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In this paper, by means ofthe energy method, we first study the existence and asymptotic
estimates of global solution of quasilinear parabolic equations involving p-Laplacian
(p > 2) and critical Sobolev exponent and lower energy initial value in a bounded domain in
RV(N> 3), and also study the sufficient conditions offinite time blowup oflocal solution by
the classical concave method. Finally, we study the asymptotic behavior of any global
solutions u(x, t; Uo) whichmaypossess high energy initial value function Uo(X). Wecanprove
that there exists a time subsequence {t,} such that the asymptotic behavior of u(x, t,,; Uo)
as t, o is similar to the Palais-Smale sequence of stationary equation of the above
parabolic problem.
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1 INTRODUCTION

In this paper we are concerned with the asymptotic estimates of global
solutions, and blow-up of local solutions of quasilinear parabolic
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58 Z. TAN AND Z. YAO

equations of the following form:

u(x, t) o,
u(x, o) uo(x),

(, t) x (0,
(, t) a (0, ),
u0() _> 0, u0(x) # 0,

(1.1)

with lower energy initial value, and asymptotic behavior of any global
solutions which may possess high energy initial value function. Here
Apu=div(IVu[p-2Vu), 2<p<N, q=p*=pN/(N-p) is the critical
Sobolev exponent. 9t is a bounded domain in RV(N> 3) with smooth
boundary c99t.

Equation (1.1) is a class ofdegenerate parabolic equations and appears
in the relevant theory ofnonNewtonian fluids [1]. For the case ofp 2,
various authors have derived sufficient conditions for the existence and
asymptotic behavior ofglobal solutions of (1.1) [2,6,10,11 ]. For the case
ofp : 2, Tsutsumi 19], Ishii [9], Otani 16], Nakao 14] have studied the
existence and the asymptotic behavior of global solution with q < p*.
In [15], Nakao considered the problem with critical or supercri-
tical nonlinear and the condition imposed on the initial data is u0 E

W’P(fl) f3 L(f2) or uo W’P(f) LP(f)(po > p*), and obtained
precise estimates about the asymptotic behavior as o. The first
object of this paper is to relax this additional condition of u0 L(ft) or
u LP()andto study thetime-asymptoticestimates and finite time blow
up of(1.1) with lower energy initial value. The second object ofthis paper
is to consider the asymptotic behavior ofany global solution which may
possess high energy initial value function. Wecan prove that there exists a
subsequence {tn} such that the asymptotic behavior of u(t) as t o is
similar to the Palais-Smale sequence of stationary equation of (1.1).
To state the main idea, we first give some useful definitions and

notations.
Denotes the usual Sobolev space by W (gt), endowed with the norm

IlVullp=(flVulPdx)/p, denote the norm of Lr(f) by I1" I1. Denote
9t x (0, T) by Qr.
DEFINIXIOrq 1.1 Wesaythatafunctionuisasolutionof(1.1)inQriff

u Z(o,7"; Wo,,()),
ut EL2(Q") L2(0,
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and satisfies (1.1) in the distribution sense. If T= oe, u is called global
solution. We always denote by u(x, t; Uo) the solution with initial value
uo(x).

Let S be the best constant for the Sobolev embedding Wd’P(f) c
L:(f) which defined as follows:

inf IlVull ,uW’V()

Remark 1.1 Let S be the best constant for the Sobolev embedding of
W0’P(f) c LP*(Ft). Then
(a) S is independent of Ft and depends only on N.
(b) The infimum S is never achieved when ft is a bounded domain.

The proofcan be found in Talenti [18].
Denote the energy function of (1.1) by

l f lVulP dx 1J(u) = -p-; lulPdx.

DEFINITION 1.2 We say that afunction Uo(X) possesses lower energy/f

sN/P"J(uo) <

where S & the best Sobolev constant.

Remark 1.2 The value (1/N)SN/p is the energy of the unique positive
radial solution of the quasilinear elliptic equation

--[u[p- u, x fly,
(1.2)Apu 2

u(Ixl) 0, as Ixl- 

to the energy functional
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A number of authors have studied the perturbation problem of (1.2) (or
in p= 2 and bounded domain) comparing the energy functional of
perturbation problem with (1/N)SN/p (e.g. [3,7,8,13,20]).

