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1. INTRODUCTION

In this paper, we deal with the existence and a variational of constant
formula for solutions of the nonlinear functional differential equation
governed by the variational inequality in Hilbert spaces.

Let H and V be two complex Hilbert spaces. Assume that V is dense
subspace in H and the injection of V into H is continuous. The norm
on V (resp. H) will be denoted by I1"11 (resp. l" 1) respectively. Let A be a
continuous linear operator from Vinto V* which is assumed to satisfy

(Au, u) Ilull = 2lul2,

* Corresponding author.
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228 J.-M. JEONG AND J.-Y. PARK

where 031 > 0 and 032 is a real number and let b. V(-, +o] be
a lower semicontinuous, proper convex function. Then we study the
following the variational inequality problem with nonlinear term:

dx(t) )dt + Ax(t),x(t) z + dp(x(t)) dp(z)

<_ (f(t,x(t))+k(t),x(t)-z), a.e. 0<t<_ T, zE V,

x(O) xo.

(VIP)

Noting that the subdifferential operator 0b is defined by

Od?(x) {x* E V*; q(x) _< 4)(y) + (x*, x y), y V )

where (., .) denotes the duality pairing between V* and V, the problem
(VIP) is represented by the following nonlinear functional differential
problem on H:

dx(t) + Ax(t) + Odp(x(t)) f(t, x(t)) + k(t), 0 < <_ T,
dt (NDE)

x(O) xo.

The existence and regularity for the parabolic variational inequality
in the linear case (f= 0), which was first investigated by Brrzis [5,6], has
been developed as seen in Section 4.3.2 ofBarbu [3] (also see Section 4.3.1
in [2]).
When the nonlinear mappingfis a Lipschitz continuous from I V

into H, we will obtain the existence for solutions of(NDE) by converting
the problem into the contraction mapping principle and the norm esti-
mate of a solution of the above nonlinear equation on L2(0, T; V)f
W1’2(0, T; V*) N C([0, T]; H). Consequently, in view of the monotonic-
ity of Ob, we show that the mapping

/-/ z2(o, r; v*) (xo,)x z2(o, 7"; v) c([o, r]; /)

is continuous. An example illustrated the applicability of our work is
given in the last section.
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2. PRELIMINARIES

Let V and H be complex Hilbert space forming Gelfand triple VC
HC V* with pivot space H. For the sake of simplicity, we may consider

Ilull, lul Ilull, u w

where I[’[I, is the norm of the element of V*. We also assume that there
exists a constant C] such that

111/2 1/2Ilull < Clllu,,z,(Allul (2.1)

for every u E D(A), where

Ilull/- (IAul + lu[2) 1/2

is the graph norm of D(A). Let a(., .) be a bounded sesquilinear form
defined in V V and satisfying Gtrding’s inequality

Re a(u, u) > w] Ilull = =lul=, (2.2)

where w > 0 and w2 is a real number.
Let A be the operator associated with the sesquilinear form a(., .):

(Au, v) a(u, v), u, v V.

Then A is a bounded linear operator from Vto V* and -A generates an
analytic semigroup in both ofHand V* as is seen in [9; Theorem 3.6.1].
The realization for the operator A in Hwhich is the restriction ofA to

z(a) {u v; au e/}

be also denoted by A.
The following L2-regularity for the abstract linear parabolic equation

dx(t)
d---- + Ax(t) k(t),

x(0) x0

O<t<_T,
(LE)



230 J.-M. JEONG AND J.-Y. PARK

has a unique solution x in [0, T] for each T> 0 ifxo E (D(A),H)I/2,2 and
k EL2(O,T;H) where (D(A),H)1/2,2 is the real interpolation space
between D(A) and H. Moreover, we have

IIX[[L:(O,r;D())W’,:(O,r,H) < C2(l[xoi[((),.),/:,: + [IkllL:(O,r;S)) (2.3)

where C2 depends on T and M (see Theorem 2.3 of [4,8]).
If an operator A is bounded linear from V to V* associated with the

sesquilinear form a(., .) then it is easily seen that

H= x e V*: IlAe-t’xll2. dt < cc

for the time T> 0. Therefore, in terms ofthe intermediate theory we can
see that

(v, v*)/, H

and obtain the following results.

