On a Minimax Problem of Ricceri

GIUSEPPE CORDARO*

Dipartimento di Matematica, Università di Messina, 98166 Sant'Agata – Messina, Italy

(Received 18 August 1999; Revised 20 October 1999)

Let E be a real separable and reflexive Banach space, $X \subseteq E$ weakly closed and unbounded, Φ and Ψ two non-constant weakly sequentially lower semicontinuous functionals defined on X, such that $\Phi + \lambda \Psi$ is coercive for each $\lambda \ge 0$. In this setting, if

$$\sup_{\lambda>0}\inf_{x\in\mathcal{X}}(\Phi(x)+\lambda(\Psi(x)+\rho))=\inf_{x\in\mathcal{X}}\sup_{\lambda\geq0}(\Phi(x)+\lambda(\Psi(x)+\rho))$$

for every $\rho \in \mathbf{R}$, then, one has

$$\sup_{\lambda \geq 0} \inf_{x \in X} (\Phi(x) + \lambda \Psi(x) + h(\lambda)) = \inf_{x \in X} \sup_{\lambda \geq 0} (\Phi(x) + \lambda \Psi(x) + h(\lambda)),$$

for every concave function $h:[0,+\infty[\to \mathbb{R}]$.

Keywords: Minimax problem; Concave function; Weak coerciveness; Weakly sequentially lower semicontinuity

AMS 1991 Subject Classifications: 49J35

1. INTRODUCTION

Here and throughout the sequel, E is a real separable and reflexive Banach space, X is a weakly closed unbounded subset of E, and Φ , Ψ are two (non-constant) sequentially weakly lower semicontinuous

^{*} E-mail: cordaro@dipmat.unime.it.

functionals on X such that

$$\lim_{x \in X, ||x|| \to +\infty} (\Phi(x) + \lambda \Psi(x)) = +\infty$$

for all $\lambda > 0$.

In this setting, the importance of finding a continuous concave function $h:[0,+\infty[\to \mathbb{R}]]$ such that

$$\sup_{\lambda \ge 0} \inf_{x \in X} (\Phi(x) + \lambda \Psi(x) + h(\lambda)) < \inf_{x \in X} \sup_{\lambda \ge 0} (\Phi(x) + \lambda \Psi(x) + h(\lambda)), \quad (1)$$

has been clearly shown by Ricceri in a series of recent papers ([2-4]). Actually, if that happens, there is an open interval $I \subseteq [0, +\infty[$ such that, for each $\lambda \in I$, the functional $\Phi + \lambda \Psi$ has a local non-absolute minimum in the relative weak topology of X. In turn, under further appropriate assumptions, this fact leads to a three critical points theorem (Theorem 1 of [4] improving Theorem 3.1 of [3]) which is a new, useful tool to get multiplicity results for non-linear boundary value problems ([1,2,4]).

In [3], just in view of an application to the Dirichlet problem, Ricceri pointed out a natural way to get (1), with a linear h ([3], Proposition 3.1). At the same time, he asked ([3], Remark 5.2) whether it may happen that for a suitable continuous concave function h, (1) holds, while, for every $\rho \in \mathbf{R}$, one has

$$\sup_{\lambda \geq 0} \inf_{x \in X} \left(\Phi(x) + \lambda(\Psi(x) + \rho) \right) = \inf_{x \in X} \sup_{\lambda \geq 0} \left(\Phi(x) + \lambda(\Psi(x) + \rho) \right).$$

The aim of this paper is to answer, in negative, Ricceri's question. Our result is as follows.

THEOREM 1 Under the assumptions above, the following assertions are equivalent:

(i) For every $\rho \in \mathbb{R}$, one has

$$\sup_{\lambda \geq 0} \inf_{x \in X} (\Phi(x) + \lambda(\Psi(x) - \rho)) = \inf_{x \in X} \sup_{\lambda \geq 0} (\Phi(x) + \lambda(\Psi(x) - \rho)).$$

(ii) For every $\rho \in \inf_X \Psi$, $\sup_X \Psi[$, one has

$$\sup_{x \in \Psi^{-1}(]\rho, +\infty[)} \frac{\Phi(x) - \inf_{\Psi^{-1}(]-\infty, \rho])}{\Phi} \Phi$$

$$\leq \inf_{x \in \Psi^{-1}(]-\infty, \rho]} \frac{\Phi(x) - \inf_{\Psi^{-1}(]-\infty, \rho]}{\Phi} \Phi.$$

(iii) For every concave function $h:[0,+\infty[\to \mathbb{R}, one has$

$$\sup_{\lambda \geq 0} \inf_{x \in X} (\Phi(x) + \lambda \Psi(x) + h(\lambda)) = \inf_{x \in X} \sup_{\lambda \geq 0} (\Phi(x) + \lambda \Psi(x) + h(\lambda)).$$

2. PRELIMINARY LEMMAS

The proof of Theorem 1 needs some rather delicate lemmas. We prove them in this section. From now on, we denote l.s.c. as lower semicontinuous, u.s.c. as upper semicontinuous, $\chi_{[a,b]}$ the characteristic function of a real interval [a,b].

Except for Lemmas 1 and 4, we also assume that the two functions Φ , Ψ satisfy (ii) of Theorem 1.

LEMMA 1 Assume that $\alpha, \beta \in \mathbb{R}_+$ with $\alpha < \beta$, then the following assertions are equivalent:

(i1) For every $\rho \in \mathbf{R}$, one has

$$\sup_{\lambda \in [\alpha,\beta]} \inf_{x \in X} (\Phi(x) + \lambda (\Psi(x) - \rho)) = \inf_{x \in X} \sup_{\lambda \in [\alpha,\beta]} (\Phi(x) + \lambda (\Psi(x) - \rho)).$$

(ii1) For every $\rho \in \inf_X \Psi$, $\sup_X \Psi$ [, one of the following two pairs of inequalities holds:

$$\sup_{x \in \Psi^{-1}([\rho, +\infty[)]} \frac{\Phi(x) - a(\rho)}{\rho - \Psi(x)} > \beta, \tag{2}$$

$$\sup_{x \in \Psi^{-1}(]\rho, +\infty[)} \frac{\Phi(x) - b(\rho)}{\rho - \Psi(x)} \le \inf_{x \in \Psi^{-1}(]-\infty, \rho[)} \frac{\Phi(x) - b(\rho)}{\rho - \Psi(x)}$$
(3)

or

$$\sup_{x \in \Psi^{-1}(]\rho, +\infty[)} \frac{\Phi(x) - a(\rho)}{\rho - \Psi(x)} \le \beta, \tag{4}$$

$$\sup_{x \in \Psi^{-1}(|\rho_{e}+\infty|)} \frac{\Phi(x) - a(\rho)}{\rho - \Psi(x)} \le \inf_{x \in \Psi^{-1}(|-\infty,\rho|)} \frac{\Phi(x) - a(\rho)}{\rho - \Psi(x)}$$
 (5)

whereas

$$a(\rho) = \inf_{x \in \Psi^{-1}(]-\infty, \rho])} (\Phi(x) + \alpha(\Psi(x) - \rho))$$

and

$$b(\rho) = \inf_{x \in \Psi^{-1}(]\rho, +\infty[)} (\Phi(x) + \beta(\Psi(x) - \rho)).$$

Proof

 $(i1) \Rightarrow (ii1)$

Fix $\rho \in]\inf_X \Psi$, $\sup_X \Psi[$, we have

$$\inf_{x \in X} \sup_{\lambda \in [\alpha,\beta]} (\Phi(x) + \lambda(\Psi(x) - \rho)) = \min\{a(\rho),b(\rho)\}.$$

We prove that

$$b(\rho) < a(\rho) \Rightarrow (2)$$
 and (3)

$$a(\rho) \le b(\rho) \Rightarrow (4)$$
 and (5).

Suppose $b(\rho) < a(\rho)$, then $\inf_{x \in X} \sup_{\lambda \in [\alpha,\beta]} (\Phi(x) + \lambda(\Psi(x) - \rho)) = b(\rho)$, moreover there exists $\bar{x} \in \Psi^{-1}(]\rho, +\infty[)$ such that $\Phi(\bar{x}) + \beta(\Psi(\bar{x}) - \rho) < a(\rho)$, then

$$\frac{\Phi(\bar{x}) - a(\rho)}{\rho - \Psi(\bar{x})} > \beta$$

that implies (2).