Now we can state the main results ofthe first object. First we consider
the case: J(uo) < O, we have

THEOREM 1.1 Let uo(x) be a lower energy initial value and J(uo) <_ O.
Then u(x, t; Uo) blowup infinite time.

Now we consider the case of positive energy, i.e. 0 < J(uo)<
(1/N)SN/p, we have

THEOREM 1.2 Let Uo(X)( O) be a lower energy initial value.

(1) Iff luolp* dx < SN/p, then (1.1) has a global solution u(x, t; Uo).
Moreover

IlVu(t)llpp o(t-=/<p-21), as ---, c. (1.3)

and

Ilull o(t-2//P-=>), as --+ o, (1.4)

(2) Iff luolp dx >_ SN/p, then the local solution blows up infinite time.

Remark 1.3 Obviously, iff luolp dx < SN/p, then J(Uo) > O. Indeed, if

uo[
p* dx < Sv/p,

then

Vuo
p dx > f ]uo [P* dx.

Thus, from Uo(X) :/: O, we have

f lVuolP dx f jf ipJ(uo) - -p--; luolp dx > IVuo dx > O.
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Now we state the main results of the second object:

THEOREM 1.3 If u(x, t; Uo) is a global solution of (1.1), and uniformly
bounded in Wd ’p (f) with respect to t, then, for any subsequence t, o,
there exists a stationary solution w such that u(x, t,; Uo) w in Wd ’p (f).

THEOREM 1.4 Ifu(x, t; Uo) is aglobalsolution of(l), then the w-limit set of
u contains a stationary solution w.

The rest of this paper is organized as follows: In Section 2, we prove
Theorems 1.1 and 1.2. In Section 3 we prove Theorems 1.3 and 1.4.

2 THE PROOF OF THEOREMS 1.1 AND 1.2

In this section we consider the existence and the time-asymptotic
estimates of global solutions and finite time blowup of (1.1). We first
prove Theorem 1.1.

Proof of Theorem 1.1 In fact, we can prove a more general result:
Ifthere exists some to such that J(u(to)) < O, then u(x, t; Uo) blows up in

finite time.
We shall employ the classical concavity method (see [4,5,8,12,17]).

Suppose that /max=CX: and denote f(t)= 1/2ftto Ilullds, Performing
standard manipulations

u2t dxds +- }Vulp dx
P* lulp dx J(u(to)),

P
(2.1)

f’(t) I[u01l + (-IVul + lulP*)dxds,

f"(t) lVulP dx / f lulP* dx.
(2.2)

By (2.1), we have

f"(t) > IVul +-- IVul dx-p*J(u(t0)) +p* ut dxds
P
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From the assumption, J(u(to)) <_ 0 such that

(-1) jf IVulP dx -p*J(u(to)) > O,

for all >_ to. If we had tmax- o, then this inequality would yield

lim f’(t) ltimf(t o,
t---oo

and

and

f"(t) >_ p* u2t dxds,

P* (fro )(fro )f(t)f"(t) > -- Ilu(s)ll as Ilu(s)ll as

p,(ftot )2 p,
f’>-- uutdxds (f’(t)- (to))2

and as c we have for some a > 0 and Vt > to such that

f(t)f"(t) > (1 + a)(f’(t))2.

Hencef(t) is concave on [to, c]. Butf(t) > 0 and limtof(t) O.
This contradiction proves that tmax < cx; which completes the proof of
Theorem 1.1.

Proof of Theorem 1.2 We divide the proof into several steps

Step 1 Proof of Existence

(i) A priori estimates and local existence From [6] and [10], for each
n > 0, there is a unique classical solution u, a C(Qr) c2’l(Qr) of the
following equation:

div [Vu]2
Ut

u(x, t) o,

u(x, o) uo,

)(P-/ u)+ V + min{n, up*-I }, (x, t) E f x (0, T),

(x, t) E Of2 x (0, T),

(2.4)



QUASILINEAR PARABOLIC EQUATION 63

where Uno E C(f), such that

Uno uo, strongly in W01 ’e(f),
and J(uno) < (1/N)SN/p, fa [Un0[e dx < SN/p. On the other hand, multi-
plying (2.4) by u,,t and integrating, we have

2 dxdt +- IVunldx p* lunle dx J(uno). (2.5)Unt
r P

For the sake of convenience, define:

X UIu Wd’P(Q),u O,u 0,J(u) < SN/p, [ulP*dx < SNIp

Now we show that

Un(t)E, for anyt0.

