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In this paper, by means of the energy method, we first study the existence and asymptotic
estimates of global solution of quasilinear parabolic equations involving p-Laplacian
(p > 2)and critical Sobolev exponent and lower energy initial value in a bounded domain in
R™(N > 3), and also study the sufficient conditions of finite time blowup of local solution by
the classical concave method. Finally, we study the asymptotic behavior of any global
solutions u(x, ¢; up) which may possess high energy initial value function uy(x). We can prove
that there exists a time subsequence {¢,} such that the asymptotic behavior of u(x, ,; up)
as t, — oo is similar to the Palais—Smale sequence of stationary equation of the above
parabolic problem.
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1 INTRODUCTION

In this paper we are concerned with the asymptotic estimates of global
solutions, and blow-up of local solutions of quasilinear parabolic
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58 Z. TAN AND Z. YAO

equations of the following form:

ur— Apu = [ul*u, (x,1) €2 x(0,T),
u(x,1) =0, (x,0) € 00 x (0,T), (1.1)
u(x,0) = up(x), up(x) >0, up(x) #0,

with lower energy initial value, and asymptotic behavior of any global
solutions which may possess high energy initial value function. Here
Apu=div(|Vul’>Vu), 2<p<N, g=p*=pN/(N—p) is the critical
Sobolev exponent. {2 is a bounded domain in RY(N > 3) with smooth
boundary 09).

Equation (1.1)isaclass of degenerate parabolic equations and appears
in the relevant theory of nonNewtonian fluids [1]. For the case of p =2,
various authors have derived sufficient conditions for the existence and
asymptotic behavior of global solutions of (1.1) [2,6,10,11]. For the case
of p # 2, Tsutsumi [19], Ishii [9], Otani [16], Nakao [14] have studied the
existence and the asymptotic behavior of global solution with g < p*.
In [15], Nakao considered the problem with critical or supercri-
tical nonlinear and the condition imposed on the initial data is uy €
WP () N L2(Q) or uy € WyP(Q) N L2 (Q)(po > p*), and obtained
precise estimates about the asymptotic behavior as ¢ — oo. The first
object of this paper is to relax this additional condition of uy € L>(£2) or
u € I7°(Q?) and to study the time-asymptoticestimates and finite time blow
up of (1.1) with Jower energy initial value. The second object of this paper
is to consider the asymptotic behavior of any global solution which may
possess high energy initial value function. We can prove that there exists a
subsequence {z,,} such that the asymptotic behavior of u(z,) as t, — oo is
similar to the Palais-Smale sequence of stationary equation of (1.1).

To state the main idea, we first give some useful definitions and
notations.

Denotes the usual Sobolev space by W(}"’(Q), endowed with the norm
| Vul,= (fo|Vul dx)'’?, denote the norm of L'() by | - |- Denote
Qx(,T)by Q7.

DEFINITION 1.1 We say that a function u is a solution of (1.1) in Qriff

ue L0, T, WP (),
u; €L*(Qr) = L*(0, T; L*(R2)),
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and satisfies (1.1) in the distribution sense. If T= 00, u is called global
solution. We always denote by u(x, t, ug) the solution with initial value

u(X)-
Let S be the best constant for the Sobolev embedding W,”(R2) C
L7 () which defined as follows:

S= inf ||Vulf.
uf IVul;
=1

Remark 1.1 Let S be the best constant for the Sobolev embedding of
WyP(Q) C L7 (). Then

(a) Sisindependent of §2 and depends only on N.
(b) The infimum S is never achieved when (2 is a bounded domain.

The proof can be found in Talenti [18].
Denote the energy function of (1.1) by

J(u) =l/ |Vu|pdx——!;/ |uf”” dx.
PJa P Ja

DEFINITION 1.2 We say that a function uy(x) possesses lower energy if
Ji (uo) < -}— S Nip
¥ .

where S is the best Sobolev constant.

Remark 1.2 The value (1/N)SV/? is the energy of the unique positive
radial solution of the quasilinear elliptic equation

—Apu = [uf u, xeR",

u(|x|) = 0, as |x| — oo,

(1.2)

to the energy functional

T =1 / IVa? dx -~ / ?” dx.
D JRv D" JRry
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A number of authors have studied the perturbation problem of (1.2) (or
in p=2 and bounded domain) comparing the energy functional of
perturbation problem with (1/N)S"/? (e.g. [3,7,8,13,20]).

Now we can state the main results of the first object. First we consider
the case: J(ug) <0, we have

THEOREM 1.1 Let ug(x) be a lower energy initial value and J(up) < 0.
Then u(x, t; ug) blowup in finite time.

