)

Proof Apply Lemma 2.1 to - u, b (1 + )e-’xt max{maxqr lul,
v/ba/(A-bl)} with A>bl, A>b and e>0. We have /3()>0 on

029t (0, T] and with (8) we conclude that at a test point (x0, to) as in (5),’

Otb Otq A F(xo, to, , O, D

>_ Ab F(xo, to, p, O, O)

>_ - -- >_ ( )(- ) > o.

Thus u < b. In order to show -u < we apply Lemma 2.1 to -u

and proceed similarly.

Next, we derive a strong maximum principle for strongly parabolic
quasilinear operators of the form

02u
D[u] := aik(x, t, u, Vu) OxiOXk +f(x, t, u, Vu)

using tensor notation and with positive constants #1 and #2 such that

0 <_ #1* <_ aJm( ", ", ", ")(jn <_ #2(*(

for all Nn. Moreover, we have to assume p 0 in (2), thus we define

t3o(u) (x, t)Otu + (x, t)Ou.

THEOREM 2.8 Suppose there exists a positive constant C such that

f(’, ", ",P) <_ ClPl (f(’, ", ",P) >_ -ClPl) (10)
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in Qr x ". Let u E C(O.r) f t72’1 (Qr) be a solution of

Otu < D[u] (Otu > O[u]) in f2 x (0, T],

and

to(u) _< o (Zo(u) _> o) in o x (o, 2]. (12)

Then

/ m_in minmaxu=maxu u- uT,
O_.r qr Qr q

andifu attains itsmaximumM (its minimum m) at somepoint (Xo, to) E QT,

then u M u m) in Qto

Proof If suffices to show the assertion in the maximum case, in the
minimum case we proceed similarly.

If u attains its maximum M at (Xo, to) with Xo 9t then we conclude
u=M for < to using the classical strong maximum principle for
domains, see e.g. [11, IV.26]. By continuity, this shows max0Tu
maxqT u and the strong assertion in the case Xo

Next, suppose that u attains M at (Xo, to) with Xo 02f and u < M in
(0, to]. Then, as 029t is a relatively open t72-part of the boundary of

f, we find an open ball B {y E f Ily- yol12 < e} c_ 9t of radius e > 0
with Xo OB. By (10) and (11 ), u satisfies a linear inequality with bounded
coefficients

02U OU
OtU lJ’m (X, t) "[" J(X, t) _-’’y__OxOx,.

where we have set {tJm(x, t) aJm(x, t, u(x, t), Vu(x, t)), bJ(x, t)
Csign((O/Oxj)u(x, t)). This allows the application of the Friedman-
Viborni-Theorem 3.4.6 of[10] in order to conclude that

Ouu(xo, to) > O.

But this is impossible by (12) and (3) and so u has to attain its maxi-
mum in f x (0, to]. With the case already shown above we conclude u M
in Or0.
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Note that in Corollary 2.6, we had to suppose the differential
inequality also in 02F x (0, T]. We note in passing that for simplicity
reasons, the same assumption has been made in [6, Theorem 2.7].
But, following the arguments in the network case [2,4], the strong
maximum principle for quasilinear operators holds also in ramified
spaces without the assumption of differential inequality on the
interfaces.

LOWER AND UPPER SOLUTIONS FOR
TIME-PERIODIC PROBLEMS

We consider the periodic problem

Otu a(x)Au +f(x, t, u)
t)O u + t)O ,u t)u o

u=0

u(x, O) u(x, T)

in F x (0, T],
on 02F x (0, T],
on 0 x (0, T],
in ft.

(13)

We assume

a E tT(f, (0, 0));

f: f2 x [0, T] x/R IR is continuous and T-periodic in t;

c E tT(O2f x [0, T], (0, )), cr E C.(O2f’t x [0, T], [0, )) and

p E C(02f x [0, T]) are T-periodic in t.