Suppose that it does not hold and let t* be the smallest time for which
u(t*) . Then in virtue ofthe continuity ofu(t)we see that u(t*) 0.
Hence

S/pJ(un(r)) =
or

IV p dx f unlp dx,Un

which contradicts to (2.5). Then from (2.5) and note that if

f up* dx < Sv/p, then f [Vu[p dx > f up* dx, we have

fOO ’[UIn(S)" 2 J p J(uno) ( SNIp. (2.6):(fl) ds+ [Vu dx
1

Thus, we obtain

/ dxdt < SN/p, (2.7)Unt

lVUnlp dx < SN/p. (2.8)
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From (2.8) we have

(2.9)

where C(T1) is the constant independent of n. From the prior estimates
(2.7), (2.8) and (2.9), we see that there exists a subsequence (not relabeled)
and a function u such that

u u, up*-I up*-, a.e. on Qr,

Tun Tu, weakly in LP(Qrl),

Unt ut, weakly in L2(QTI),

Un U, in L(0, T1; Wd’P(f)) weak star,

[’unlP-2un w, weakly in Lp/(p-I)(Qr).

Then well known arguments ofthe theory ofmonotone operators yields
w- IVul-=Vu; which implies the function u is a desired local solution of
the problem (1.1).

(ii) Global existence To prove that it is a global solution. Multiplying
(1.1) by ut and integrating, we obtain

Ilu’()ll ds + J(u(x, t)) J(uo) < SN/p.

Note if f lulp dx < Sv/p, then ff [Vu[p dx > ff [uf* dx. Thus
J(u(x, t)) < (1/N)Sv/p for any > 0. Now we prove u(x, t) E E, for any
> 0. Indeed, if there exists a t* such that u(x, t) 0, then we have

J(u(x, t)) > (1/N)Sv/p,whichisacontradiction.Hencef IXZu(t)lp dx >
f [-u(t)[P* dx for any > 0. Therefore

foo f lTu[P dx < J(uo) < Sv/p,Ilu’() I1 dx +

which implies

al
Vu[P dx < Sv/p,

1
Ilu’(s) II=(0,;,=(a>/< aN/P,

(2.10)

(2.11)
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for any T> 0. Thus u(x, t) is a global solution of (1.1); which completes
Step 1.

Step 2 Proof of (1.3) Note if f [u[p* dx < aN/p, then ff IVulp dx >
lulp dx. Thus J(u(x, t)) < (1/N)Sv/p for any > 0. It is easy to prove

u(x, t) E E, for any > 0. Indeed, if there exists a t* such that u(x, t) 0)2,
then we have J(u(x,t)) > (1/N)Siv which is a contradiction. Hence
fu [Vu(t)[P dx > f [u(t)[P* dx for any t> 0. Let

h(u(t)) f lVulP dx- fuP* dx,

then

h(u(t)) > 0, for all > O.

By Sobolev inequality

lulp dx < (1ISp*/p) IVulp aN

and

J(uo) > [Vu[P dx,

implies

u[
p* dx < (1/SP*/P)(NJ(uo))P*/P-l f IVu[p dx. (2.12)

For simplicity, denote (1/SP*/P)(NJ(uo))p*/p-1 by 0 < 6 < 1. Let -y -6,
we have

u(t) [P* dx _< (1 ,),) jf [X7u(t)[P dx. (2.13)

Let T> to be a fixed number, then from

ldjf 122 dt lu(t) dx -h(u(t))
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and Poincare’s inequality, we have