Since $\sup_{\lambda \in [\alpha,\beta]} \inf_{x \in X} (\Phi(x) + \lambda(\Psi(x) - \rho)) = b(\rho)$, there exists $\lambda_{\rho} \in [\alpha,\beta]$ such that

$$\inf_{x\in X}(\Phi(x)+\lambda_{\rho}(\Psi(x)-\rho))=b(\rho),$$

thus we have

$$\sup_{x\in\Psi^{-1}(]\rho,+\infty[)}\frac{\Phi(x)-b(\rho)}{\rho-\Psi(x)}\leq \lambda_{\rho}\leq \inf_{x\in\Psi^{-1}(]-\infty,\rho[)}\frac{\Phi(x)-b(\rho)}{\rho-\Psi(x)},$$

that implies (3).

Suppose $a(\rho) \le b(\rho)$, then $\inf_{x \in X} \sup_{\lambda \in [\alpha, \beta]} (\Phi(x) + \lambda(\Psi(x) - \rho)) = a(\rho)$. The inequality (4) holds, in fact if it does not hold, we have

$$\sup_{x\in\Psi^{-1}([\rho,+\infty[)}\frac{\Phi(x)-a(\rho)}{\rho-\Psi(x)}>\beta,$$

that implies $b(\rho) < a(\rho)$ against the hypothesis.

Since $\sup_{\lambda \in [\alpha,\beta]} \inf_{x \in X} (\Phi(x) + \lambda(\Psi(x) - \rho)) = a(\rho)$, there exists $\lambda_{\rho} \in [\alpha,\beta]$ such that

$$\inf_{x \in X} (\Phi(x) + \lambda_{\rho}(\Psi(x) - \rho)) = a(\rho),$$

thus we have

$$\sup_{x\in\Psi^{-1}(]\rho_+\infty[)}\frac{\Phi(x)-a(\rho)}{\rho-\Psi(x)}\leq \lambda_\rho\leq \inf_{x\in\Psi^{-1}(]-\infty,\rho[)}\frac{\Phi(x)-a(\rho)}{\rho-\Psi(x)},$$

that implies (5).

$$(ii1) \Rightarrow (i1)$$

Let $\rho \in]\inf_X \Psi, \sup_X \Psi[$ be such that (2) and (3) hold. In the previous proof "(i1) \Rightarrow (ii1)" we saw that (2) $\iff b(\rho) < a(\rho)$, then at first we have

$$\inf_{x \in X} \sup_{\lambda \in [\alpha,\beta]} (\Phi(x) + \lambda(\Psi(x) - \rho)) = b(\rho).$$

Put

$$A_{\rho} = \left[\sup_{x \in \Psi^{-1}(]\rho, +\infty[)} \frac{\Phi(x) - b(\rho)}{\rho - \Psi(x)}, \inf_{x \in \Psi^{-1}(]-\infty, \rho[)} \frac{\Phi(x) - b(\rho)}{\rho - \Psi(x)}\right] \cap [\alpha, \beta],$$

it is $A_{\rho} \neq \emptyset$. In fact, A_{ρ} is empty iff

$$\inf_{x\in\Psi^{-1}(]-\infty,\rho[)}\frac{\Phi(x)-b(\rho)}{\rho-\Psi(x)}<\alpha \ \text{ or } \ \sup_{x\in\Psi^{-1}(]\rho,+\infty[)}\frac{\Phi(x)-b(\rho)}{\rho-\Psi(x)}>\beta.$$

If it is

$$\inf_{x\in\Psi^{-1}(]-\infty,\rho[)}\frac{\Phi(x)-b(\rho)}{\rho-\Psi(x)}<\alpha,$$

then $a(\rho) < b(\rho)$ that contradicts (2).

If it is

$$\sup_{x\in\Psi^{-1}([\rho,+\infty[)}\frac{\Phi(x)-b(\rho)}{\rho-\Psi(x)}>\beta,$$

the absurd

$$\Phi(\bar{x}) + \beta(\Psi(\bar{x}) - \rho) < \inf_{x \in \Psi^{-1}(|\rho_{c} + \infty|)} (\Phi(x) + \beta(\Psi(x) - \rho)),$$

for some $\bar{x} \in \Psi^{-1}(]\rho, +\infty[$), is obtained.

Thus we can choose $\lambda_{\rho} \in A_{\rho}$ for which $\inf_{x \in X} \Phi(x) + \lambda_{\rho}(\Psi(x) - \rho) \ge b(\rho)$, that implies the equality

$$\sup_{\lambda \in [\alpha,\beta]} \inf_{x \in X} (\Phi(x) + \lambda(\Psi(x) - \rho)) = b(\rho) = \inf_{x \in X} \sup_{\lambda \in [\alpha,\beta]} (\Phi(x) + \lambda(\Psi(x) - \rho)).$$

Let $\rho \in]\inf_X \Psi$, $\sup_X \Psi$ [be such that (4) and (5) hold. It is

$$\inf_{x \in X} \sup_{\lambda \in [\alpha,\beta]} (\Phi(x) + \lambda (\Psi(x) - \rho)) = a(\rho).$$

Put

$$B_
ho = \left[\sup_{x \in \Psi^{-1}(]
ho, +\infty[)} rac{\Phi(x) - a(
ho)}{
ho - \Psi(x)}, \inf_{x \in \Psi^{-1}(]-\infty,
ho[)} rac{\Phi(x) - a(
ho)}{
ho - \Psi(x)}
ight] \cap \left[lpha, eta
ight],$$

it is $B_{\rho} \neq \emptyset$. In fact, B_{ρ} is empty iff

$$\inf_{x\in\Psi^{-1}(]-\infty,\rho[)}\frac{\Phi(x)-a(\rho)}{\rho-\Psi(x)}<\alpha \ \text{ or } \sup_{x\in\Psi^{-1}(]\rho,+\infty[)}\frac{\Phi(x)-a(\rho)}{\rho-\Psi(x)}>\beta.$$

The second inequality contradicts (4).

The first inequality implies that, for some $\bar{x} \in \Psi^{-1}(]-\infty, \rho]$,

$$\Phi(\bar{x}) + \alpha(\Psi(\bar{x}) - \rho) < \inf_{x \in \Psi^{-1}(]-\infty, \rho])} (\Phi(x) + \alpha(\Psi(x) - \rho)),$$

and this is absurd.

Thus we can choose $\lambda_{\rho} \in B_{\rho}$, then $\inf_{x \in X} (\Phi(x) + \lambda_{\rho}(\Psi(x) - \rho)) \ge a(\rho)$, that implies the equality

$$\sup_{\lambda \in [\alpha,\beta]} \inf_{x \in X} (\Phi(x) + \lambda(\Psi(x) - \rho)) = a(\rho) = \inf_{x \in X} \sup_{\lambda \in [\alpha,\beta]} (\Phi(x) + \lambda(\Psi(x) - \rho)).$$

It is easily seen that, if $\rho \in \mathbb{R} \setminus [\inf_X \Psi, \sup_X \Psi] \neq \emptyset$, the equality

$$\sup_{\lambda \in [\alpha,\beta]} \inf_{x \in X} (\Phi(x) + \lambda(\Psi(x) - \rho)) = \inf_{x \in X} \sup_{\lambda \in [\alpha,\beta]} (\Phi(x) + \lambda(\Psi(x) - \rho))$$

holds.

COROLLARY 1 Fix arbitrarily $\alpha, \beta \in \mathbb{R}_+$ with $\alpha < \beta$, then for any $\rho \in \mathbb{R}$, one has

$$\sup_{\lambda \in [\alpha,\beta]} \inf_{x \in X} (\Phi(x) + \lambda(\Psi(x) - \rho)) = \inf_{x \in X} \sup_{\lambda \in [\alpha,\beta]} (\Phi(x) + \lambda(\Psi(x) - \rho)).$$

Proof Let us consider arbitrary $\alpha, \beta \in \mathbf{R}_+$ with $\alpha < \beta$, by Lemma 1 it is enough to prove that (ii1) is true.