Now we consider the case of positive energy, i.e. 0 < J(up) <
(1/N)SN/P, we have

THEOREM 1.2 Let ug(x)(# 0) be a lower energy initial value.

m Iff, [uo]” dx < SN/P, then (1.1) has a global solution u(x, t; ug).
Moreover

||Vu(t)||; = O(I‘Z/(”‘z)), as t — 0o. (1.3)
and

lull; = O(2P=2),  ast— oo, (1.4)
Q) If [, luo " dx > SN/P, then the local solution blows up in finite time.

Remark 1.3 Obviously, if [;, |uo’" dx < S¥/7, then J(ug) > 0. Indeed, if
/ luo”* dx < S™72,
Q
then

/IVuol”dx>/|uo|”* dx.
Q Q

Thus, from uy(x) # 0, we have

1 1 " 1
J(ug =—/ Vu pdx——/updx>—/ Vgl dx > 0.
()pQI of p*QIOI NQI l
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Now we state the main results of the second object:

THEOREM 1.3 If u(x, t;up) is a global solution of (1.1), and uniformly
bounded in W(}’p(Q) with respect to t, then, for any subsequence t,, — 00,
there exists a stationary solution w such that u(x, t,; ug) — w in W(} P ().

THEOREM 1.4 Ifu(x, t; up) isa global solution of (1), then the w-limit set of
u contains a stationary solution w.

The rest of this paper is organized as follows: In Section 2, we prove
Theorems 1.1 and 1.2. In Section 3 we prove Theorems 1.3 and 1.4.

2 THE PROOF OF THEOREMS 1.1 AND 1.2

In this section we consider the existence and the time-asymptotic
estimates of global solutions and finite time blowup of (1.1). We first
prove Theorem 1.1.

Proof of Theorem 1.1 In fact, we can prove a more general result:

If there exists some ¢, such that J(u(zy)) <0, then u(x, ¢; ug) blows up in
finite time.

We shall employ the classical concavity method (see [4,5,8,12,17)).
Suppose that fyu,c=o00 and denote f(r) =3} f:o llull3 ds. Performing
standard manipulations

t
/ / w2 dxds+ / IVaf dx — — / W dx = Ju(t)),  (2.1)
1 J0 PJa P Ja
1 ! .
70 =5 lwolf+ [ [ (19 + 'y dxas,
b /G (2.2)
S =—/ |Vu|pdx+/ |uf”” dx.
Q Q

By (2.1), we have

* t
") > —/Q |Vul? dx +1—;5—/Q [Vul? dx — p*J(u(to)) +p*/ /Qu,2 dxds
4

X

= (Z-1) [1vu ax = stute) +2° [ [uwaxas @3
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From the assumption, J(u(%,)) < 0 such that

(1);* - 1) /Q IVal? dx — p*J(u(t5)) > 0

for all £ > t,. If we had #,,,x = 00, then this inequality would yield

fim ()= Jim /0 = e

f”(t)>p// 2dxds,

7070 22 ([ i) [ moiar)
N ( /t / uu,dxds) =-’§(f’(t) — (1))

and as t — oo we have for some o > 0 and V¢ > ¢ such that

SO0 2 A+ ().

Hence f(2)”“ is concave on [#o, 0c0]. But f(#)™* > 0 and lim,_,o. /(1) *=0.
This contradiction proves that #,,.x < co; which completes the proof of
Theorem 1.1.

and

and

Proof of Theorem 1.2 We divide the proof into several steps
Step 1 Proof of Existence

(i) A priori estimates and local existence From [6] and [10], for each
n>0, there is a unique classical solution u, € C(Q7) N C>'(Q7) of the
following equation:

NG )
u, = div (|Vu| +;) Vu| +min{n,u” '}, (x,1) € 2 x (0,T),

u(x, 1) =0, (x,0) € 02 x (0, T),
u(x,0) = uy, (24)
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where u,y € C§°(12), such that
Uy — up, strongly in W(}”’ (),

and J(uno) < (1/N)SN/?, [ lunol”” dx < S¥/7. On the other hand, multi-
plying (2.4) by u,, and integrating, we have

// u,f,dxdt+1/ |Vu,,|”dx———};/ unf’” dx < J(uno).  (2.5)
O DJa Dp*Ja

For the sake of convenience, define:
1 *
Y= {ulu € WiP(Q),u>0,u#0,J(u) < NSN/P,/ [uf” dx < SN/P}.
Q

Now we show that
u,(t) € X, foranyt>0.

