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Let E be a real separable and reflexive Banach space, X C E weakly closed and unbounded,
® and ¥ two non-constant weakly sequentially lower semicontinuous functionals defined
on X, such that ® + AV is coercive for each A > 0. In this setting, if

sup inf(®(x) + A(¥(x) + p)) = inf sup(P(x) + A(¥(x) + p))
A>0 xeX XX \>0

for every p € R, then, one has

sup inf (®(x) + AT (x) + A())) = inf sup(P(x) + AU(x) + h(N)),
A>0 xXeX xeX A>0

for every concave function 4 : [0, +o0o[ — R.

Keywords: Minimax problem; Concave function; Weak coerciveness;
Weakly sequentially lower semicontinuity
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1. INTRODUCTION

Here and throughout the sequel, E is a real separable and reflexive
Banach space, X is a weakly closed unbounded subset of E, and &, ¥
are two (non-constant) sequentially weakly lower semicontinuous
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262 G. CORDARO

functionals on X such that

lim  (®(x) + A\¥(x)) = +o0

x€X,||x||—>+o0

forall A>0.
In this setting, the importance of finding a continuous concave func-
tion 4 : [0, +oo[ — R such that

sup inf (®(x) + A¥(x) + A(X)) < inf sup(P(x) + AU (x) + A(N)), (1)
A>0 XEX x€X \>0

has been clearly shown by Ricceri in a series of recent papers ([2—4]).
Actually, if that happens, there is an open interval I C ]0, +oo[ such that,
for each A€ I, the functional ® + AW has a local non-absolute mini-
mum in the relative weak topology of X. In turn, under further appro-
priate assumptions, this fact leads to a three critical points theorem
(Theorem 1 of [4] improving Theorem 3.1 of [3]) which is a new, useful
tool to get multiplicity results for non-linear boundary value problems
([1,2,4].

In [3], just in view of an application to the Dirichlet problem, Ricceri
pointed out a natural way to get (1), with a linear 4 ([3], Proposition 3.1).
At the same time, he asked (3], Remark 5.2) whether it may happen that
for a suitable continuous concave function A, (1) holds, while, for every
p€R, one has

sup inf (®(x) + A(¥(x) + p)) = inf sup (B(x) + M(¥(x) + p)).
A>0 ¥EX *€X x>0

The aim of this paper is to answer, in negative, Ricceri’s question.
Our result is as follows.

THEOREM 1  Under the assumptions above, the following assertions are
equivalent:

(i) For every p € R, one has

sup inf (®(x) + A(¥(x) — p)) = inf sup(P(x) + A(¥(x) — p)).
A>0 XEX XX \>0
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(ii) For every p € linfy ¥, supy V[, one has

<I>(x) - inf\p—l(]_oo’p]) P

sup

x€¥-1(]p,+o0[) p— ¥(x)
< in @(X) - il‘lfq,—l(]_ooyp]) ® .
xe¥1(]=00,0]) p—¥(x)

(iii) For every concave function h:[0,+oo[ — R, one has

sup inf (®(x) + A¥(x) + A(N)) = inf sup(®(x) + AV(x) + A(X))
A>0 xeX xeX A>0 ‘

2. PRELIMINARY LEMMAS

The proof of Theorem 1 needs some rather delicate lemmas. We prove
them in this section. From now on, we denote l.s.c. as lower semicon-
tinuous, u.s.c. as upper semicontinuous, (4,5 the characteristic function
of a real interval [a, b].

Except for Lemmas 1 and 4, we also assume that the two functions ®, ¥
satisfy (ii) of Theorem 1.