PROPOSITION 2.1 Let Xo H and k L2(0, T; V*), T> 0. Then there
exists a unique solution x of(LE) belonging to

L2(0, T; V)N W1’2(0, T; V*)C C([0, T];H)

and satisfying

IIxlI.=(O,T;V)W’,=(O,T;V*) C=(Ix01 + (2.4)

where C2 is a constant depending on T.

Let 4):V (-oc, +] be a lower semicontinuous, proper convex
function. Then the subdifferential operator 04) of 4) is defined by

Odp(x) {x* V*; b(x) _< b(y) + (x*, x y), y E V}.

First, let us concern with the following perturbation of subdifferential
operator:

dx(t____) + Ax(t) + OO(x(t)) k(t), 0 < <_ T,
dt (VE)

x(0) x0.
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Using the regularity for the variational inequality of parabolic type
as seen in [3; Section 4.3] we have the following result on the Eq. (VE).
We denote the closure in H of the set D(b) {u E V: b(u) < z} by O(b).
PROPOSITION 2.2 (1) Let k EL2(0, T; V*)and xo D(c). Then the
Eq. (VE) has a unique solution

x 2(o, 7; v) c([o, ]; /),

which satisfies

x’(t) (k(t) Ax(t) Op(x(t)))0

and

Ilxll,.=c C3( + Ixol + (2.5)

where C3 is some positive constant and L2 f) C-- L2(0, T; V) CI

C([0, T]; H).
(2) Let A be symmetric andlet us assume that there exist h Hsuch that

for every e > 0 and any y D(O)

Jc(Y + eh) D(dp) and c(J,(y + eh)) < (y)

where 4= (I+ cA)-1. Then for k L2(0, T;H) and xo D(c) fq V the
Eq. (VE) has a unique solution

x e z2(o, 7; Z(A)) W,2(0, ;/4) C([0, ]; /),

which satisfies

(2.6)

Here, we remark that if D(A) is compactly embedded in V and
x L2(0, T; D(A)) (or the semigroup operator S(t) generated by A is
compact), the following embedding

2(o, ’; z(a)) c w,2(o, ’;/4) c z2(o, ’; v)

is compact in view ofTheorem 2 ofAubin [1]. Hence, the mapping kH x
is compact from L2(0, T; H) to L2(0, T; V), which is also applicable to
optimal control problem.
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3. EXISTENCE OF SOLUTIONS

Let f be a nonlinear single valued mapping from [0, )x V into H.
We assume that

If(t,x) f(t, x2)l <_ Lllx (F)

for every xl, x2 E V.
The following Lemma is from Br6zis [6; Lemma A.5].

LEMMA 3.1 Let rn L (0, T; T) satisfying re(t) >_ 0 for all (0, T)
and a >_ 0 be a constant. Let b be a continuous function on [0, T] C
satisfying thefollowing inequality."

b2(t < 2 (s)b(s)ds, E [0, T]_a + rn

Then,

Ib(t)[ a + re(s) ds, [0, T].

Proof Let

1
(a + e)2 + m(s)b(s) ds,=5 e>O.

Then

d/3(t) m(t)b(t) 7" (0, T),
dt

and

b2(t) < rio(t) </3c(t),
2

[o, r]. (3.1)

Hence, we have

<_ m(t)x/V//3c(t).
dt
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Since fl,(t) is absolutely continuous and

dx/,t
dt 2V/(t dt

for all E (0, T), it holds

d V//5,(i)< m(t),d-- -that is,

4/3(t) <_ V/fl’ (0) +- m(s) ds, t (o,r).