Suppose that it does not hold and let #* be the smallest time for which
u,(t*) ¢ ¥. Then in virtue of the continuity of u,(f) we see that u,(1*) € 0%.
Hence

T (1)) = 5™,

/ [Vitnf? dx = / lul” dx,
Q Q

which contradicts to (2.5). Then from (2.5) and note that if
Jou? dx < SV/P then [, |Vuff dx > [, u”" dx, we have

or

! 1 1
[ 6y s+ 5 [ 19l dx < ) < 5. 26)
0 Q

Thus, we obtain

/ / u?dxds < L g, 2.7)
QT| N

/Q |Vu, | dx < SV, (2.8)
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From (2.8) we have

|V“n|Lp(QT]) < C(T), (2.9

where C(T}) is the constant independent of #. From the prior estimates
(2.7),(2.8)and (2.9), we see that there exists a subsequence (not relabeled)
and a function u such that

up —u, ul "' > u”!, ae. on Qr,
Vu, — Vu, weakly in L?(Qr,),
Uny — u;, weakly in L2(Qr,),
Un — u, in L0, T1; Wy *(R)) weak star,
|V 2V, — w, weakly in L/7-)(Qr,).

Then well known arguments of the theory of monotone operators yields
w = |Vul?~2Vu; which implies the function u is a desired local solution of
the problem (1.1).

(i) Global existence To prove that it is a global solution. Multiplying
(1.1) by u, and integrating, we obtain

t
1
@B ds+ Tt 1) = Jun) < 5™
0
Note if [, |uf” dx < SV?, then [,|Vufdx > [, |uf dx. Thus
J(u(x,t)) < (1/N)SN/? for any ¢ > 0. Now we prove u(x, t) € ¥, for any
t>0. Indeed, if there exists a * such that u(x, f) € 9%, then we have

J(u(x, 1)) > (1/N)SV/?, whichisacontradiction. Hence [, |Vu(#)ff dx >
Jo lu(8)]P" dx for any ¢> 0. Therefore

t
/ 1 ()2 dx + — / Vul dx < J(up) < - SV,
0 N Ja N
which implies

] |Vulf dx < SN/, (2.10)
Q

1
14 ()l 20, r22(02)) < NSN/”, (2.11)
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for any 7> 0. Thus u(x, ) is a global solution of (1.1); which completes
Step 1.

Step 2 Proof of (1.3) Note if [, [P dx < SN/P, then Jo IVuff dx >
o luf” dx. Thus J(u(x, £)) < (1/N)SV/? for any 1> 0. It is easy to prove
u(x, t) € X, for any ¢ > 0. Indeed, if there exists a ¢* such that u(x, f) € 6%,
then we have J(u(x, 1)) > (1/N)SN/?, which is a contradiction. Hence
Jo IVu()f dx > [, |u(2)]"" dx for any > 0. Let

h(u(?)) =/Q|Vu|pdx—/nu”* dx,

then

h(u(z)) >0, forallz>0.
By Sobolev inequality

N X /p

/ luf” dx < (1/8P7'/P) ( / |vu|de) ,
Q Q
and
J( )>l/|w|f'd
) > A X,

implies

/ [P dx < (1/87/P)(NJ(ug))? /P! / |Vulf dx. (2.12)
Q Q

For simplicity, denote (1/S” P)(NJ(ug))’ P 'by0 << 1.Lety=1—6,
we have

/ (AP dx < (1 - ) / (Vu(t)? dx. (2.13)
Q Q

Let T > t, be a fixed number, then from

3 L 1O &x = ~h(u(o)
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and Poincare’s inequality, we have
T 1 2 1 2
h(u(s))ds== | lu(®)["dx—< [ |u(T)|"dx

t 2Ja 2Ja
<z <
<3 [ P ax <5 [ (vuor ax

2/p
< c(@) ( / Vu()f dx) , (2.14)
Q

where )\ is the first eigenvalue of — A u= A|ul’ 2y, xeQ,u=0, x € N.
Furthermore, (2.13) implies

Ju(t) = 11, [) IVu(t)P dx - pi /Q (O dx
1 1
o /ﬂ |Vu(t)|”dx+1?[h(u(t))— /ﬂ |Vu(t)|”dx]
1 1 1
- L IVa()F s+ () 2 A Vu@Pdz,  (2.15)

on [to, 00). Therefore, by (2.13) and (2.14) we obtain
T
[ ats) as < c@um, (216)
t
on [ty, T']. On the other hand, (2.13) implies
v [ V()P dx < hu(o), @17)
Q
on [t, 00). By (2.15) and (2.17), we have
1

Ju(h) < (N—7 + I—)l;)h(u(t)). (2.18)

Further (2.16) and (2.18) give

< / () ds < ()
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o= (co(55+7))

Then, from the arbitrariness of 7> ¢,, we have

on [ty, T'], where

“ /, " H(u(s)) ds < (),

ie.