Let $\rho \in]\inf_X \Psi, \sup_X \Psi[$, since $a(\rho) \leq \inf_{\Psi^{-1}(]-\infty, \rho]} \Phi$ the following inequalities hold:

$$\sup_{x\in\Psi^{-1}([\rho,+\infty[)}\frac{\Phi(x)-a(\rho)}{\rho-\Psi(x)}\leq \sup_{x\in\Psi^{-1}([\rho,+\infty[))}\frac{\Phi(x)-\inf_{\Psi^{-1}([-\infty,\rho])}\Phi}{\rho-\Psi(x)}$$

and

$$\inf_{x\in\Psi^{-1}(]-\infty,\rho[)}\frac{\Phi(x)-\inf_{\Psi^{-1}(]-\infty,\rho])}\Phi}{\rho-\Psi(x)}\leq\inf_{x\in\Psi^{-1}(]-\infty,\rho[)}\frac{\Phi(x)-a(\rho)}{\rho-\Psi(x)},$$

owing to (ii), then we have

$$\sup_{x\in\Psi^{-1}(]\rho,+\infty[)}\frac{\Phi(x)-a(\rho)}{\rho-\Psi(x)}\leq \inf_{x\in\Psi^{-1}(]-\infty,\rho[)}\frac{\Phi(x)-a(\rho)}{\rho-\Psi(x)}.$$

So, if $a(\rho) \le b(\rho)$ then (4) and (5) hold.

If $b(\rho) < a(\rho)$, then (2) holds, moreover since $b(\rho) < \inf_{\Psi^{-1}(]-\infty,\rho]} \Phi$ and by (ii), we also have (3).

LEMMA 2 Let $\alpha, \beta \in \mathbb{R}_+$ with $\alpha < \beta$ and $\rho \in \inf_X \Psi$, $\sup_X \Psi$ [such that $b(\rho) < a(\rho)$, then $\Psi^{-1}(\rho) \neq \emptyset$ and for any $\gamma \in [\alpha, \beta]$ one has

$$\inf_{x\in \Psi^{-1}(]-\infty,\rho])}(\Phi(x)+\gamma(\Psi(x)-\rho))=\inf_{x\in \Psi^{-1}(\rho)}\Phi(x).$$

Proof Fix $\alpha, \beta \in \mathbb{R}_+$ with $\alpha < \beta$ and $\rho \in [\inf_X \Psi, \sup_X \Psi]$ such that $b(\rho) < a(\rho)$, by (ii), (2) of (ii1) Lemma 1 and $a(\rho) \leq \inf_{\Psi^{-1}(]-\infty, \rho]} \Phi$, we have

$$\inf_{x\in\Psi^{-1}(]-\infty,\rho[)}\frac{\Phi(x)-\inf_{\Psi^{-1}(]-\infty,\rho])}\Phi}{\rho-\Psi(x)}>\beta.$$

Then, for every $\gamma \in [0, \beta]$, since $\inf_{x \in \Psi^{-1}(]-\infty, \rho]} (\Phi(x) + \gamma(\Psi(x) - \rho)) \le \inf_{\Psi^{-1}(]-\infty, \rho]} \Phi$, it turns out that

$$\inf_{x \in \Psi^{-1}(]-\infty, \rho[)} \frac{\Phi(x) - c(\rho)}{\rho - \Psi(x)} > \gamma,$$

where $c(\rho) = \inf_{x \in \Psi^{-1}(]-\infty, \rho]} (\Phi(x) + \gamma(\Psi(x) - \rho))$. Thus for every $x \in \Psi^{-1}(]-\infty, \rho[)$,

$$\Phi(x) + \gamma(\Psi(x) - \rho) > \inf_{x \in \Psi^{-1}(]-\infty, \rho]} (\Phi(x) + \gamma(\Psi(x) - \rho)),$$

moreover there exists $x^* \in \Psi^{-1}(]-\infty, \rho]$ such that $\Phi(x^*) + \gamma(\Psi(x^*) - \rho) = c(\rho)$, so it is necessarily $x^* \in \Psi^{-1}(\rho)$ and

$$\inf_{x\in \Psi^{-1}(]-\infty,\rho])}(\Phi(x)+\gamma(\Psi(x)-\rho))=\inf_{x\in \Psi^{-1}(\rho)}\Phi(x).$$

LEMMA 3 Consider $\alpha, \beta \in \mathbb{R}_+$ with $\alpha < \beta$ and a subdivision $\alpha = \alpha_1 \le \alpha_2 \le \cdots \le \alpha_{n-2} \le \alpha_{n-1} = \beta$ of the interval with $n \ge 3$. Define the function $h: [\alpha, \beta] \to \mathbb{R}$

$$h(\lambda) = \sum_{i=1}^{n-1} \chi_{[\alpha_i,\alpha_{i+1}]}(\lambda)(\rho_i\lambda + a_i)$$
 for each $\lambda \in [\alpha,\beta]$,

where $\{\rho_k\}_{1\leq k\leq n-1}$ is a non-increasing finite sequence of real numbers and $a_{i+1}=a_i+(\rho_i-\rho_{i+1})\alpha_{i+1}$ for $1\leq i\leq n-2$, with $a_1\in \mathbf{R}$ arbitrarily chosen. Then one has

$$\sup_{\lambda \in [\alpha,\beta]} \inf_{x \in X} (\Phi(x) + \lambda \Psi(x) + h(\lambda)) = \inf_{x \in X} \sup_{\lambda \in [\alpha,\beta]} (\Phi(x) + \lambda \Psi(x) + h(\lambda)).$$
(6)

Proof By Corollary 1, we have

$$\begin{split} \sup_{\lambda \in [\alpha,\beta]} \inf_{x \in X} (\Phi(x) + \lambda \Psi(x) + h(\lambda)) \\ &= \max_{1 \le i \le n-1} \inf_{x \in X} \sup_{\lambda \in [\alpha_i,\alpha_{i+1}]} (\Phi(x) + \lambda (\Psi(x) + \rho_i) + a_i), \end{split}$$

thus there exists $j \in \{1, 2, ..., n-1\}$ such that

$$\sup_{\lambda \in [\alpha,\beta]} \inf_{x \in X} (\Phi(x) + \lambda(\Psi(x) + h(\lambda))) = \inf_{x \in X} \sup_{\lambda \in [\alpha_j,\alpha_{j+1}]} (\Phi(x) + \lambda(\Psi(x) + \rho_j) + a_j).$$
(7)

For the sake of simplicity, we denote

$$f_i(x, \lambda) = \Phi(x) + \lambda(\Psi(x) + \rho_i) + a_i$$

for $1 \le i \le n-1$ being x and λ on the respective domains.

1st Step

At first, we prove the thesis when $\inf_X \Psi < -\rho_i < \sup_X \Psi$ for every $1 \le i \le n-1$. Fix $1 \le i \le n-2$ for every $x \in \Psi^{-1}(]-\infty, -\rho_{i+1}]$) and $i \le k \le n-1$, we have

$$\begin{split} \sup_{\lambda \in [\alpha_k, \alpha_{k+1}]} (\Phi(x) + \lambda(\Psi(x) + \rho_k) + a_k) \\ &\geq \sup_{\lambda \in [\alpha_{k+1}, \alpha_{k+2}]} (\Phi(x) + \lambda(\Psi(x) + \rho_{k+1}) + a_{k+1}), \end{split}$$

hence

$$\max_{i \le k \le n-1} \sup_{\lambda \in [\alpha_k, \alpha_{k+1}]} (\Phi(x) + \lambda(\Psi(x) + \rho_k) + a_k)$$

$$= \sup_{\lambda \in [\alpha_i, \alpha_{i+1}]} (\Phi(x) + \lambda(\Psi(x) + \rho_i) + a_i). \tag{8}$$