Therefore, combining this with (3.1), we conclude that

Ib(t)l _< x/v/fl(t)<_ x/V//(0 + re(s) ds

fO=a+e+ m(s)ds, E[O,T]

for arbitrary e > 0.

We establish the following results on the solvability of (NDE).

THEOREM 3.1 Let the assumption (F) be satisfied. Assume that k
L2 (0, T; V*) and xo D(O). Then, the Eq. (NDE) has a unique solution

x L2(0, T; V) C([0, T]; H)

and there exists a constant C4 depending on Tsuch that

(3.2)

Furthermore, ifk L2(0, T; H) then the solution x belongs to wl’2(0, T; H)
and satisfies

Ilxllw..=<O.T;.) C4(1 + Ix01 + IIklIL<O.T;))" (3.3)
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Proof Invoking Proposition 2.2, we obtain that the problem

dy(t)
d---+ Ay(t) + OO(y(t)) f(t,x(t)) + k(t),

y(O) xo

O<t<_T,

has a unique solution y E L2(0, T; V) f"l C([0, T]; H).
Assume that (2.2) holds for C02 0. Let us fix To > 0 such that

L2

(ezzT 1) < 1.
4wlc02

(3.4)

For 1, 2, we consider the following equation:

dyi(t___.) + Ayi(t) + Odp(yi(t)) f(t, xi(t)) + k(t)
dt

y(O) xo.

O<t<T,
(3.5)

We are going to show that xHy is strictly contractive from L2(0, To; V)
to itself if the condition (3.4) is satisfied. Let Yl, Y2 be the solutions of
(3.5) with x replaced by xl,x2 L2(0, To; V) respectively. From (3.5)
it follows that

d
d- (y (t) y2(t)) + A(yl (t) y(t)) + Odp(yl (t)) Oc(y2(t))

9 f(t,x(t)) -f(t, x2(t)), > O.

Multiplying on both sides ofy(t) y2(t) and using the monotonicity of
0b, we get

ld
2 dt

yl(t)- y2(t)l2 + a(yl(t)-y2(t),yl(t)- y2(t))

< (f(t, Xl (t)) -f(t, x2(t)),yl (t) y2(t)),

and hence,

d 2

2 dt
lyl (t) yE(t)[ + y (t) y2 (t)II =

__< c021Yl (t) y(t)l + LIIx (t) x=(t)ll lYl (t) Y(t)l. (3.6)
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Putting

a(t) Zllxl(t x2 (t)II lY (t) Yz(t)

and integrating (3.6) over (0, t), this yields that

-ly(t)- y(t) +o Ily(s) y(s)llds

f0 12 f0< co2 [yl (s) y2(s) ds + G(s) ds.

From (3.7) it follows that

d e_at lYe(S) y;(s) ds
dt

2e-2w2t [yl(t)- y2(t)l 2 --a y (S)-y2(s)12ds

e- a(s) ds.

Integrating (3.8) over (0, t) we have

e-2t Y (s) y2(s) ds 2 e- G(s) ds dr

2 e-" dra(s)ds 2
2w

thus, we get

ly(s)-y(s) ds (e(- 1)a(s)ds.

From (3.7) and (3.9) it follows that

1()-a() + I()-a()lld

e(-a(s) ds

G(s) ds

(3.7)

(3.8)

(3.9)

(3.10)
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which implies

-(e-2tlyl(t)- y2(t)l)2 +wle-22t y(s)-Y2(S)[I2ds

< L e-2S[lxl (s) -x(s)lle-Slyl(s)-y(s)lds.