(14)

We extend all the coefficients by periodicity to f x [0, cx). Moreover,
for the sake of simplicity and as we do not want to treat existence results
here, we assume to have enough regularity such that

for every - > 0, the operator N" C(O_..,.) x Co(f) C(O__.-) x Co(f’t),
is continuous, compact, and satisfies (15)

Range(N) c (C(O-) fq C2’1 (Q)) x C0(f),
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where C0(fZ) (u E C(fl) u 0 on c31fl} and (u, u(., 0)) N(v, uo)
is the solution of

Otu a(x)Au +f(x, t, v)
or(x, t)Otu + c(x, t)Ouu p(x, t)v
u=O

u(x, O) Uo(X)

in f x (0,
on 02fl x (0, -],
on 01 f x (0,
in f.

Note that the operator N is well defined due to Corollary 2.3. More-
over, in view of known existence results, e.g. [3,4 (Chap. 12), 6 or 8], the
hypothesis (15) is reasonable.

DEFINITION 3.1 Afunction O C(OT) N C2’1 (QT) is a lower solution of
(13) if

Ota <_ a(x)Aa +f(x, t, a)
(x, t)o, + (x, t)o <_ p(x,
a<O

a(x, O) < a(x, T)

in f x (0, T],
on O9.Ft x (0, T],
on 01f’t x (0, T],
intl.

An upper solution/3 C(Or) C’ (Qr) of(13) is defined in a similar way
by reversing all the above inequalities.

We also consider the Cauchy problem

Otu a(x)Au +f(x, t, u)
or(x, t)Otu -+- c(x, t)Ouu p(x, t)u
u=O

u(x, O) Uo(X)

in f x (0, r],
on Ofl x (0, r],
on 01 (0, 7-],
in f.

(16)

DEFINITION 3.2
(16)/f

Afunction a 6(07) 62’1 (Qr) is a lower solution of

Ota <_ a(x)Aa +f(x, t, a)
,,(x, t)o,, + (x, t)o, <_ p(x,
a<O

,(x, o) < uo(x)

ina (o, -],
on 02[2 x (0,
on O1FI x (0,
intl.
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An upper solution/3 E C(0) f3 C2’1(Q) of(16) is defined a similar way
by reversing all the above inequalities.

PROPOSITION 3.3 Assume that(14)and(15)are satisfiedanduo Co(f).
Let a and be lower and upper solutions of (16) such that a <_ on Q..
Then theproblem (16) has at least one solution u C(O) A e2’1 (Q) with

a<_u<_fl on Q.

Proof Consider the modified problem

Otu a(x)Au +f(x, t, q,(x, t, u))
t)ot + o(x, t, u)

u--O

u(x, o) uo(x)

in 9t x (0, -],
on 02’ x (0, T],
on 019t x (0, -],
in 9t,

(17)

where "y(x, t, u) a(x, t) + (u a(x, t))+ (u -/3(x, t))+. By assumption
(15), we can apply Schauder’s Fixed Point Theorem to prove that
(17) has at least one solution u C() N C2’1 (Q). Let us show that a _< u
on Q. Similarly one shows that u _</3 on Q.

Set v u a and assume that minrv < 0. As v >_ 0 on q, there exists

(Xo, to) Q such that v(x0, to) minv. Then the strong minimum
principle Theorem 2.8 applied locally to

Otv- a(x)Av >_ O,

and the Friedman-Viborni-Theorem 1.c. yield a contradiction.

Remark 3.4 The assumption a,/3 C(0) N C2’1 (Q) can be relaxed
to: for some 0 to < tl <... < tn =’r, Oglfi(ti,ti+l] ][z’X(ti,//+l E C(e’ X
(ti,/i+1]) A C2’1 (( U 02) (ti, ti+l]) and for each x (,
i=l,...,n- 1,

a(x, ti) lim a(x, t) >_ lim a(x, t)
t-t; t--t

and

/(X, ti) lim/3(x, t) < lim/3(x, t).
t-*t;
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PROPOSITION 3.5 Assume (14) and (15) are satisfied and uo E Co(f).
Then, thefollowing holds:

(i) /f al, a2 are lower solutions and is an upper solution of (16)
satisfying al </3 and a2 </3 then there exists a solution u of (16)
satisfying max{a1, a2} < u </3;

(ii) /fa is a lower solutions and, /32 are upper solutions of(16) satisfying
a < 31 and a < 2 then there exists a solution u of (16) satisfying
a _< u < min{/31,/32}.