67

Cf/z(/, J(u(s)) ds)p/2§ -——/ J(u(s)) ds. (2.19)

Setting y(2) = [, J(u(s)) ds, it follows from (2.19), we have

dJ’( ) P/2, VP12
< —( 7
Tdr ()

Performing standard manipulations, we have
y(1) < C2t—2/(p—2)_

Thus, we obtain

TJ(u(T +1)) < /TH J(u(s))ds < /oo J(u(s))ds < Cor2/(#=2),

By (2.15) we have
1
% / IVu(T)P dx < Ju(T)) < Cyr~2/2-2),
Q
with some constant C; > 0 for enough large ¢ > 7. Hence

/ IVu()P dx = O 22), as 1 — oo.
Q

Step 3 Proof of (1.4) Obviously

Vu(x, t;u0)||P < rVP < NP, 2.20
P
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and
d 2 14 I
— [ Ju@®)"dx+ [ |Vuffdx= [ |[uf dx, forallz>0. (2.21)
dt Jq Q Q

By the same argument with Step 2, we have
d 2 »
— [ lu"dx < —(1-=6) [ |Vuffdx
dz Q Q

_ p/2
M/|u|deg —c(/ |u|2dx) :
At Jo Q

where ), is the first eigenvalue of —A,u = A|ulf 2u,xeNu=0,xcdn,

__(1=9
T QR

Let y = ||u|3, we sec that the estimate

dy

< p/2
dr = —

Therefore, we have

(p-2)/2
—(P*2)/2 (/ |u0| dX) C.p 2

y(t) = 02, ast— oo,

which shows

which completes the proof of (1.4).

Step 4 Proof of Theorem 1.2 (2) We divide the proof into two steps.

(i) First of all, we define a set which consists of the functions that satisfy
the following conditions:

1
J(uo) < NSN/P, (2.22)

/|uo|p* dx = S, (2.23)
Q
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We claim that the set is an empty set. In fact, let uy belong to the set.
If u, satisfies

/ Vol dx < / uol” d,
Q Q

then

o/p*
SN/p =/|u()|p de / IVuol”de S(/ |u0|p dX) =SN/p,
Q Q Q

and hence

/IVu0|”dx=/Iuol”*dx=SN/p,
Q Q

1 » 1 ” 1 N/p
J(uo)rzl—) QIVu()I dx—p—* Q|u0| dx=NS ,

which is contradictory to (2.22).
If u, satisfies:

/IVuol”dx>/|u0|”‘ dx,
Q Q

then from (2.22) we see that
Lovie 5 giug) =1 / Vol dx — — / ol dx >~ / luol?” dx.
N pJa P Ja NJa
Implies
/ luol?" dx < VP
Q

which is a contradiction because of (2.23).
(ii) Thus we consider only the case of u satisfies

J(u) < %SN/P, / [uf”” dx > SNP. (2.24)
Q
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Obviously, in this case we have
SNIP < / |Vuo|"dx < / |u0|'”‘ -dx
Q Q

If u(x, 1) is a global solution then we can deduce that u(x, f) does not
converge strongly to 0 in Wol’” (Q). Otherwise, 3r*, 0 < r* < oo such that

J(u(r")) < lSN/p’ / u(e*))" dx = SV,
N Q

which is a contradiction from the first half (i). Now we prove the
following claim:

CLAM  If uy satisfies (2.24) and u(x, t;ug) is a global solution. Then
Vvt €[0, T'] the following inequalities hold:

SVIp < / Ve, )P dx < / lu(x, 1) dx. (2.25)
Q Q

Indeed, if there exists a t* such that [, |Vu(x,r)f dx =
Jo luCe, )" dx, then we have [, |Vu(x, )P dx = [, u(x, t*)f" dx >
SN/P. But (1/N)SM? > J(u(x,t*)) = (1/N) [, |Vu(x, )]’ dx, with a
contradiction. Therefore there exists a constant > 0 sufficiently small
and independent of t, rely on ug such that

/ lu(x, O dx > (1 +1) / Vu(x, ) dx, (2.26)
Q O

Sfor any t €0, oo, which completes the proof of the claim.