By using Lemma 3.1, we obtain that

From (3.10) and (3.11) it follows that

I()- ()1 + (x) ()1d

t= e=(->llx(s) x=(s)ll e=(-llx() x=()ll drds

g2ezt e-llxa(s x(s)l e-WrlXl(r x(r)l drds

t d{S 2Z2e2 e-W2r I]Xl(T) XE(T) dr ds

_1 L2e2W2 e-=llxl () x2() d
2

1L2e2W2t .t te-=d IIx() x2()ll 2 d2
L2e22 e-2t _t2w2 Xl () x2(r)ll 2 dr

(e’- ) x()-x()ll

(3.11)

(3.12)

Starting from initial value Xo(t)=Xo, consider a sequence {x,,(.)}
satisfying

d
d-tXn+l (t) -k- 4Xn+l (t) - O(Xn+l (t)) 9f(t, Xn(t)) -+- k(t),

x.+ (0) xo.

O<t<T,
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Then from (3.12) it follows that

" [Xn+l (l) Xn(t)]2 + C01 []Xn+l (s) x.(s)ll = as
L2

(e22t- 1) Ilx,(s) Xn-l(s)ll as. (313)< 4a)-
So by virtue of the condition (3.4) the contraction principle gives that

there exists x(.) L2(0, To; V) such that

Xn(" X(’) in L2(0, To; V),

and hence, from (3.13) there exists x(.) C([0, To]; H) such that

Xn(’) ---* x(’) in C(O, To; H).

Next we establish the estimates of solution. Let y be the solution of

dy(t)
d-----t- + Ay(t) + 0(y(t)) 9 k(t), 0 < < To,

y(O) x0.

Then, since

d
d-- (x(t) y(t)) + A(x(t) y(t)) + cg(x(t)) Oc(y(t)) 9 f(t,x(t)),

by multiplying by x(t) y(t) and using the monotonicity of0 and (2.2),
we obtain

1 d 122 dt
Ix(t) y(t) + Wl IIx(t) y(t)II 2

<_ w21X(t) --y(t)[2 q- Zllx(t)[I Ix(t)- y(t)[. (3.14)

By integrating on (3.14) over (0, t) we have

-1 Ix(t y(t)[2
2 + wl []x(s) y(s)II 2 ds

12 f0<__ C02 IX(S) y(s) ds + L IIx(s)ll Ix(s) y(s)] ds.
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By the procedure similar to (3.12) we have

LIx(t) y(t)[ + c01 ]IX(S) y(s)II = ds

<_ L e(t-’) IIx(s) e(-’) IIx(-)11 dr ds

L L4a)---- (e22t 1) IIx(s) 2 ds.

Put

L2

N (e
4wiw2

Then it holds

[Ix-Yl[r(0,r0;v) N1/Zllxllrz(o,ro;v)

and hence, from (2.5) in Proposition 2.2, we have that

Ilxllz=(O,ro;V/-< l-Nil2 yll,.(O,ro;V/

< c
Nil (1 + Ilxoll + Ilkll=(O,ro;V.))

_< c4(1 + Ilxoll + Ilkll,,(O,To;V,)) (3.16)

for some positive constant C4.
If C02--0 replace (3.4) by L2To/2 < 1, the results mentioned above

still hold.
Acting on both side of(NDE) by x’(t) and by using

d ( d t)), a.e. 0<t,d-- b(x(t)) g(t), -x(

for all g(t) Odp(x(t)), it holds

(Ax.(t),x.(t)) + (x.(t))Ix.(t)l + 7

< -(Axo, xo) + O(xo) / If(s,x(s)) / k()l IxL()lds, (3.17)
-2
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thus, we obtain the norm estimate of x in wl’2(0, T; H) satisfying
(3.3). Since the condition (3.4) is independent of initial values and we
can derive from (3.17) that (x(nTo))< o, the solution of (NDE)can
be extended the internal [0,nT0] for natural number n, i.e., for the
initial x(nTo) in the interval [nTo, (n + 1)To], as analogous estimate

(3.16) holds for the solution in [0, (n + 1)To]. Furthermore, the estimate
(3.2) is easily obtained from (3.15) and (3.16).

THEORV.M 3.2 Let the assumption (F) be satisfied and (x0,k)E H x
Lz(O, T;H), then the solution x of the Eq. (NDE) belongs to x E
L2(0, T; V) fq C([0, T]; H) and the mapping

/-//.?(o, ’;/-/) (xo,)x z?(o, 7"; v) c([o, 7"];/-/)

is continuous.