Proof The proof of (i) is exactly the same as in Proposition 3.3 with
a max{al, O2) if we observe that V(Xo, to) is either U(Xo, to) Ol(xo, to)
or u(xo, to) az(Xo, to). Part (ii) is similar.

PROPOSITION 3.6 Under the assumptions ofProposition 3.3, theproblem
(16) has an infimal and a supremal solution Uinf and Usup in [,/3 i.e.

Uinf, Usup E C(0-r) f"l C2’1 (Q) are solutions of(16) with a <_ Uinf Usup/
and every solution u C(O) N C2’1(Q) of (16) such that a < u <
satisfies

Uinf u Usup.

Proof Let
(16)} and
(16) }. Define

{#’Q : a <_ # <_/3,/z is a lower solution of
H {u" Q : a <_ u </3, u is an upper solution of

Uinf(X, l) inf{u(x, t)" u

Uup(X, t) sup{#(x, t)" #

We will show that Uinf is an infimal solution. The proof that Usup is a

supremal solution is similar.
Let {(Xu, t)}= be a dense subset of Qr and for N= 1,2,..., let

{uV,m}m= be a sequence ofupper solutions such that

lmim tlN,m (XN, IN) Uinf(XN, tN).

Let I(X, t) =/l,l(X, t). It follows from Proposition 3.3 that there exists
a solution Ul of (16) such that a _< u _</31. Let/2 be defined by

/32(t) min(ul (x, t), ul,2(x, t), u,2(x, t)}
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then, by Proposition 3.5, there exists a solution u2 of (16) such that
a < u2 </32. Let us define inductively

/i+1 (Y, t) min(ui(x, t),/1,i+1 (y, t),...,/,/i+1,i+1 (y, t)),

then there exists a solution Ui+ of (16) such that a < Ui+ (__ i+l"
Hence, we have a sequence {ui}i=l of solutions of (16) such that

By assumption (15) and monotonicity, we deduce that the sequence {Ui}
converges in C(Or) to a solution u of (16). Furthermore, it is clear that,
for every N 1,...,

lim Ui(XN, tN) Uinf(XN, tN).

Hence U(XN, tu) Uinf(XN, tu) for all Nc 1. As {(XN, tu)}NiS dense in Q,
it follows that u Uinf on 0r. In fact, assume by contradiction that for
some (2, -) c Q, u(.2, ) > Uinr(, ). By definition of Uinf, we can find
u b/so that Uinf(2, ) _< u(, ) < u(, -) and for (x, t) near enough
(,-{), u(x, t) < u(x, t). This is a contradiction if we choose (x, t) as an
element of the set { (xv, tu))=l. This concludes the proof if we observe
that every solution u with c < u </3 satisfies u b/and hence u > uinf.

Note that several authors prefer the terminology maximal and mini-

mal solution for supremal and infimal solution. But, in order to avoid
confusion with maximality in the sense ofexistence, we prefer the notion
adopted here.

THEOREM 3.7 Assume that (14) and (15) are satisfied. Let and 3 be
lower and upper solutions of (13) such that c < fl on OT and c(., 0),
/3(., O) Co(f). Then, thefollowing hotds:

(i) there exist Uinf and Usup infimal and supremal solutions of (13) in

[a, i.e. Uinf and Usup are solutions of(13) in [, such that every
solution u of(13) with < u </3 satisfies

Uinr u < Usup;
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(ii) there exist 5 and t3 solutions of (16) with " ec and respectively
Uo(.) a(., 0), Uo(’) =/3(., O) such that

O 5 Uinf Usup

_
3 /

and

lim 115(., t) Uinf(’, t)[Ic0() 0,
t---oc

lim [[/3(., t) Usup(’, t)[lc0(fi 0;

(iii) every solution u of(16) such that a < u </3 on Qo satisfies 5 < u <
Oil Ooco

Remark 3.8 By (iii), 5 and/ are the infimal and the supremal solutions
of (16) in [a,/3 ], respectively with u0(.) a(., 0) and u0(.) =/3(., 0).