(2.14)

where A1 is the first eigenvalue of -Apu AlulP-Zu, x
Furthermore, (2.13) implies

J(u(t)) IVu(t) p dx p= [u(t) p* dx

dxljfp [Tu(t),P dx + -p* [h(u(t)) jf IVu(t)lp

lf [p 1 [p[Vu(t) dx 4-p,--h(u(t)) _> ]Vu(t) dz, (2.15)

on [to, cx). Therefore, by (2.13) and (2.14) we obtain

rh(u(s)) ds < C(fl)(J(u(t)))2/p, (2.16)

on [to, T]. On the other hand, (2.13) implies

"y f IVu(t)Ip dx < h(u(t)), (2.17)

on [to, cx). By (2.15) and (2.17), we have

(1 pl__z)J(u(t)) <_ + h(u(t)). (2.18)

Further (2.16) and (2.18) give

J(u(s)) ds <_ (J(u(t)))2/p
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on [to, T], where

Then, from the arbitrariness of T> to, we have

C1 J(u(s)) ds < (J(u(t)))2/p,

ioeo

(Itcf/ J(u()) a <_ - (2.19)

Setting y(t) ft J(u(s)) ds, it follows from (2.19), we have

dy(t) < _Cf/2y(t)p/2
dt

Performing standard manipulations, we have

y(t) <_ C2 t-2/(p-2).

Thus, we obtain

TJ(u(Z -- t) ftt
T+t

J(u(s)) ds < J(u(s)) ds <_ C2t-2/(-2)

By (2.15) we have

f IXZu(T)Ip dx < J(u(T)) < C3t-2/(p-2)

with some constant C3 > 0 for enough large > T. Hence

IX7u(t)lp dx O(t-2/(p-2)), as -- x.
Step 3 Proof of (1.4) Obviously

IlVu(x,t;uo)ll r/ < s/, (2.20)
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and

d- ]u(t) dx + IVulp dx [ulp dx, for all > O. (2.21)

By the same argument with Step 2, we have

df [ul2 dx < -(1- 6) f [u[p

< (1 t) lU[p dx < -C lu[2 dx
A1

where A1 is the first eigenvalue of -Apu AlulP-u, x E f, u O, x Of,

C= (1-6)
,1 [[(P-2)/2"

Let y []u[], we see that the estimate

dy < _CyP/:Z
dt-

Therefore, we have

(f )(P-2)/2 cP 2y-(p-2)/2
_

]UO[2 dx + 2

which shows

y(t) O(t-2/(p-2)), as o,

which completes the proof of (1.4).

Step 4 Proof of Theorem 1.2 (2) We divide the proof into two steps.

(i) First of all, we define a set which consists of the functions that satisfy
the following conditions:

J(uo) < ).SN/p, (2.22)

uol
p* dx Sv/p. (2.23)
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We claim that the set is an empty set. In fact, let Uo belong to the set.
If Uo satisfies

Vuo
p dx _< f u01p* dx,

then

SNIp uo p dx _> Vuo p dx _> S uo p* dx sN/P,

and hence

which is contradictory to (2.22).
If Uo satisfies:

Vuo
p dx > f uo p* dx,

then from (2.22) we see that

1sV/p > j(uo)__ f f fVuolp dx p-Z [uo p* dx > [uo[P dx.

Implies

luolp* dx < SN/p

which is a contradiction because of (2.23).
(ii) Thus we consider only the case of uo satisfies

J(u) < 1 sN/P f [ulP, dx > SNIp. (2.24)
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Obviously, in this case we have

sN/p < lTuolP dx ( j {uo[P* dx

If u(x, t) is a global solution then we can deduce that u(x, t) does not

converge strongly to 0 in W’p (). Otherwise, Bt*, 0 < t* < o such that

J(u(t*)) < SN/p, u(t*)[
p* dx SN/p,

which is a contradiction from the first half (i). Now we prove the
following claim:

CLAIM If Uo satisfies (2.24) and u(x, t; Uo) is a global solution. Then
Vt E [0, T] thefollowing inequalities hold:

SNIp < [VU(X, t)[p dx < lu(x, t)lp dx. (2.25)

Indeed, if there exists a t* such that f[Vu(x,t*)lPdx
f [u(x, t*)[p* dx, then we have f [Vu(x, t*)[p dx f lu(x, t*)lp* dx >_
SN/p. But (1/N)SN/p > J(u(x,t*))= (l/N)f [Vu(x,t*)[p dx, with a

contradiction. Therefore there exists a constant > 0 sufficiently small
and independent oft, rely on Uo such that

f
[u(x, t)[P* dx _> (1 + /) j [Vu(x, t)[P dx, (2.26)

for any [0, o], which completes the proofofthe claim.