Fix $2 \le i \le n-2$, if $\Psi^{-1}(]-\rho_i, -\rho_{i+1}]) \ne \emptyset$, then for every $x \in \Psi^{-1}(]-\rho_i, -\rho_{i+1}]$) and $2 \le k \le i$, we have

$$\begin{split} \sup_{\lambda \in [\alpha_k, \alpha_{k+1}]} (\Phi(x) + \lambda(\Psi(x) + \rho_k) + a_k) \\ &\geq \sup_{\lambda \in [\alpha_{k-1}, \alpha_k]} (\Phi(x) + \lambda(\Psi(x) + \rho_{k-1}) + a_{k-1}), \end{split}$$

whence, by (8), it follows that

$$\max_{1 \le k \le n-1} \sup_{\lambda \in [\alpha_k, \alpha_{k+1}]} (\Phi(x) + \lambda(\Psi(x) + \rho_k) + a_k)$$
$$= \Phi(x) + \alpha_{i+1}(\Psi(x) + \rho_i) + a_i.$$

For every $x \in \Psi^{-1}(]-\rho_{n-1}, +\infty[)$ and $1 \le k \le n-2$, we have

$$\sup_{\lambda \in [\alpha_{k+1}, \alpha_{k+2}]} (\Phi(x) + \lambda(\Psi(x) + \rho_{k+1}) + a_{k+1})$$

$$\geq \sup_{\lambda \in [\alpha_k, \alpha_{k+1}]} (\Phi(x) + \lambda(\Psi(x) + \rho_k) + a_k),$$

hence

$$\max_{1 \le k \le n-1} \sup_{\lambda \in [\alpha_k, \alpha_{k+1}]} (\Phi(x) + \lambda(\Psi(x) + \rho_k) + a_k)$$

= $\Phi(x) + \beta(\Psi(x) + \rho_{n-1}) + a_{n-1}.$

We set $N = \{1 \le i \le n - 2/\Psi^{-1}(]-\rho_i, -\rho_{i+1}] \ne \emptyset \}$ and

$$\delta = \begin{cases} +\infty & \text{if } N = \emptyset \\ \min_{i \in N} \inf_{x \in \Psi^{-1}(] - \rho_i, - \rho_{i+1}]} f_i(x, \alpha_{i+1}) & \text{if } N \neq \emptyset \end{cases}$$

then it follows that

$$\inf_{x \in X} \sup_{\lambda \in [\alpha, \beta]} (\Phi(x) + \lambda \Psi(x) + h(\lambda))$$

$$= \min \left\{ \delta, \inf_{x \in \Psi^{-1}(]-\infty, -\rho_1]} f_1(x, \alpha), \inf_{x \in \Psi^{-1}(]-\rho_{n-1}, +\infty[)} f_{n-1}(x, \beta) \right\}. \quad (9)$$

Now we state and prove the following assertions:

(a) If

$$\inf_{x\in\Psi^{-1}(]-\rho_j,+\infty[)}f_j(x,\alpha_{j+1})<\min\bigg\{\delta,\inf_{x\in\Psi^{-1}(]-\infty,-\rho_j])}f_j(x,\alpha_j)\bigg\},$$

then for every $j \le k \le n-1$, we have

$$\inf_{x \in \Psi^{-1}(]-\rho_k, +\infty[)} f_k(x, \alpha_{k+1}) \le \inf_{x \in \Psi^{-1}(]-\rho_j, +\infty[)} f_j(x, \alpha_{j+1})$$

$$< \inf_{x \in \Psi^{-1}(]-\infty, -\rho_k]} f_k(x, \alpha_k).$$

(b) If

$$\inf_{x\in\Psi^{-1}(]-\infty,-\rho_j])}f_j(x,\alpha_j)\leq\inf_{x\in\Psi^{-1}(]-\rho_j,+\infty[)}f_j(x,\alpha_{j+1})$$

and

$$\inf_{x\in\Psi^{-1}(]-\infty,-\rho_j])}f_j(x,\alpha_j)<\delta,$$

then for every $1 \le k \le j$, we have

$$\inf_{x\in\Psi^{-1}(]-\infty,-\rho_k])}f_k(x,\alpha_k)=\inf_{x\in\Psi^{-1}(]-\infty,-\rho_j])}f_j(x,\alpha_j).$$

Let us prove (a).

If j = n - 1 the thesis is obvious.

Let j < n-1, inequalities obviously hold for k=j. Put $T = \{j \le k \le n-1 \mid \text{ such that the inequalities hold}\}$, then $T \ne \emptyset$ since $j \in T$. Let $m \in T$ with $m \le n-2$, we denote $A_{m,m+1} = \Psi^{-1}(]-\rho_m, -\rho_{m+1}]$, then

$$\inf_{x \in \Psi^{-1}(]-\infty, -\rho_{m+1}]} f_{m+1}(x, \alpha_{m+1})$$

$$= \inf_{x \in \Psi^{-1}(]-\infty, -\rho_{m+1}]} f_{m}(x, \alpha_{m+1})$$

$$= \begin{cases} \inf_{x \in \Psi^{-1}(]-\infty, -\rho_{m}]} f_{m}(x, \alpha_{m+1}) \\ \text{if } A_{m,m+1} = \emptyset, \\ \min \left\{ \inf_{x \in \Psi^{-1}(]-\infty, -\rho_{m}]} f_{m}(x, \alpha_{m+1}), \inf_{x \in A_{m,m+1}} f_{m}(x, \alpha_{m+1}) \right\} \\ \text{if } A_{m,m+1} \neq \emptyset.$$
(10)

Since $m \in T$,

$$\inf_{x \in \Psi^{-1}(]-\rho_m, +\infty[)} (\Phi(x) + \alpha_{m+1}(\Psi(x) + \rho_m)) < \inf_{x \in \Psi^{-1}(]-\infty, -\rho_m])} (\Phi(x) + \alpha_m(\Psi(x) + \rho_m)),$$

then, by Lemma 2, we have $\Psi^{-1}(-\rho_m) \neq \emptyset$ and

$$\begin{split} &\inf_{x \in \Psi^{-1}(]-\infty,-\rho_m])}(\Phi(x) + \alpha_{m+1}(\Psi(x) + \rho_m)) \\ &= \inf_{x \in \Psi^{-1}(]-\infty,-\rho_m])}(\Phi(x) + \alpha_m(\Psi(x) + \rho_m)), \end{split}$$

so one has

$$\inf_{x \in \Psi^{-1}(]-\rho_{j}, +\infty[)} f_{j}(x, \alpha_{j+1}) < \inf_{x \in \Psi^{-1}(]-\infty, -\rho_{m}])} f_{m}(x, \alpha_{m+1}).$$

Moreover, if $A_{m,m+1} \neq \emptyset$, then the hypotheses imply that

$$\inf_{x \in \Psi^{-1}(]-\rho_j, +\infty[)} f_j(x, \alpha_{j+1}) < \inf_{x \in \Psi^{-1}(]-\rho_m, -\rho_{m+1}]} f_m(x, \alpha_{m+1}).$$

Consequently, by (10), it follows

$$\inf_{x \in \Psi^{-1}(|-\rho_{j,+\infty[)}} f_j(x,\alpha_{j+1}) < \inf_{x \in \Psi^{-1}(|-\infty,-\rho_{m+1}])} f_{m+1}(x,\alpha_{m+1}). \tag{11}$$

By (7), we have

$$\inf_{x\in\Psi^{-1}(]-\rho_j,+\infty[)}f_j(x,\alpha_{j+1})=\max_{1\leq i\leq n-1}\inf_{x\in X}\sup_{\lambda\in[\alpha_i,\alpha_{i+1}]}f_i(x,\lambda),$$

hence

$$\inf_{x \in \Psi^{-1}(]-\rho_j, +\infty[)} f_j(x, \alpha_{j+1}) \ge \inf_{x \in X} \sup_{\lambda \in [\alpha_{m+1}, \alpha_{m+2}]} f_{m+1}(x, \lambda)$$

$$= \min \left\{ \inf_{x \in \Psi^{-1}(]-\infty, -\rho_{m+1}])} f_{m+1}(x, \alpha_{m+1}), \inf_{x \in \Psi^{-1}(]-\rho_{m+1}, +\infty[)} f_{m+1}(x, \alpha_{m+2}) \right\},$$

therefore, by (11), it turns out that

$$\inf_{x \in \Psi^{-1}(]-\rho_j, +\infty[)} f_j(x, \alpha_{j+1}) \geq \inf_{x \in \Psi^{-1}(]-\rho_{m+1}, +\infty[)} f_{m+1}(x, \alpha_{m+2}).$$

Thus we have proved that $m \in T$ with $m \le n - 2 \Rightarrow m + 1 \in T$, then the thesis of assertion (a) is proved.