Proof Let us prove the result for Uinf and 5. The other part is similar.
Define a sequence (5n)n offunctions as follows. Take as 50 the infimal

solution of

Ot5o a(x)ASo +f(x, t, 50)

t)o,C o + t)o C o p(x, t)C o

5o 0

C o(x, o) o)

in f x (0, T],

on 02 x (0, T],

on 01f (0, T],

in f,

(18)

satisfying a < 5o </3. Such an 5o exists by Proposition 3.6 as a and
/3 are lower and upper solutions of (18). Moreover 50 satisfies
50(., T) _> a(., T) _> a(., 0)--50(., 0). Then, we define recursively
(Sn), by taking, for n >_ 1, as 5n the infimal solution of

Ot5n a(x)A5n +f(x, t, 5.)
r(x, t)Ot5n + c(x, t)Ou5n p(x, t)5n
5n 0

an(X, o)

in 9t x (0, T],
on 02f x (0, T],
on 01 fl x (0, T],
in f,

(19)

satisfying 5,-1 < 5, </3. Again such an 5, exists by Proposition 3.6
as 5n-1 and /3 are lower and upper solution of (19) with
Moreover, 5n satisfies 5,(., T)> 5n-1(’, T)= 5n(’,O). Accordingly,
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we have defined a sequence (&n)n oflower solutions of (13) such that, for
each n > 1,

a _< ,-1 _< , _</3 (20)

and

n(X, O) n-1 (X, T) in f. (21)

By monotonicity, (n)n converges pointwise in Qr to some function u

satisfying a < u </3. Moreover, by assumption (15) and monotonicity,
we deduce that the sequence (cn)n converges in C(Qr) to a solution u

of(13).
Now, define a function ’Q I as follows. If, for some n E 11,

(x,t) O x [nT,(n+ 1)T),we set

C (x, t) ,,r).

It is easy to see that & is continuous, c(x, t)= 0 on 01’- X (0, C),
(., 0) a(., 0) and, for each n 1t, &[[nr,(,,+l)rl C.(Ft
[nT, (n + 1)T]) f3 e2’l((Ft tO 02f) (nT, (n + 1)T]). By the periodicity
of the coefficients, & also satisfies, for each n 1, the equations

Ot6, a(x)A& +f(x, t,

t)OtC + c(x, t)O C p(x,

in f (nT, (n + 1)T],

on 02f x (nT, (n +-1)T].

We prove that, for each nN+, t E C2’I(("I,.J02’)X (0,nT]) and
therefore c is a solution of

Ot6 a(x)A6 +f(x, t, 60
or(x, t)Ot + c(x, t)Ou& p(x, t)

in 9tx (0, o),

on 02’2 x (0,

c 0 on 01ft x (0, o),

6(x, O) a(x, 0) in f.

Let us show that t C2’1 ((- I-J 02") X (0,2T]); then the general con-
clusion follows by induction. By (15), let w C(O2r)NcE’I(QEr) be
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the unique solution of the linear initial value problem

O,u a(x)Au f(x, t,

(, t)Ou + (. t)O.u p(.
u=0

u(. 0) (.0)

in flx (0,2T],
on 02f x (0,2T],
on 01fl (0,2T],
in f.

Since both (IQ(0,T] and Wlfix(0,T] are solutions of the linear initial value
problem

OtU a(x)Au f(x, t,

(x, t)Otu + (x, t)Ou p(x, t)c
u--0

u(x. o) (x. o)

in f (0, T],
on 02f x (0, T],
on c91f (0, T],
in f,

by uniqueness, we get c w in flx [0, T]. Further, both [fx(T,2T) and

Wlfi(r,2r) are solutions of the linear initial value problem

Otu a(x)Au f(x, t, &)
or(x, t)Otu + c(x, t)cg,u p(x, t)
u=0

u(x, T) 6(x, T) w(x, T)

in f (T, 2T],
on 02fl (T, 2T],
on 019t x (T,2T],
in ft.