Proof If (Xo, k) H Lz(O, T; H) then x belongs to L(0, T; V) N
C([0, T]; H) from Theorem 3.1. Let (xoi, ki) G H L2(0, T; H) and xi be
the solution of (NDE) with (Xoi, ki) in place of (Xo, k) for i= 1,2. Multi-
plying on (NDE) by xl(t) x2(t), we have

d IE2 dt Ixl (t) x2(t) + Wl IlXl (t) x2(t)ll 2

<_ w2lx (t) x2(t)l2 + If(t,x(t)) -f(t, x2(t))[ Ixa(t)- x2(t)[

+ Ik (t) k2(t)l IIx (t) x2(t)ll. (3.18)

Put

n(t) (tllx (t) x2(t)ll + Ik (t) k2(t)l)lx (t)

Then

12 f0lXl(t) x2(t) + Wl IIx(s) ()11= ds

< -Ix01 X0EI + wE Ix1 (s) xE(s) ds + H(s) ds
-2

(3.19)
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and we get that

l f0d e_2W2/ [Xl (s) X2(S) 2 ds
dt

< 2e-22t IXOl xo2l 2 + H(s) ds,

thus, by the similar way to (3.9) we have

Combining this and (3.19) it holds that

1__ Ix (t) x2(t)l + IIx (s) x2(s)ll as
2

< -e2tlxo x02 + e22(t-S)H(s) ds.
-2

(3.20)

By Lemma 3.1 the following inequality

)2 e-2w2t 0
"t

(e-tlx (t) x2(t)l + Ol IlXl (s) x=(s)ll 2 ds

-llxol xog.1:2 + e-:s(Ll[xl (s) x2(s)<2
+ Ik (s) k2(s)l)e- Ix (s) x2(s)l ds

implies that

e-W2tlxl(t x2(t)l

jo_< Ixo xol + e-(llx () xa()ll + Ikl () k).()l)d.
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From (3.20) and (3.21) it follows that

1:2 f0Ix () x(t) + IIx (s) x(s)ll as

_1 e2W2tlxo X02 12<2
+ &(-s(llx() x(x)ll + ll(X) ()l)lxo xold

e(’-(LIIx () x()ll + I() ()1)dds. (3.22)

The third term of the right of (3.22) is estimated as

"t(e2w2t- 1) t2(llx(s) x.(s)ll + Ik(s) k.(s)l) as,
4co2

(3.23)

Let T1 < Tbe such that

Z2

(e2w2Tl -1) >0.

Then we can choose a constant c > 0 such that

L2 c
w (e22r,. 1) Le2r, > 0

and

2Ixo xo=l IIx(s) x=(s)ll lxo xo=l
c 2+ IIx (s) x:(s)ll

Thus, the second term of the right of (3.22) is estimated as

TIe2w2 T1 L + c

2c Ix x212
e2W2T fT

Jo2 (cZllx(s) x=(s)ll = + Ik () k=(s)l=) ds. (3.24)
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Hence, from (3.22) to (3.24) it follows that there exists a constant C > 0
such that

(3.25)

Suppose (Xon, kn) (x0, k) in H x L2(0, T1; V*), and let xn and x be the
solutions (NDE) with (x0n, k,) and (Xo, k), respectively. Then, by virtue of
(3.24), we see that x, x in L2(0, T1, V) n C([0, Tl]; H). This implies that
xn(T) ---, x(Ta) in H. Therefore the same argument shows that x -- x in

L2(Tl,min{2T1, T}; V) N C([Tl,min{2Tl, T}]; H).

Repeating this process, we conclude that x,,-+x in L2(0, T; V)N
C([0, T]; H).