Let us prove (b).

If j = 1 the thesis is obvious.

Let j > 1, the equality obviously holds when k = j. Put $T = \{1 \le k \le j | the equality holds\}$, then $T \ne \emptyset$ because $j \in T$. Suppose $m \in T$ with m > 1,

we have that

$$\inf_{x \in \Psi^{-1}(]-\infty,-\rho_{m}]} f_{m}(x,\alpha_{m})
= \inf_{x \in \Psi^{-1}(]-\infty,-\rho_{m}]} f_{m-1}(x,\alpha_{m})
= \begin{cases} \inf_{x \in \Psi^{-1}(]-\infty,-\rho_{m-1}]} f_{m-1}(x,\alpha_{m})
\text{if } A_{m-1,m} = \emptyset,
\min \begin{cases} \inf_{x \in \Psi^{-1}(]-\infty,-\rho_{m-1}]} f_{m-1}(x,\alpha_{m}), \inf_{x \in A_{m-1,m}} f_{m-1}(x,\alpha_{m}) \\ \text{if } A_{m-1,m} \neq \emptyset, \end{cases}$$
(12)

then it is seen, by similar arguments to those in the proof of assertion (a), that

$$\inf_{x \in \Psi^{-1}(]-\infty, -\rho_m])} f_m(x, \alpha_m) = \inf_{x \in \Psi^{-1}(]-\infty, -\rho_{m-1}])} f_{m-1}(x, \alpha_m).$$

Because of (7) and $m \in T$, we also have

$$\inf_{x \in \Psi^{-1}(]-\infty, -\rho_{m-1}]} f_{m-1}(x, \alpha_m) = \inf_{x \in \Psi^{-1}(]-\infty, -\rho_j]} f_j(x, \alpha_j)
\geq \min \left\{ \inf_{x \in \Psi^{-1}(]-\infty, -\rho_{m-1}]} f_{m-1}(x, \alpha_{m-1}), \inf_{x \in \Psi^{-1}(]-\rho_{m-1}, +\infty[]} f_{m-1}(x, \alpha_m) \right\},$$

which implies, by Lemma 2,

$$\inf_{x\in \Psi^{-1}(]-\infty,-\rho_{m-1}])} f_{m-1}(x,\alpha_m) \geq \inf_{x\in \Psi^{-1}(]-\infty,-\rho_{m-1}])} f_{m-1}(x,\alpha_{m-1}).$$

Since $\alpha_{m-1} \le \alpha_m$, the opposite inequality holds too, therefore the thesis is proved.

Now we can prove the equality (6) with the further hypothesis we stated at the beginning of this step.

If

$$\inf_{x\in\Psi^{-1}(]-\rho_j,+\infty[)}f_j(x,\alpha_{j+1})<\inf_{x\in\Psi^{-1}(]-\infty,-\rho_j]}f_j(x,\alpha_j),$$

then by (7),

$$\sup_{\lambda \in [\alpha,\beta]} \inf_{x \in X} (\Phi(x) + \lambda \Psi(x) + h(\lambda)) = \inf_{x \in \Psi^{-1}(]-\rho_j,+\infty[]} f_j(x,\alpha_{j+1}),$$

owing to (a), it follows that

$$\inf_{x \in \Psi^{-1}(]-\rho_j, +\infty[)} f_j(x, \alpha_{j+1}) \ge \delta$$

or

$$\inf_{x \in \Psi^{-1}(]-\rho_{j}, +\infty[)} f_{j}(x, \alpha_{j+1}) \ge \inf_{x \in \Psi^{-1}(]-\rho_{n-1}, +\infty[)} f_{n-1}(x, \beta),$$

hence

$$\sup_{\lambda \in [\alpha,\beta]} \inf_{x \in X} (\Phi(x) + \lambda \Psi(x) + h(\lambda)) \ge \inf_{x \in X} \sup_{\lambda \in [\alpha,\beta]} (\Phi(x) + \lambda \Psi(x) + h(\lambda)),$$

that implies (6).

If

$$\inf_{x\in\Psi^{-1}(]-\infty,-\rho_j]}f_j(x,\alpha_j)\leq\inf_{x\in\Psi^{-1}(]-\rho_j,+\infty[]}f_j(x,\alpha_{j+1}),$$

then the equality (6) is implied by assertion (b).

2nd Step

We prove that the equality (6) holds, when $\inf_{x \in X} \Psi(x) \neq -\infty$ and there exists $1 \leq \bar{k} \leq n-2$ such that

for
$$1 \le i \le \bar{k}$$

$$-\rho_i \le \inf_{x \in X} \Psi(x),$$
 for $\bar{k} + 1 \le i \le n - 1$
$$\inf_{x \in X} \Psi(x) < -\rho_i < \sup_{x \in X} \Psi(x).$$

We have

$$\sup_{\lambda \in [\alpha,\beta]} \inf_{x \in X} (\Phi(x) + \lambda \Psi(x) + h(\lambda))$$

$$= \max_{\bar{k}+1 \le i \le n-1} \inf_{x \in X} \sup_{\lambda \in [\alpha_i,\alpha_{i+1}]} (\Phi(x) + \lambda (\Psi(x) + \rho_i) + a_i), \quad (13)$$

and

$$\inf_{x \in X} \sup_{\lambda \in [\alpha, \beta]} (\Phi(x) + \lambda \Psi(x) + h(\lambda))$$

$$= \inf_{x \in X} \max_{\bar{k}+1 \le i \le n-1} \sup_{\lambda \in [\alpha_i, \alpha_{i+1}]} (\Phi(x) + \lambda (\Psi(x) + \rho_i) + a_i). \tag{14}$$

Put $g = h_{[\alpha_{k+1},\beta]}$, then the equality (6) follows from the 1st step, where g takes the place of h, and from (13), (14).

3rd Step

Let for $1 \le i \le n-1$, $-\rho_i \le \inf_X \Psi \ne -\infty$, then we have

$$\sup_{\lambda \in [\alpha,\beta]} \inf_{x \in X} (\Phi(x) + \lambda \Psi(x) + h(\lambda)) = \inf_{x \in X} f_{n-1}(x,\beta)$$
$$= \inf_{x \in X} \sup_{\lambda \in [\alpha,\beta]} (\Phi(x) + \lambda \Psi(x) + h(\lambda)).$$

Let for $1 \le i \le n-1$, $-\rho_i \ge \sup_X \Psi(x) \ne +\infty$, then we have

$$\begin{split} \sup_{\lambda \in [\alpha,\beta]} \inf_{x \in X} (\Phi(x) + \lambda \Psi(x) + h(\lambda)) &= \inf_{x \in X} f_1(x,\alpha) \\ &= \inf_{x \in X} \sup_{\lambda \in [\alpha,\beta]} (\Phi(x) + \lambda \Psi(x) + h(\lambda)). \end{split}$$

4th Step

Suppose that there exists $2 \le \bar{k} \le n-1$ such that

for
$$1 \le i \le \bar{k} - 1$$
, $-\rho_i \le \sup_{x \in X} \Psi(x)$,
for $\bar{k} \le i \le n - 1$, $-\rho_i \ge \sup_{x \in X} \Psi(x)$.

We have

$$\sup_{\lambda \in [\alpha,\beta]} \inf_{x \in X} (\Phi(x) + \lambda \Psi(x) + h(\lambda)) = \sup_{\lambda \in [\alpha,\alpha_k]} \inf_{x \in X} (\Phi(x) + \lambda \Psi(x) + g(\lambda))$$

and

$$\inf_{x \in X} \sup_{\lambda \in [\alpha,\beta]} (\Phi(x) + \lambda \Psi(x) + h(\lambda)) = \inf_{x \in X} \sup_{\lambda \in [\alpha,\alpha_{\bar{k}}]} (\Phi(x) + \lambda \Psi(x) + g(\lambda)),$$

where $g = h_{|[\alpha,\alpha_k]}$. Therefore the equality (6) follows from the previous steps, where g takes the place of h.