Then, by uniqueness, we get & w in ft IT, 2T]. Therefore, we con-
clude that & w in [0, 2T], so that & E C(Q2T) A C2’1 (Q2T).

Moreover, by periodicity and construction, we have

lim I1(’, t) u(., t)i[c0(fi) 0.

To complete the proof of (i) and (ii), it remains to prove that every
solution v of (13) such that a < v < satisfies v > (n for every n. This is
clear as, if v is such a solution, v is an upper solution of (18) and by
Proposition 3.3, there is a solution 0 of (18) with a < a0 < v </3. As
0 is the infimal solution of (18) in [a,/3], we have a < c0 _< 0 < v.

Recursively, if &n- < v, then v is an upper solution of (19) and hence
&,_ _< &, <_ v which concludes the proof of (i) and (ii).
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To prove that every solution v of (16) such that a _< v </3 on Q
satisfies c _< v on Qo, we proceed again recursively, observing first that
v is an upper solution of (18) and as 0 is the infimal solution of (18)
in [a,/3 ], a _< 0 <_ v on OT. Moreover v(x, + T) is also an upper
solution of (18). Hence v(x,t) > &o(x,t- T) on f x [T,2T]. Recur-
sively, ifv(x,t) > &(x, t)onf x [O, nT]andv(x,t) > &n-l(X,t-nT)on
f x [nT, (n + 1)T], then v(x, + nT) is an upper solution of (19) and
v(x, + nT) > &n-1 (X, t). As tn is the infimal solution of(19) in [&n-1,/3],
we have &n-1 < n (’," + nT) on Qr i.e. & < v on Q(n+l)r and again,
as above, v(x,t) > &n(x,t- (n + 1)T) on ) x [(n + 1)T, (n + 2)T].
Now, an induction argument shows the assertion.
We note in passing that the results of this section extend those

obtained in [7] for homogeneous Dirichlet boundary conditions.

DAMPING EFFECT OF THE DISSIPATIVE
DYNAMICAL BOUNDARY CONDITION

The comparison techniques of Sections 2 and 3 enable the comparison
of solutions under different boundary condition, especially for the
Neumann boundary condition and (2). Let us discuss this in a model case
given by a globally attractive equilibrium. Though the global attractor
turns out to be independent of the condition on Of x (0, o) with Of2
Of, the convergence rate decreases with respect to the coefficient
The reaction term is supposed to admit two equilibria A < B and to be of
the form

f(x, t,A) =f(x, t,B) 0 for all (x, t) f x (0, o),
(22)

f(x, t, u) > 0 if u (A, B), f(x, t, u) < 0 if u (B, o).

If a andfdo not depend on x and t, we can state the following:

THeOReM 4.1 Suppose that a (0, ), cre-(., t) L(f) for all
[0, cxz) and f C([A, o)) fulfills (6) and (22). Let u C(Qo)

C’1 (Qo) be a solution of

Otu aAu +f(u)
t)O,u + t)O u o

u(x, o) >_ A,
on Of x (0, c
inf,.

(23)
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Then

lim Ilu(., t) nllc0<> 0.
t---cx

Proof Observe first that u > A for > 0 by Theorem 2.2 and, there-
fore, by the strong minimum principle Theorem 2.8 applied locally to

Otu aAu > O, u > A for > 0. As for the Neumann condition, the energy
E(u) can serve as a Lyapunov functional

Then E(u) > E(B) -I1 ]fff(s) ds and E(u) E(B) iff u= B. Green’s
formula yields,

d
E(u) f{a (t Zu Otuf(u) ) dx

f(Otu)2 dx -k- o Otua Ou ds

f(Otu)2 dx focrc-l a(Otu)2 ds
Thus, E(u) is a Lyapunov functional in the considered function class
and the La Salle invariance principle (see e.g. 1]) yields the assertion.