From the claim and p > 2 we have

i/uzdx=/u1’*dx—/|Vu|”dx
dt Jo Q Q

r/?
> 17/ [Vulf dx > C(/ |uf? dx) , (2.27)
Q Q

implies

d
S(B) > Clulf,
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ie.

Nl
/ e dy > e,
I

2
ul3

and therefore
[o.¢]
CT< / y P 4y < 400
(w013

which completes the proof of Theorem 1.2.

3 THE PROOF OF THEOREMS 1.3 AND 1.4

First of all, we prove Theorem 1.3.

Proof of Theorem 1.3 For any t,— oo, let u, =u(x, t,,; up), from the
boundedness we know that there exists a subsequence (still denote by
{un}) and a function w such that

Uy — W in W,?(Q),
u?' =t~ wP'-lin (LF(Q)),
Uy — W a.e. in Q.

In order to pass to the limit in (1.1) we first fix some 7' < co and intro-
duce suitable test functions similar to Fila [4]. Take

T
YeWP(Q), peC0,T), p>0, / p(t)dr = 1.
0
Put

_ [t —t)p(x) fort>1,, xeQ,
(1) {0 for0<t<t, xeQ.

Further, we obtain from Definition 1.1 that

ta+T
/ /[up'(t — )0 — p| VUl VUV + u” " p(t — 1,)¢] dxdr = 0.
tn Q
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The transformation s = ¢ — #,, leads to
T
| [0+ 9 0y = pl9utts +-9)P 2Vl + )70
o Ja

+ u(ty + 8)" ' p(s)yp] dx ds = 0. (3.1)

Note that the uniformly boundedness of u(z,+s) in Wol"’ (Q) for
0 <5< T. Therefore, we can choose the same subsequence of {#,} (not
relabeled) and functions w, and w such that

u(t, +s) — wg, strongly in LI(Q)(p < g < p*)
and
u(t,) —» w, strongly in Li(p < g < p*).

Now we claim: w,=w. Indeed, by the energy inequality we have

/Q (i +5) — u(ty) P dx = s /, ™ /Q

as 0 <s < T for any fixed T < co. Thus, we have

oul*
P dxdr—0, ast, — o

u(ty +5) —u(t,) — 0, strongly in L%(2), as 1, — oo
for 0 <s < T for any fixed T < co. Hence
ws=w
which prove the claim.

Now we rewrite (3.1) as follows:

T

A /S;[u(tn)p'(s)w - plvu(t”)lp—zvu(tn)V’lp n u(t,,)""‘p(s)w] deds
i /0 T/Q["(t” +5) — u(ta)]p(s)p dxds
- T/Q“V“(’" + )P Vulty +5) — [Vulta) 7 Vu(t)] Vip dr ds

+ /OT/Q[u(t,, + 57— u(tnY Y p(s)pdxds = 0 (3.2)
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By the dominated convergence theorem and the choice of pand u(t,,) — w
strongly in LY(Q)(p < g < p*), we have

/OTP[/Q [Vau(t) P> V(1) Vip dx — /Qu(tn)p‘_li/)dx} ds = o(1),
as n — oo

Denote u(z,) by u,, From the choice of p, we obtain
/QIVu(t,,)|p_2Vu(t,,)V1/)dx - /Q u(ty) 'pdx =o(1), asn— oco.
Thus, we have
/Q Vw2 VWV dx = /Q w? ~lpdx, for all ¥ € WyP(Q)

which completes the proof of Theorem 1.3.

Proof of Theorem 1.4 From now on, denote u(x, t; ug) by u, we have

9}
/ /utzdxdssc<oo.
o Ja

Then there exists a sequence {¢,} satisfying ¢, — 0o as n — oo such that
/ |ue(x, tn; uo)[>dx — 0 as n — oo. (3.3)
Q

For the sake of convenience, denote u(x, ¢,,; up) by u,. From Theorem 1.1,
J(u(2)) >0 for all > 0, and

0 < J(u(t)) < J(up). (3.4)
If we consider the time sequence {z,,} as

0 < J(u(tn)) < J(uo). (3.5)

The statement of (3.3) and (3.5) says that u, =u(t,), t, — oo is a Palais—
Smale sequence related to the statement problem of (1.1). Such a
situation has been well studied in the theory of nonlinear elliptic
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equations. It is easy to prove that there exists a constant C < +o0 such
that

/ |Vu,[’ dx < C.
Q

Thus, there exists a subsequence (not relabeled) and a function w such
that

Uun — w, weakly in W,?(),
u, — w, strongly in LY(Q)(p < g < p*).

From the theory of elliptic equation we can obtain that w is a stationary
solution, which completes the proof of Theorem 1.4.
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