LEMMA 1  Assume that o, 3 € R, with o< 3, then the following asser-
tions are equivalent:

(il) For every p € R, one has

sup inf(®(x) + A(¥(x) — p)) = inf sup (P(x) + MNT(x) — p)).
x€X xeX,\e[a’ﬂ]

A€[e,f]

(iil) For every p€linfy V¥, supyx V[, one of the following two pairs of
inequalities holds:

¢(X) - a(p) 2
s e 70 Nkl @

wp  BOBR) o 20— b

3
) P xev oy p—T0) )
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or
®(x) —a(p)
ey P —T) =P (4)
s —alp) .. ) -alp)
— a7 f s
vev (g P— T() S il o O
whereas
alp) =, inl ) (@0) +a(¥(x) ~p)
and
bo) =, dnf (@00 +A(¥(x) = p)).
Proof
(i) => (iil)

Fix p € Jinfy ¥, supy ¥[, we have

inf sup (2(x) + A(¥(x) — p)) = min{a(p), b(p)}.
YEX \e[a,8]

We prove that

b(p) < a(p) = (2) and (3)
a(p) < b(p) = (4) and (5).

Suppose b(p) < a(p), then infyexSupiefa,s1(2(x) + A(¥(x) — p)) = b(p),
moreover there exists X € U!(]p,+0o[) such that &(%)+

B(¥(X) — p) < a(p), then
®(x) — a(p)
=) g

that implies (2).
Since supiefa,g)infrex (2(x) + AM(¥(x) — p)) = b(p), there exists \,€
[e, 8] such that

inf(@(x) + X,(¥(x) = p) = b(p),
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thus we have

sup @(X) B b(p) S Ap S inf q)(‘x) - b(p) ,
xeU-1(Jproof) P — T(X) xe¥-1(J-o0p]) p— ¥(x)

that implies (3).
Supposea(p) < b(p), then infie x SUPscia, 51 (B(X) + NT(X) — p)) = a(p).
The inequality (4) holds, in fact if it does not hold, we have

wp 2@ a0

xe¥-!(Jp+oo]) P ¥(x)

that implies b(p) < a(p) against the hypothesis.
Since supie(q,s)infrex (P(x) + M(¥(x) — p)) =a(p), there exists A\, €
[c, 3] such that

inf(2(x) + A, (¥(x) - p) = a(p),
thus we have

X —ale) oy o gy 2 —alo)
xet-1(jproo]) P— T(x) T T xewi(lcog) p—¥(x) ’

that implies (5).

@iil)=(@il)
Let p € linfy U, supy U] be such that (2) and (3) hold. In the previous
proof “(il) = (iil)” we saw that (2) <= b(p) < a(p), then at first we have

inf. sup (2(x) + A(¥(x) — p)) = b(p)-
XEX \e[a,f)

Put

A, = sup 2(x) — b(p) inf 2(x) — b(p) N o, A,

xe¥-1(jproof) P~ B(X) " xev-i(j-cop) p— ¥(x)
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itis A, 0. In fact, 4,is empty iff

. ®(x) — b(p) ®(x) — (p)
in — I <aor su A P
xe-i(1moogl) p— U (%) cet Hmrool) P — V()
Ifitis
2(x) — blp) _
ln —_—<a,
xe¥-1(]-o0p)) p— ¥(x)
then a(p) < b(p) that contradicts (2).
Ifitis
®(x) — b(p)
su —_—— >,
xel- '(1£+oo[) p—¥(x)
the absurd
®(X)+0(¥(X)—p) < inf  (2(x)+B(¥(x) - ),

xe¥-1(]p,400[)

for some ¥ € U~!(]p, +0o0[), is obtained.
Thus we can choose A, € 4, for which infycxy ®(x) + A (¥(x) - p) >
b(p), that implies the equality

sup mf(<I>(x)+)\(\Il(x) p)) = b(p) = inf sup (P(x)+A(¥(x) — p)).
Aelo,f) ¥€ X€X yela,0)

Let p € Jinfy ¥, supy ¥[ be such that (4) and (5) hold. It is

;g,f(Asup (®(x) + M¥(x) — p)) = a(p).