Note that we did not use any consistency condition between the
diffusion coefficient a and the boundary conductivity c(x, t) as it was
necessary in the systems considered in [6, Section 5]. For different
dynamical boundary terms let us compare the solutions in the following
simple case.

THEOREM 4.2 Suppose thatf, a, c and 0 < or1 < cr2fulfill the hypotheses
ofTheorem 4.1. Let ul,u2 E C(Oo; [A, B]) fq C2’1 (Q) be solutions ofthe
IBVP (23) with r crl and cr or2, respectively and u2(., 0) < Ul(., 0) in f.
Then u2 < Ul in f (0, cxz).

Proof For 13(u; or):= crOtu + cO,u the different time lateral boundary
conditions yield

(Ul; 0"2) (0"2 O’l)IOtUl
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Thus, if Otul >0, the comparison principle Theorem 2.2 permits to
conclude.
With the same argument as in the proof of Theorem 4.1, we see that

Ul > A for > 0. Ifcgtul (, ) < 0 at some point (, ’) E Qo, then uattains
a local minimum m < B somewhere in t [’, ) due to Theorem 4.1.
The hypotheses and the differential equation imply that m A, which
is impossible. Thus, in fact, Otul > 0 in Qo.

Clearly, the corresponding result u2 > Ul holds for solutions taking
values in [B, o).

Let us illustrate the damping effect of the dissipative dynamical con-
dition by means ofthe following simple example that has been computed
with the aid ofthe convergent finite difference method similar to the one
in [6, (78-79)]. Consider the equation

Otu--Au+u(1-u) in--(O, 1)(O, 1) C2

under the condition

O’OtU + OuU 0 on r {0) x (0, 1)

and the Neumann condition on the remaining parts of Of. Figure
displays the solutions on the cross-section y 0.5 for values of tr varying
in [0, 2]. Note that cr is not continuous on 0f. Though, for all cr > 0, the
solutions with u(., 0) > 0, 0 tend to the equilibrium 1, the damping of
the convergence rate increases with increasing a.

Under higher regularity assumptions, the attractivity result holds
also in the following nonautonomous case.

THEOREM 4.3 Suppose that a C(f, (0, cx)) and thatf, c and cr satisfy
(6), (14), (15) and (22). Let u tT(0) N C2’1 (Q) be a solution of

Otu a(x)Au +f(x, t, u)
t)O,u + c(x, t)O u o

u(x, o) >_ A, A

on Of (0, cxz

inf,.

(24)

Then

lim Ilu(,, t) BIIco/ /= o,
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FIGURE The damping effect of the dynamical condition.

Proof Again, by Theorem 2.2, u _> A for > 0. Then by the strong
maximum andminimum principle Theorem 2.8, there exist d> B > c > A
such that d >_ u(x, t) > c on f x [T, o). Moreover c and d are lower and
upper solutions of

Otu a(x)Au +f(x, t, u)

t)Otu + o(x, t)O u o

infix (0, ),

on 69f (0, cx), (25)

u(x, O) u(x, T) on

If we prove that B is the only solution of (25) in [c, d], we can conclude
by Theorem 3.7.

If B is not the only solution we have an infimal solution Uinf of (25)
with c < Uinf B as B is a solution. Hence, on f (0, T],

OtUinf a(x)Auinf.

By the minimum principle and by periodicity

min Uinf min Uinf min Uinf.
O- hx{o} x{r}
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Again, by application of the minimum principle, we conclude that Uinf
is constant in [0, T], hence Uinf--B. In the same way, we prove
that Usup B.

With the same argument as for Theorem 4.2 we obtain another
monotonicity result concerning different dynamical conditions for
the problem (24).

COROLLARY 4.4 Under the hypotheses of Theorem 4.3, two solutions
u, u belonging to C(O; [A, B]) fq t7:z’ (Q) ofthe IBVP (24) with or-- O"

and or= or2, respectively and satisfying u(., O)<_ u(., O) on f fulfill the
latter inequality ofQ.
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