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The aim of this paper is to consider the problem of extremum of the nonlocal functional,
which depends on a function u(t, s) and its derivative with respect to at several values ofs.
For this problem the generalized Weierstrass inequality, the principle ofminimum and

the generalized conditions ofWeierstrass-Erdmann are derived.
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The problem of extremum of the nonlocal functional

tl ’o1J(u) dt F[t, s, u(t, s r1),..., u(t, s)...,

u(t,s+r2),u’(t,s-rl),...,
u’(t,s),...,u’(t,s / r2)] ds, (1)

where s So > r + r2, r, r2 are some integers is considered. Here and
later u’(t, s) denotes the partial derivative of u(t, s) with respect to t.
The analog of the necessary Euler condition for this problem was

derived in [1]. The boundary value problems arising from this variational
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18 G.A. KAMENSKII AND JU.P. ZABRODINA

problem were also studied. The necessity of Weierstrass inequality for
other type of nonlocal functionals was proved in [2]. The review of the
theory of mixed functional-differential equations, connected with the
theory considered here is published in [3].
On the set Eo {(t, s)[t E [to, tl], s E [So rl, So + r2)} the boundary

value function qo(t,s) is given; on the setE1 {(t, s) E [to, tl],s (Sl rl,

s + r2]} the boundary value function (t, s) is given. The functions qg(t, s)
and b(t,s) are supposed to be continuous with respect to s and
continuously differentiable with respect to t. On the intervals Go=
{(t,s) lt=to, s(so+r2,s-r)} and Ga={(t,s)[t=tl, s(so+r2,
sl- r)} the piecewise continuous functions /z(s) and u(s) are given.
Denote by Pu and p. the sets of their discontinuity points and let
Ru [to, t] Pu, R. [to, t] p.. Let E(z) mean the integral part of z.

Define the sets

Q [t0,q] (so + r2,s rl),

Ro {(t,s) [t0, t], s= so + i, i= r2, r + 1,. ..,E(s so) r},

R {(t,s) [t0, tl], s s i, i= rl,r + 1,. ..,E(s so) r2},

R Ro U R1 U Ru U Ru.

Denote k R U {(t, s) C Q, where u’(t, s) does not exist}.
The problem of extremum of the functional (1) is considered with

boundary value conditions

u(t,s) qo(t,s), (t,s) C Eo, u(t,s) b(t,s), (t,s) C El, (2)

u(t,s) (S), (t,s) C Go, u(t,s) /(s), (t,s) C G1. (3)

Define the space I(Q, R) of functions u(t, s) on Q that are piecewise
continuous with respect to swith the set ofdiscontinuity points contained
in R and continuous with respect to for any (t, s) R. On H(Q, R) we
define the norm

Ilull 0 max lu(t,s)l.
(t,s)EQ\R
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Let ]HI (Q,/) be the space of function that belong to H(Q, R) and are
continuously differentiable with respect to with the norm

Ilull max_(lu(t,s)l,
(t,s)Q\n

We shall suppose that the function Fis continuous and has continuous
first and second derivatives with respect to all of its arguments.

If the extremum of functional (1) is considered in the space ]HI (Q, ),
then it is a weak extremum. Ifit is considered in the spaceH(Q, R), then it
is a strong extremum.
Denote

F(t,s, [u(t,s -j)], [u’(t,s -j)],j =-r2,... ,rl)
:= F [t, s, u( t, s rl),...,u(t,s)...,u(t,s + r2),

u’(t,s- rl),...,ut(t,s),...,u’(t,s + r2)].

It was proved in [1] that if the function u(t,s) furnishes the functional
(1) with an extremum, then there exists a function C(s) such that u(t,s)
satisfies on Q/ the equation

Pu’(t,s) (Pu(t,s) dt + C(s), (4)

where

#9(t,s,u(t,s- rl r2),... ,u(t,s),...,u(t,s + rl -+- r2),
u’(t,s- rl r2),...,u’(t,s),...,u’(t,s 4- rl + r2))

rl

:: Z F(t,s + i, [u(t,s + i-j)], [u’(t,s + i-j)],
i:--r2

j----r2,...,rl).

Equation (4) can be written in the differential form

d
u(t,) -ftt ’bu,(t,s) O, (6)
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which is also satisfied by u(t, s) on Q/, and is an analog of the Euler
equation for the considered problem. Let

The generalized function ofWeierstrass will be called the function

E(t,s, [u(t,s)], [u’(t,s)],) := [t,s,u(t,s),] [t,s,u(t,s),u’(t,s)]
(rl u’(t,s))u,(t,s)[t,s, u(t,s), ut(t,s)].

(7)

For any admissible u(t,s) the function E(t,s,[u(t,s)],[u’(t,s)],7) is
defined Q/.

THEOREM Ifthefunctional (1) attains on u(t, s) a strong minimum, the
u(t, s) satisfies on Q[ the generalized Weierstrass condition

E(t,s, [u(t,s)], [u’(t,s)], rl) >_ 0 (8)

for any rl E R1.