Put

B,=| suw O(x) — a(p) wof 2() —alp)

Nle, G,
e TP et o0 | P
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itis B,# 0. In fact, B, is empty iff

W) —ap) o o 2N g

n
xe¥-1(J-o0gl) p— U(¥) T N 160

The second inequality contradicts (4).
The first inequality implies that, for some X € ¥~!(]~o0, g]),

() + ¥(X) ~p) < w_liaf Oo’p])(i’(x) +a(¥(x) - )

and this is absurd.
Thus we can choose A, € B,, then inf,c x (2(x) + A, (¥(x) — p)) > a(p),
that implies the equality

sup inf(®@(x)+ A(¥(x) — p))= a(p)= inf e (@(x)+ A(¥(x) - p))-

A€[a,A)
It is easily seen that, if p € R\ Jinfy U, supy U[# 0, the equality

sup 1nf(¢>(x) + M¥(x) — p)) = inf sup (P(x) + A(¥(x) — p))
PEMEES *€X xela,f]

holds.

COROLLARY 1  Fix arbitrarily o, B € R with a < (3, then for any p €R,
one has

sup 1nf(<I>(x) + A(¥(x) — p)) = inf sup ((x) + A(T(x) — p)).
AEla,f] ¥€ *€X \efa,f]

Proof Let usconsider arbitrary o, 8 € R, with o < 3, by Lemma 1 it is
enough to prove that (iil) is true.

Let pelinfy ¥,supy ¥[, since a(p) <infy-i(j—co) P the following
inequalities hold:

sup (x) — a(p) sup @(X) - infq,_n(]_oo,p]) P

o ety 2= TE) ety P I0Y)
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and

®(x) — infyoi(j_oo ) ® _
i (%) = infy-1()_c0 ) < i ®(x) a(P)’
xe¥~i(]-o0,p) p—¥(x) xe¥1(]-oop) p— ¥(x)

owing to (i), then we have

wp PO B -al)
xe¥-1(]p,+o0[) p—U(x) T xewi(]-oop) p—¥(x)

So, if a(p) < b(p) then (4) and (5) hold.
If b(p) < a(p), then (2) holds, moreover since b(p) < infy-1(j— oo, P and
by (ii), we also have (3).

LEMMA 2 Let o, B€R, with a.< 3 and p € linfy ¥, supx Y[ such that
b(p) < a(p), then ¥~ (p) # 0 and for any ~ € [, 8] one has

inf (@ U(x) — p)) = inf ®(x).
xew~n‘8_w,,,1)( (x) +7(¥(x) - p)) LT (%)

Proof Fix a,B€R, with a< 8 and pe€linfy U,supy¥[ such that
b(p) < a(p), by (ii), (2) of (iil) Lemma 1 and a(p) < infy-1(j—oo, o) B, We
have

in q)(X) - inf.l,_n(}_ooyp]) o]
xe¥-1(]~c0,p)) p—¥(x)

> B.

Then, for every v € [0, 3], since infrcw-1(1—oo,pp (P(x) +7(¥(x) —p)) <
infg-1()—co,pp P, it turns out that

®(x) — c(p)
in —_——l >,
cet(loonl) p—T(x)
where  c(p) =infycy-19-co,g) (B(x¥) + ¥(¥(x) — p)). Thus for every
x€ ¥ (=00, o),

®(x) +(¥(x) — p) > q,-.i(‘}f (®(x) +7(¥(x) — p)),
x€ 00,0])
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moreover there exists x*€ ¥ '(]—oo, p) such that ®&(x*)+
(T (x*) — p) = c(p), so it is necessarily x* € ¥~(p) and

inf O(x) +v(P(x) — = inf ®&(x
g U (B) +(¥() —p) = inf  &()