Remark 3.1 Under the condition that either the nonlinear term f(., x)
is uniformly bounded or wi L > 0, we can show that the mapping

H x L2(0, T; V*) 9 (xo, k) x E L2(0, T; V) fq C([0, T];H)

is continuous for any k E L2(0, T; g*).

4. EXAMPLE

Let f be a region in an n-dimensional Euclidean space IR with boundary
0f and closure ft. For an integer m > O, cm(f’t) is the set of all m-times
continuously differentiable functions in fl, and cn(fl) is its subspace
consisting offunctions with compact supports in f. Ifm > 0 is an integer
and 1 <p < oo, wm’p(f’t) is the set of all functionsfwhose derivative Df
up to degree m in the distribution sense belong to LP(f). As usual, the
norm of wm’P(") is given by

)
1/p

plID<711;
I<.,l_<m
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where _<p < cxz and Df=f. In particular, W’P(gt)= LP(f’t) with the
norm I[’[[0,p. wn’P(f2) is the closure of C(ft) in wm’p(gt). For p’=
p/(p-1), <p<, w-m’P(f’t) stands the dual space Wn’P’(gt) of

wn’P’(f) whose norm is denoted by [[’[[-m,p.
Let 9t be a bounded domain inn with smooth boundary 0. We take

V w0m’2(), H-- L2()) and V* w-m’2(’-) and consider a nonlinear
differential operator of the form

Ax- Z (-1)I’ID’A(u’x"" "’Dmx)’

where A(u, ) are real functions defined on f x ]1N and satisfy the
following conditions:

(1) As are measurable in u and continuous in (. There exists k E L2()
and a positive constant C such that

Ao(u, O) =0,
I(u, )1 < C(ll + k(u)), a.e. u EFt,

where (; [a < m).
(2) For every (, r/) E IN x N and for almost every u E Ft the following

condition holds:

Z (ao(U,) ao(U, T])) (c c) o3111 f]llm,2  110, 

where (.02 ] and wl is a positive constant.

Let the sesquilinear form a" V x V IR be defined by

a(x,y) Z Ao(U,X,... ,Dmx)(D)ydu.

Then by Lax-Milgram theorem we know that the associated operator
A" V V* defined by

(Ax, y) a(x, y), x, y V

is monotone and semicontinuous and satisfies conditions (A1) and (A2)
in Section 2.
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Let g(t, u, x,p), p E ]1m, be assumed that there is a continuous p(t, r)"
x IR + and a real constant < -), such that

(fl) gl(t,u,O,O) O,

(f2) Ig(t,u,x,p)-g(t,u,x,q)[ < p(t,[x[)(1 + Iplz-1 /
(f3) Ig(t,u,x,p)-g(t,u,y,p)l < p(t, Ixl / ly[)(1 / Ipl)lx-yl.

Let

g(t,x)(u) gl(t,u,x, dx, D2x,... ,Dmx).

Then noting that

Ilg(t,x) g(t,y)l[,2 <_ 2 jf Ig,(t,u,x,p) gl(t,u,x,q)l2 du

+ 2 J Igl(t,u,x,q) g(t,u,y,q)l2 du,

where p--(Dx,..., Dmx) and q--(Dy,... ,Dmy), it follows from (fl),
(f2) and (f3) that

IIg(t,x) g(t,y)l],9. <_ Z(I]xllm,, I]YIIm,Z)IIX Yl[m,2,

where t(llxllm,2, IlYllm,2)is a constant depending on IlXllm,2 and Ilyl[,2-
We set

f t, x) k( s)g(s, x(s) ds,

where k belongs to L2(0, T). Let b" V(-oc, +cx] be a lower semi-
continuous, proper convex function. For every x0 E D(b) and
k L2(0, T; V*) the following nonlinear problem:

dx(t)
dt + Ax(t), x( t) z + O(x(t)

< (f(t, x(t)) + k(t), x(t) z), a.e. 0 < < T, z H,

x(0) x0
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has a unique solution

x z,2(o, r; C([O, 7"];
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