From the claim andp > 2 we have

(2.27)

implies

dd (llull ) Cllullg,
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ioeo

lUlly
-(p/2) dy > Ct,

011=

and therefore

CT < y-(p dy <

which completes the proof of Theorem 1.2.

3 THE PROOF OF THEOREMS 1.3 AND 1.4

First of all, we prove Theorem 1.3.

Proof of Theorem 1.3 For any t ec, let u u(x, t; u0), from the
boundedness we know that there exists a subsequence (still denote by
(un}) and a function w such that

Un-’ W in W’P(f),
ug*-1 wp*-I in (Lp (f))*,

un w a.e. in Ft.

In order to pass to the limit in (1.1) we first fix some T< oe and intro-
duce suitable test functions similar to Fila [4]. Take

T, Wo’,p(n/, p c,(o, r/, p _> o, #(t),it .
Put

,o(t t,,),(),(, t) o
for > tn, x
for O < < tn, X E f.

Further, we obtain from Definition 1.1 that

tn+T jf[up’(t tn)b plVu[p-2VuVb + up*-lp(t tn)] dx.dt O.
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The transformation s t- tn, leads to

fo f.lU( n + + +

+ U(tn + s)P*-lp(s)] dxds 0. (3.1)

Note that the uniformly boundedness of u(t.+s) in Wd’P(gt) for
0 < s < T. Therefore, we can choose the same subsequence of { t.} (not
relabeled) and functions w and w such that

u(t. + s) w, strongly in Lq(f)(p <_ q < p*)

U(tn) "-’+ w, strongly in Lq(p < q < p*).

Now we claim: ws w. Indeed, by the energy inequality we have

lU(tn + S) U(tn)l2 dx s dx dr ---, 0, as tn -- Cx3
d tn

as 0 s T for any fixed T< . Thus, we have

u(t, + s) U(tn) O, strongly in L(), as t,

for 0 s T for any fixed T< . Hence

W W

which prove the claim.

Now we rewrite (3.1) as follows:

f
T

[U(tn)p’(S)- plVU(tn)lP-2VU(tn)V + U(tn)P*-lp(s)] dxds

+ [u(t, + s) ,(t)]p’(s)dxds

[IVU(tn + S)lP-2Vu(t, + S) --IVU(tn)lP-2Vu(t,)]VCdxds

+ [u(t + s)’- u(t,)e’-l]o(s)dxds 0 (3.2)

and
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By the dominated convergence theorem and the choice ofp and u(tn) w
strongly in zq()(p _< q <p*), we have

T

p [f l7U(tn)[P-2U(tn)7b dx f u(tn)P*-lbdxl ds o(1),

as n oc

Denote u(tn) by u, From the choice of p, we obtain

lVu(tn)lP-2VU(tn)Vbdx f U(tn)P*-lbdx o(1), asn o.

Thus, we have

f
IVwIp-2VwV dx f Wp*-13 dx, for all b w’P(f)

which completes the proof ofTheorem 1.3.

Proof of Theorem 1.4 From now on, denote u(x, t; uo) by u, we have

fa ut dx ds < C < .
Then there exists a sequence { tn} satisfying tn o as n oe such that

ut(x, tn; u0)l2 dx 0 as n ec. (3.3)

For the sake ofconvenience, denote u(x, tn; Uo) by un. FromTheorem 1.1,
J(u(t)) > 0 for all > 0, and

0 < J(u(t)) < J(uo). (3.4)

If we consider the time sequence {t} as

0 < J(u(tn))

_
J(uo). (3.5)

The statement of (3.3) and (3.5) says that un u(tn), t oe is a Palais-
Sma!e sequence related to the statement problem of (1.1). Such a
situation has been well studied in the theory of nonlinear elliptic
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equations. It is easy to prove that there exists a constant C < + such
that

Vu, [P dx < C.

Thus, there exists a subsequence (not relabeled) and a function w such
that

weakly in W’P(f’t),
strongly in Lq(f)(p <_ q < p*).

From the theory of elliptic equation we can obtain that w is a stationary
solution, which completes the proof of Theorem 1.4.
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