LEMMA 4 Let $\alpha, \beta \in \mathbb{R}_+$ with $\alpha < \beta$ and $g: [\alpha, \beta] \to \mathbb{R}$ be a concave function such that $\max\{|g_d'(\alpha)|, |g_s'(\beta)|\} \neq +\infty$. There exists a non-increasing sequence of functions $\{g_n\}_{n\in\mathbb{N}}$ pointwise convergent to g on $[\alpha, \beta]$ such that for every $n \in \mathbb{N}$, g_n is formally defined as the function h in Lemma 3.

Proof Fix $n \in \mathbb{N}$, we set

$$\delta_k^{(n)} = \alpha + k \frac{\beta - \alpha}{2^{n-1}} \quad \text{for } 0 \le k \le 2^{n-1};$$

$$\rho_0^{(n)} = g_d'(\alpha), \, \rho_{2^n}^{(n)} = g_s'(\beta) \text{ and for } 1 \le j \le 2^n - 1$$

$$\rho_j^{(n)} = \begin{cases} g_s'(\delta_k^{(n)}) & \text{with } k = \frac{j+1}{2}, & \text{if } j \text{ is odd,} \\ g_d'(\delta_k^{(n)}) & \text{with } k = \frac{j}{2}, & \text{if } j \text{ is even,} \end{cases}$$

$$a_i^{(n)} = g(\delta_k^{(n)}) - \rho_i^{(n)} \delta_k^{(n)} \quad \text{for } 0 \le j \le 2^n,$$

$$\alpha_0^{(n)} = \alpha$$
, $\alpha_{2^n+1}^{(n)} = \beta$ and for $1 \le j \le 2^n$

$$\alpha_j^{(n)} = \begin{cases} \delta_k^{(n)} & \text{if } \rho_j^{(n)} = \rho_{j-1}^{(n)}, \\ \frac{a_j^{(n)} - a_{j-1}^{(n)}}{\rho_{j-1}^{(n)} - \rho_j^{(n)}} & \text{if } \rho_j^{(n)} \neq \rho_{j-1}^{(n)}, \end{cases}$$

with k = j/2 if j is even, k = (j+1)/2 if j is odd.

Because g is concave, then $\{\rho_k^{(n)}\}_{0 \le k \le 2^n}$ is non-increasing, moreover it is easily seen that $\{\alpha_k^{(n)}\}_{0 \le k \le 2^{n+1}}$ is a subdivision of the interval $[\alpha, \beta]$.

Now we define the function:

$$g_n(\lambda) = \sum_{i=0}^{2^n} \chi_{[\alpha_j^{(n)}, \alpha_{j+1}^{(n)}]}(\lambda) \left(\rho_j^{(n)} \lambda + a_j^{(n)}\right) \text{ for each } \lambda \in [\alpha, \beta],$$

from the definition of $\alpha_{j+1}^{(n)}$, one has $a_{j+1}^{(n)} = a_j^{(n)} + (\rho_j^{(n)} - \rho_{j+1}^{(n)})\alpha_{j+1}^{(n)}$ for every $0 \le j \le 2^n - 1$.

We prove that $\{g_n\}$ is pointwise convergent to g on the interval $[\alpha, \beta]$: Fix $\lambda \in [\alpha, \beta]$ and $n \in \mathbb{N}$, we put $k_n = \max\{0 \le k \le 2^{n-1} : \delta_k^{(n)} \le \lambda\}$; since $\alpha_{2k_n}^{(n)} = \delta_{k_n}^{(n)}$ and $\alpha_{2k_n+2}^{(n)} = \delta_{k_n+1}^{(n)}$, one has $\lambda \in [\alpha_{2k_n}^{(n)}, \alpha_{2k_n+2}^{(n)}]$, then

$$|g_{n}(\lambda) - g(\lambda)| \leq \max\{|g'_{d}(\alpha)|, |g'_{s}(\beta)|\} \frac{\beta - \alpha}{2^{n-1}} + \max\{|g(\delta_{k_{n}}^{(n)}) - g(\lambda)|, |g(\delta_{k_{n}+1}^{(n)}) - g(\lambda)|\}.$$

The function g is continuous, then, since

$$\lim_{n\to\infty}\delta_{k_n}^{(n)}=\lim_{n\to\infty}\delta_{k_n+1}^{(n)}=\lambda,$$

we have

$$\lim_{n\to\infty}|g_n(\lambda)-g(\lambda)|=0.$$

Let $n \in \mathbb{N}$ and $\lambda \in [\alpha, \beta]$, it results that $g_n(\lambda) \ge g_{n+1}(\lambda)$. There exists $0 \le j \le 2^{n+1}$ such that $\lambda \in [\alpha_j^{(n+1)}, \alpha_{j+1}^{(n+1)}]$, then we have to examine the different cases which can occur.

If j is even and k=j/2 is also even, for some $0 \le m \le 2^{n-1}$, one has j = 2k = 4m. In this case, at first, we have

$$\left[\alpha_{j}^{(n+1)},\alpha_{j+1}^{(n+1)}\right]\subseteq\left[\alpha_{k}^{(n)},\alpha_{k+1}^{(n)}\right],$$

hence

$$g_n(\lambda) - g_{n+1}(\lambda) = (\rho_k^{(n)}\lambda + a_k^{(n)}) - (\rho_i^{(n+1)}\lambda + a_i^{(n+1)}) = 0.$$

If j is even and k=j/2 is odd, then j=2k=4m+2 for some $0 \le j$ $m \le 2^{n-1} - 1$. In this case, it results that

$$\left[\alpha_{j}^{(n+1)}, \alpha_{j+1}^{(n+1)}\right] \subseteq \left[\alpha_{k-1}^{(n)}, \alpha_{k+1}^{(n)}\right].$$

Since for every $\lambda \in \left]\alpha_j^{(n+1)}, \alpha_{j+1}^{(n+1)}\right[\cap \left]\alpha_{k-1}^{(n)}, \alpha_k^{(n)}\right[$, we have

$$g'_n(\lambda) - g'_{n+1}(\lambda) = \rho_{2m}^{(n)} - \rho_{4m+2}^{(n)} \ge 0$$

and

$$g_n(\alpha_j^{(n+1)}) - g_{n+1}(\alpha_j^{(n+1)}) = (\rho_{2m}^{(n)} - \rho_{4m+1}^{(n+1)})(\alpha_{4m+2}^{(n+1)} - \alpha_{4m+1}^{(n+1)}) \ge 0,$$

it follows that

$$g_n(\lambda) \ge g_{n+1}(\lambda)$$
, if $\lambda \in \left[\alpha_i^{(n+1)}, \alpha_{i+1}^{(n+1)}\right] \cap \left[\alpha_{k-1}^{(n)}, \alpha_k^{(n)}\right]$.

Since for every $\lambda \in \left]\alpha_j^{(n+1)}, \alpha_{j+1}^{(n+1)}\right[\cap \left]\alpha_k^{(n)}, \alpha_{k+1}^{(n)}\right[$, one has

$$g'_n(\lambda) - g'_{n+1}(\lambda) \le 0,$$

and

$$g_n(\alpha_{j+1}^{(n+1)}) - g_{n+1}(\alpha_{j+1}^{(n+1)}) = 0,$$

it follows that

$$g_n(\lambda) \ge g_{n+1}(\lambda)$$
 if $\lambda \in \left[\alpha_j^{(n+1)}, \alpha_{j+1}^{(n+1)}\right] \cap \left[\alpha_k^{(n)}, \alpha_{k+1}^{(n)}\right]$.

In the remaining cases, the inequality $g_n(\lambda) \ge g_{n+1}(\lambda)$ also holds, the proof is analogous to the previous ones.