Proof Let (Lg) E Q\R. Take a (t0, ) and h < --a such that the
segments [5 h +j,g + h +j], (j= -r2,... ,rl) have empty intersections.
These segments are also disjoint from/.
Denote

o,(t, )

wh(t a)
-h-a w(s g), (t, s) (I),

wh(t a)
-h-a + w(s- ),

w(t ) w( ),

w(t ) + w(s ),
O,

(t,s) (II),

(t,s) (III),

(t,s) (IV),

(t,s) Q\Dh,
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where

Dh (I) (II) tO (III) (IV),

(I)= {(t,s) lsE [g,g+ hi,

(II) {(t,)Is [g- h,],

(III) {(t,s)I s C [g- h,g],

(IV) {(t,s)I s C [g,g+ h],

C [1-’(s, h), -hi},
C [1’2(s, h), --hi},
C [--h, r3(s),]},

[-- h, r4(s),]}.

Here 1" (i 1,..., 4) is a boundary of Dh:

-h-a
rl(t,s)=(s-g)

h
+a,

-/-h-a
r(t,s) =-(s- )

h
+a,

r(t,) (- ) + -,
ra(t,s)=-(s-g)+L

Thus the graph Oh(t, S) is a "pyramid" with base Dh and height wh,
where w R is an arbitrary number.

If u(t,s) is an admissible function, then u(t,s)+ Oh(t,s) is also an
admissible function. Denote (h) J(u + Oh) J(u). Let A be a domain.
Denote

(A + i) {(t,s) (t,s- i) C A}.

Then

(h) Z F(t,s, [u(t,s-j) + Oh(t,s
i=-r2 h+i)

[u’(t,s-j) + Oh(t,s- i)Ji ],j=-r2,...,r)dtds

f/Dh+i)F(t’s’ [u(t’s-j)l’ [u’(t’s-J)]’J---r2’’ "’rl)dtds)"
Here 6/is a Kronecker symbol, 6/J if i=j, and 6{ 0 if
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Changing the variable of integration s z + and denoting again the
variable ofintegration by s, we receive

’f(9
F(t,s, [u(t,s-j) + Oh(t,s- i)/],

h+i)

[u’(t,s -j) + O(t,s iltSJil,J =-r2, ,rl)dtds

ff F(t,s + i, [u(t,s + i-j) + Oh(t,s)6{],

[u’(t,s + i-j) + Oh(t,s)tSJi l,j=-r,...,r)dtds,

and

F(t,s,[u(t,s-j)],[u’(t,s-j)],j=-r,...,r)dtds
h+i)

J’ F(t,s + i, [u(t,s + i-j)], [u’(t,s + i-j)],

j=-r2,...,rl)dtds (i=-r2,...,r).

Thus

(h) fro [t,s,u(t,s) + Oh(t,s),u’(t,s) + Oh(t,s)]dtds

ff [t,s,u(t,s),u’(t,s)]dtds.

It is easy to see that

f [t,s,u(t,s) + )h(t,s),u’(t,s) + tgh(t,s)]dtds

S(I)(h)+ J(ii)(h)+ J(ilI)(h) + J(,v)(h)

ff [t,s,u(t,s),u’(t,s)] dtds

+ +
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where

f+h fF’[-h [ wh(t- a)J(,)(h) ds 69 t,s,u(t,s)-
(s,h) - h a

wh a] dt.+w(-),u’(t,)--h-

J()(h) as t.s..(t.s)-
h 2(s,h) -{-- h a

wh ] dt.w(s- g),u’(t,s)
-i- h- a

J(m)(h) ds b[t,s,u(t,s) + w(t- )
h h

w(s- ),u’(t,s) + w]dt,

/_/ f_4()J(iv)(h) ds b[t,s,u(t,s) + w(t- )
,lg h

+ w(s- g),u’(t,s) + w]dt.
The integrals J(z)(h),..., J(z)(h) are defined in an analogous way.

Then we have

’(h) sb)(h) + S(;,)(h)+ S(’,,,)(h)+ (;)(h)

and
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If the functional J(u) attains on u(t,s) a minimum in the space
IH[(Q, R), then (h)> 0, and from (0)= 0 it follows that ’(0+)> 0.
Thus f(h)= ’(h)/2h > 0 and therefore f(0+) > 0.

(0+) [, , u(, ), u’ (, ) + w] [, , u(, ), ’(, )]

u(t,s)[t,,u(t,) u’(t,)] w(t- a)
-i-a

+ eu’(t,s)[t, Lu(t,g),u’(t,g)] dt.

Ifthe functional (1) attains on u(t, s) a strong minimum, then it attains
also a weak minimum and therefore u(t, s) satisfies the generalized Euler
equation (6). Then we have

(bu(t,s)[t,g,u(t,g),u,(t,g)] w(t- a)
t--a

-+- Cu’(t’s)[t’g’ u(t’g)’ u’(t’g)]
a-- a

(t- a)-bu,(t,s)[t,g,u(t,g),u’(t,g)]

+ #u,(t,s)[t,g,u(t,g),u’(t,g)]} dt

Wfa’d- a {(t- a)egu,(t,s)[t,g,u(t,),u’(t,g)]}dt

((t a)eu,(t,)[t, L u(t,g), u’(t,g)])lia

Denoting r/= w + d(, ), we receive

(0+) [z, , u(, ), n] [, , u(, ), u’ (, )]

(n- u’(Z,)),,,,,[,,u(,),u’(,g)].