3. PROOF OF THEOREM 1

In the first instance, we remark that if $\rho \in [\inf_X \Psi, \sup_X \Psi]$, then

$$\inf_{x\in X}\sup_{\lambda>0}(\Phi(x)+\lambda(\Psi(x)-\rho))=\inf_{\Psi^{-1}(]-\infty,\rho])}\Phi.$$

$$(i) \Rightarrow (ii)$$

Let $\rho \in \lim_{X \to \infty} \Psi$, $\sup_{X} \Psi$ [, then $\lim_{\lambda \to +\infty} \inf_{x \in X} (\Phi(x) + \lambda(\Psi(x) - \rho)) = -\infty$, moreover the function $\lambda \in [0, +\infty[\to \inf_{x \in X} (\Phi(x) + \lambda(\Psi(x) - \rho)) \text{ is u.s.c.}$ then attains its supremum. Consequently there exists $\lambda_{\rho} \in [0, +\infty[$

such that

$$egin{aligned} &\inf_{x \in X} (\Phi(x) + \lambda_{
ho}(\Psi(x) -
ho)) = \sup_{\lambda \geq 0} \inf_{x \in X} (\Phi(x) + \lambda(\Psi(x) -
ho)) \ &= \inf_{\Psi^{-1}([-\infty,
ho])} \Phi, \end{aligned}$$

so we have

$$\begin{split} \sup_{x \in \Psi^{-1}(]\rho, +\infty[)} & \frac{\Phi(x) - \inf_{\Psi^{-1}(]-\infty, \rho])}{\Phi} \Phi \\ & \leq \lambda_{\rho} \leq \inf_{x \in \Psi^{-1}(]-\infty, \rho])} \frac{\Phi(x) - \inf_{\Psi^{-1}(]-\infty, \rho])}{\rho - \Psi(x)} \Phi, \end{split}$$

then owing to arbitrariness of ρ the thesis is proved.

$$(ii) \Rightarrow (i)$$

Let $\rho \in \inf_X \Psi$, $\sup_X \Psi$ [, since

$$0 \leq \inf_{x \in \Psi^{-1}(]-\infty, \rho[)} \frac{\Phi(x) - \inf_{\Psi^{-1}(]-\infty, \rho])}{\rho - \Psi(x)} \Phi < +\infty,$$

we can set

$$\lambda_{\rho} = \inf_{x \in \Psi^{-1}(]-\infty, \rho[)} \frac{\Phi(x) - \inf_{\Psi^{-1}(]-\infty, \rho])} \Phi}{\rho - \Psi(x)},$$

so we have

$$\inf_{x \in X} (\Phi(x) + \lambda_{\rho}(\Psi(x) - \rho)) \ge \inf_{\Psi^{-1}(]-\infty,\rho])} \Phi
= \inf_{x \in X} \sup_{\lambda > 0} (\Phi(x) + \lambda(\Psi(x) - \rho)),$$

therefore the equality

$$\sup_{\lambda \geq 0} \inf_{x \in X} (\Phi(x) + \lambda(\Psi(x) - \rho)) = \inf_{x \in X} \sup_{\lambda \geq 0} (\Phi(x) + \lambda(\Psi(x) - \rho))$$

holds.

In order to complete the proof we have to prove that, if $\mathbb{R}\setminus [\inf_X \Psi, \sup_X \Psi[\neq \emptyset]$, for every $\rho \in \mathbb{R}\setminus [\inf_X \Psi, \sup_X \Psi[$ the equality in (i) holds.

If $\sup_X \Psi \neq +\infty$ and $\rho \geq \sup_X \Psi$ then

$$\inf_{x \in X} \sup_{\lambda > 0} (\Phi(x) + \lambda(\Psi(x) - \rho)) = \inf_{x \in X} \Phi(x),$$

thus the equality follows because

$$\sup_{\lambda \ge 0} \inf_{x \in X} (\Phi(x) + \lambda (\Psi(x) - \rho)) \ge \inf_{x \in X} \Phi(x).$$

Now we suppose that $\inf_X \Psi \neq -\infty$ and $\rho \leq \inf_X \Psi$. It is necessary to distinguish the following two cases:

- (1) Ψ does not have absolute minimum.
- (2) Ψ has absolute minimum.

Let (1) be true.

Since for every $x \in X$, $\Psi(x) - \rho > 0$, it follows that $\inf_{x \in X} \sup_{\lambda \ge 0} (\Phi(x) + \lambda(\Psi(x) - \rho)) = +\infty$. We assume that

$$\sup_{\lambda \geq 0} \inf_{x \in X} (\Phi(x) + \lambda(\Psi(x) - \rho)) < \inf_{x \in X} \sup_{\lambda \geq 0} (\Phi(x) + \lambda(\Psi(x) - \rho)),$$

then there exists $\alpha \in \mathbf{R}$ such that $\sup_{\lambda \geq 0} \inf_{x \in X} (\Phi(x) + \lambda(\Psi(x) - \rho)) = \alpha$. Consequently, for every $n \in \mathbb{N}$, there exists $x_n \in X$ such that $\Phi(x_n) + n(\Psi(x_n) - \rho) < \alpha + 1$, since for every $n \in \mathbb{N}$, $\Psi(x_n) - \rho > 0$, it follows $\Phi(x_n) < \alpha + 1$, then the weak coerciveness of Φ implies that $\{x_n\}_{n \in \mathbb{N}}$ is bounded. Because of the hypotheses about E and E, there exist E and a subsequence $\{x_{n_k}\}_{k \in \mathbb{N}}$ such that E and E weakly for E and E. The function E is weakly sequentially l.s.c., then

$$\Phi(x^*) + \liminf_{k \to \infty} n_k(\Psi(x_{n_k}) - \rho)$$

$$\leq \liminf_{k \to \infty} \Phi(x_{n_k}) + n_k(\Psi(x_{n_k}) - \rho) \leq \alpha + 1,$$

consequently, it follows $\liminf_{k\to\infty} \Psi(x_{n_k}) = \rho$.

Therefore we have the absurd $\rho < \Psi(x^*) \le \liminf_{k\to\infty} \Psi(x_{n_k}) = \rho$, being Ψ weakly sequentially l.s.c. The absurd follows from the hypothesis that the equality in (i) does not hold, so the thesis is proved.

Let (2) be true.

If we choose $\rho < \inf_X \Psi$, since for every $x \in X$, $\Psi(x) > \rho$, we can proceed as in (1).

Let $\rho = \inf_X \Psi$, then

$$\inf_{x\in X}\sup_{\lambda\geq 0}(\Phi(x)+\lambda(\Psi(x)-\rho))=\inf_{x\in \Psi^{-1}(\rho)}\Phi(x),$$

in fact, if we assume that $\sup_{\lambda \geq 0} \inf_{x \in X} (\Phi(x) + \lambda(\Psi(x) - \rho)) < \inf_{x \in \Psi^{-1}} (\rho) \Phi(x)$, we can choose $\gamma \in \mathbb{R}$ such that

$$\sup_{\lambda \geq 0} \inf_{x \in X} (\Phi(x) + \lambda(\Psi(x) - \rho)) < \gamma < \inf_{x \in \Psi^{-1}(\rho)} \Phi(x).$$

Therefore for every $\lambda \in [0, +\infty[$ it results that

$$\inf_{x \in X, \ \Psi(x) \neq \rho} (\Phi(x) + \lambda(\Psi(x) - \rho)) < \gamma,$$

hence, for every $n \in \mathbb{N}$, there exists $x_n \in X$ with $\Psi(x_n) > \rho$ and $\Phi(x_n) + n(\Psi(x_n) - \rho) < \gamma$. Since for every $n \in \mathbb{N}$, $\Phi(x_n) < \gamma$, there exist $x^* \in X$ and a subsequence $\{x_{n_k}\}_{k \in \mathbb{N}}$ such that $x_{n_k} \to x^*$ weakly when $k \to \infty$, so $\rho \leq \Psi(x^*) \leq \liminf_{k \to \infty} \Psi(x_{n_k}) = \rho$, that implies $x^* \in \Psi^{-1}(\rho)$. We also have

$$\Phi(x^*) \leq \liminf_{k \to \infty} \Phi(x_{n_k}) \leq \gamma < \inf_{x \in \Psi^{-1}(\rho)} \Phi(x),$$

that is absurd since $x^* \in \Psi^{-1}(\rho)$.

 $(iii) \Rightarrow (i)$ is obvious.

$$(ii) \Rightarrow (iii)$$

Consider a concave function $h: [0, +\infty[\to \mathbb{R}, \text{ let } 0 < \alpha < \beta \text{ be arbitrary real numbers and set } g = h_{|[\alpha,\beta]}$, the function g meets the hypotheses of Lemma 4, hence we can consider a non-increasing sequence of functions $\{g_n\}_{n\in\mathbb{N}}$ pointwise convergent to g such that, for every $n\in\mathbb{N}$,

by Lemma 3,

$$\sup_{\lambda \in [\alpha,\beta]} \inf_{x \in X} (\Phi(x) + \lambda \Psi(x) + g_n(\lambda)) = \inf_{x \in X} \sup_{\lambda \in [\alpha,\beta]} (\Phi(x) + \lambda \Psi(x) + g_n(\lambda)).$$
(15)

Since $[\alpha, \beta]$ is compact and $\{g_n\}_{n\in\mathbb{N}}$ is a monotone sequence of functions pointwise convergent to g, it follows that $g_n \to g$ uniformly on $[\alpha, \beta]$ when $n \to +\infty$, by the Dini's theorem. Hence

$$\sup_{\lambda \in [\alpha,\beta]} \inf_{x \in X} (\Phi(x) + \lambda \Psi(x) + g(\lambda))$$

$$= \lim_{n \to \infty} \sup_{\lambda \in [\alpha,\beta]} \inf_{x \in X} (\Phi(x) + \lambda \Psi(x) + g_n(\lambda))$$

$$= \lim_{n \to \infty} \inf_{x \in X} \sup_{\lambda \in [\alpha,\beta]} (\Phi(x) + \lambda \Psi(x) + g_n(\lambda))$$

$$\geq \inf_{x \in X} \sup_{\lambda \in [\alpha,\beta]} (\Phi(x) + \lambda \Psi(x) + g(\lambda)),$$

where the last inequality is due to $g(\lambda) = \inf_{n \in \mathbb{N}} g_n(\lambda)$ for any $\lambda \in [\alpha, \beta]$. Thus the equality follows.

Since $\beta > \alpha$ is arbitrary, it follows that

$$\begin{split} \sup_{\lambda \in [\alpha, +\infty[} \inf_{x \in X} (\Phi(x) + \lambda \Psi(x) + h(\lambda)) \\ = \sup_{\beta > \alpha} \inf_{x \in X} \sup_{\lambda \in [\alpha, \beta]} (\Phi(x) + \lambda \Psi(x) + h(\lambda)). \end{split}$$

Let us suppose that

$$\begin{split} \sup_{\beta > \alpha} \inf_{x \in X} \sup_{\lambda \in [\alpha, \beta]} (\Phi(x) + \lambda \Psi(x) + h(\lambda)) \\ < \inf_{x \in X} \sup_{\lambda \in [\alpha, +\infty[} (\Phi(x) + \lambda \Psi(x) + h(\lambda)), \end{split}$$

then we can choose $\gamma \in \mathbf{R}$ such that

$$\begin{split} \sup_{\beta>\alpha} \inf_{x\in X} \sup_{\lambda\in[\alpha,\beta]} \left(\Phi(x) + \lambda \Psi(x) + h(\lambda)\right) \\ &< \gamma < \inf_{x\in X} \sup_{\lambda\in[\alpha,+\infty[} \left(\Phi(x) + \lambda \Psi(x) + h(\lambda)\right), \end{split}$$

consequently for every $\beta > \alpha$ there exists $x_{\beta} \in X$ such that

$$\sup_{\lambda \in [\alpha,\beta]} (\Phi(x_{\beta}) + \lambda \Psi(x_{\beta}) + h(\lambda)) < \gamma$$

in particular $\Phi(x_{\beta}) + \alpha \Psi(x_{\beta}) < \gamma - h(\alpha)$, that implies $\{x_{\beta}\}_{\beta > \alpha}$ is bounded owing to the weak coerciveness of the functional $\Phi(\cdot) + \alpha \Psi(\cdot)$. Therefore there exist $x^* \in X$ and a subsequence $\{x_{n_k}\}_{k \in \mathbb{N}}$ with $x_{n_k} \to x^*$ when $k \to +\infty$. Fix $\delta > \alpha$, there exists $\bar{k} \in N$ such that $n_k \geq \delta$ for each $k \geq \bar{k}$, moreover the function $x \in X \to \sup_{\lambda \in [\alpha, \delta]} (\Phi(x) + \lambda \Psi(x) + h(\lambda))$ is weakly sequentially l.s.c., then it is

$$\sup_{\lambda \in [\alpha, \delta]} (\Phi(x^*) + \lambda \Psi(x^*) + h(\lambda)) \le \gamma.$$

Because of the arbitrariness of $\delta > \alpha$, it follows that

$$\sup_{\lambda \in [\alpha, +\infty[} (\Phi(x^*) + \lambda \Psi(x^*) + h(\lambda)) \le \gamma,$$

from which, we obtain the absurd

$$\begin{split} &\inf_{x \in X} \sup_{\lambda \in [\alpha, +\infty[} (\Phi(x) + \lambda \Psi(x) + h(\lambda)) \\ &\leq \gamma < \inf_{x \in X} \sup_{\lambda \in [\alpha, +\infty[} (\Phi(x) + \lambda \Psi(x) + h(\lambda)). \end{split}$$

Thus, at this point, we have for each $\alpha > 0$

$$\begin{split} \sup_{\lambda \in [\alpha, +\infty[} \inf_{x \in X} (\Phi(x) + \lambda \Psi(x) + h(\lambda)) \\ &= \inf_{x \in X} \sup_{\lambda \in [\alpha, +\infty[} (\Phi(x) + \lambda \Psi(x) + h(\lambda)), \end{split}$$

from which, it follows that

$$\sup_{\lambda \in]0,+\infty[} \inf_{x \in X} (\Phi(x) + \lambda \Psi(x) + h(\lambda))$$

$$= \sup_{\alpha > 0} \inf_{x \in X} \sup_{\lambda \in [\alpha,+\infty[} (\Phi(x) + \lambda \Psi(x) + h(\lambda)).$$

It is easily seen, by similar arguments as above, that

$$\begin{split} \sup_{\alpha>0} \inf_{x \in X} \sup_{\lambda \in [\alpha, +\infty[} (\Phi(x) + \lambda \Psi(x) + h(\lambda)) \\ = \inf_{x \in X} \sup_{\lambda \in [0, +\infty[} (\Phi(x) + \lambda \Psi(x) + h(\lambda)). \end{split}$$

Since h is concave, for each $x \in X$ the function $\lambda \in [0, +\infty[\to \Phi(x) + \lambda \Psi(x) + h(\lambda)]$ is l.s.c., then

$$\sup_{\lambda \in [0,+\infty[} (\Phi(x) + \lambda \Psi(x) + h(\lambda)) = \sup_{\lambda \in [0,+\infty[} (\Phi(x) + \lambda \Psi(x) + h(\lambda)),$$

therefore

$$\sup_{\lambda \in]0,+\infty[} \inf_{x \in X} (\Phi(x) + \lambda \Psi(x) + h(\lambda)) = \inf_{x \in X} \sup_{\lambda \in [0,+\infty[} (\Phi(x) + \lambda \Psi(x) + \lambda(\lambda)),$$

that implies the thesis.

References

- [1] G. Bonanno, Existence of three solutions for a two point boundary value problem, *Appl. Math. Lett.* (to appear).
- [2] B. Ricceri, A new method for the study of nonlinear eigenvalue problems, C.R. Acad. Sci. Paris, Série I, 328 (1999), 251-256.
- [3] B. Ricceri, Existence of three solutions for a class of elliptic eigenvalue problems, *Math. Comput. Modelling*, Special issue on "Advanced topics in nonlinear operator theory", edited by R.P. Agarwal and O'Regan (to appear).
- [4] B. Ricceri, On a three critical points theorem, Arch. Math. (Basel) (to appear).