Therefore while 9t(0+)> 0 and (, g) is arbitrary point of Q\R, we
conclude that (8) holds everywhere on Q\R.
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DEFINITION Define the function H(t,s, 7)" R3 - R1 for a given admis-
siblefunction u(t, s) by the equality

H(t,s, rl) :- [t,s,u(t,s),l] rl u(t,s)[x,s,u(x,s),u’(x,s)]dx

+ u(t,s)[to, s,u(to, sl,u’(to, s)]} (9)

for (t,s) E Q\R.

The function u satisfies the minimum principle if

minH(t,s,) H(t,s,u’(t,s)), (t,s)
R

(10)

THEOREM 2 Thefunction u satisfies the minimumprinciple iffit satisfies
the generalized Euler equation (6) and the Weierstrass inequality (8).

Proof Let (, ) Q\R. The function H(, g, 7) attains a minimum at

r/= u’(, ) and therefore OH/Orl 0. By differentiating (9) and putting
u’(f, g) r/, we show that u satisfies (4) and consequently (6) on Q\R.
By using (6) we may write H(t, s, rl) in the form

H(t,s,7) b[t,s,u(t,s), rI] tu,(t,s)[t,s,u(t,s),u’(t,s)]

and accordingly

E(t,s, [u(t,s)], [u’(t,s)],7) H(t,s, rl) H(t,s,u’(t,s)). (11)

From (11) and the minimum principle (8) follows.
On the other hand, if u satisfies (6), then from (11) it follows that the

minimum principle is valid on u.

THEOREM 3 If thefunctional (1) attains on u a strong minimum, then u

satisfies the minimum principle.

Proof Since the functional (1) also attains on u(t, s) a weak minimum,
the function u satisfies (6), and from Theorems and 2 the assertion of
Theorem 3 follows.
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Now we shall prove the generalized conditions of Weierstrass-
Erdman at the corner points of the solutions of the problems, (1)-(3).
It is natural to suppose that these corner points are isolated. Therefore in
Theorems 4 and 5 the space D ofadmissible functions will be the space of
functions that are continuous with respect to on Q\/ and having two
piecewise continuous derivatives with respect to with the finite fixed set
G of possible corner points.

THEOREM 4 Let u E D satisfy the minimum principle. Then there exists
afunction Cl(s), such that u(t,s)satisfies the equation

a;- u’bu,(t,s) Ht(t,s,u’(t,s)) dt + Cl(s) (12)

on Q\(R U G).

Proof Let (, g) E Q\(R u G). Then for almost all sufficiently small
h > 0 we can define the function

D(h)

The inequalities

H(-[+ h,g,u’(+ h,g)) H(,g,u’([+ h,g)) < D(h),

D(h) < H(-[+ h,g,u’(,g)) H(-[,g,u’([,g))
(13)

follow from the minimum principle. From the suppositions of the
theorem it follows that in a sufficiently small vicinity of the point ([, g),
the function Hhas a partial derivative in respect to t. From (13) and the
mean value theorem, we obtain

Ht(+ O,(h)h,g,u’(-i+ h,g))

D(h)<- h
<_ Ht([+ O2(h)h,g,u’([,g)),

where 0 < Oi(h) < 1, (i 1, 2). Taking the limit as h 0 we receive

dH(, , u’(, g))
dt

=Ht(,g,u’(,g)) (14)
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for (?, ) E Q\(R U G). By integrating (14), we obtain

H(t,s,(t,s)) Ht(t,s,u’(t,s))dt + Cl(s) (5)

for (t,s) Q\(k t3 G).
If the functional (1) attains an extremum on u(t,s), then from (6) it

follows that

H(t,s,u’(t,s)) dg[t,s,u(t,s),u’(t,s)]
u’(t,s)dgu,(t,s)[t,s,u(t,s),u’(t,s)], (16)

for (t, s) E Q\(/ t_J G). From (15) and (16) we receive the assertion ofthe
theorem.

THEOREM 5 Let thefunctional (1) attain on u an extremum, and (-{, be
a corner point of u(t,s). Then at this point the generalized Weierstrass-

Erdman conditions

tu,(t,s) l(’i_O,g tu,(t,s) l( +O,g), (17)

- Utu’(t,)l(-o,) ,:I:,- ut,.,’(t,) I(/o,g) (18)

arefulfilled.
Proof It follows from (4) and (12) that functions fft,s and

’- u"t,s are equal to indefinite integrals on Q\/. Therefore, if we
define additionally ffet, and ff u"ut, on the set ofnull measure, we
can make them continuous with respect to on the whole set Q\R. Hence
the conditions (17) and (18) are fulfilled.
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