LEMMA 3 Consider a, 3€R with a < and a subdivision o= a; <
0 < < op_a < apu_y =0 of the interval with n > 3. Define the function
h:le, 51— R

n—1
h() = Xanaw)N (X + @) for each X € o, ],
i=1

where {pi}1<k<n—1 IS a non-increasing finite sequence of real numbers and
a1 =a;+ (p;i — pir1)ais for 1 <i<n-—2,with a, € R arbitrarily chosen.
Then one has

sup mf((I)(x) + AU (x) +h(N) = mf sup (®(x) + A¥(x) + h(N))
e[, 8] ¥€EX x€X xela,B) :
(6)

Proof By Corollary 1, we have

sup 1nf(<I>(x) + AU (x) + h(N))
Aela,f] *€

= Z, o (200 4O )+

thus there exists j€ {1,2,...,n— 1} such that

As?pﬁl inf (<I>(x)+ AT (x)+h(N)) = mf f [sup. ](<I>(x)+)\(\Il(x)+pj)+aj).
(7

For the sake of simplicity, we denote
filx, A) = @(x) + M¥(x) + p1) + a;

for 1 <i<n—1being x and X on the respective domains.
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Ist Step

At first, we prove the thesis when infy ¥ < —p;<supy¥ for every
1<i<n—1. Fix 1<i<n—2 for every x€ ¥ !(J—o00,—pip1]) and

i<k<n-1,wehave

sup  (®(x) + A(¥(x) + px) + ax)

A€ [Otk YOk -1

> sup  (®(x) + A(¥(x) + prs+1) + Akt1),

AElokr1,0042)
hence

max  sup (®(x) + A(¥(x) + px) + @)

isk<n—1 xeloy op41]

= sup (D(x)+A(¥(x)+ pi)+ ai).

Aelar,0u41]

Fix 2<i<n-2, if 9 '(—ps—pi1])#0, then for
X€ \II_'(]—pi, —pirq]) and 2 <k <i, we have

sup  (®(x) + A(¥(x) + px) + ak)

A€[ag,app1]

> sup  (®(x) + AM¥(x) + pr-1) + ak-1),

Aelog-1,0)
whence, by (8), it follows that

max  sup (®(x) + M¥(x)+ px) + ax)

1<k<n—1 xefoy,api1)

= ®(x) + a1 (¥(x) + pi) + a;.
For every x € U~ !(]—p,_1, +oo[) and 1 <k < n — 2, we have

sup  (®(x) + M(¥(x) + pr+1) + A1)

A€[ogs1,0042]

> sup (®(x) + MU(x) + pr) + ax),

A€ok, o+1]

(8)

every
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hence
max  sup (®(x) + M(T(x) + px) + ax)
1<k<n—1 xelog,0n41)

= ®(x) + B(Y(x) + pn-1) + Q1.

Weset N= {1 <i<n—2/0'(J—p; —pi1]) # 0} and

min inf filx, i) ifN#Q

€N xe¥=1(]~p,—pis1])

+00 ifN=0
5={

then it follows that

inf sup (®(x) 4+ A\¥(x) + h(N))
xeXAe[a,ﬁ]

filxa), fn-n(x,ﬂ)}- )

in
x€¥(]~py1,+00[)

= min{é, inf
x€¥~1(]~00,~p1])

Now we state and prove the following assertions:

(a) If

Si(x, aj) < min{&, inf Dﬁ(x, aj)},
Pj

inf
x€¥-1(]—pj,+o0[) xe¥~!(]—00,—

then for every j<k<n-—1, we have

inf , < inf .
er1 (o, +°°[)fk(x oy1) < et (g +oo{)/3(x Q1)
inf X, .
xe'll‘l(]—oo,—pk])ﬁ‘( ak)

(b) If

inf (x, ) < inf (x, o
sl oo,_pj])ﬁ(x < o +m[)ﬁ(x 1)
and

) j}(x, aj) < b,

inf
x€¥-1(]—o00,—pj
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then for every 1 <k <j, we have

Je(x, ) = ) Si(xs o).

inf inf
x€¥~!(]-00,~px]) x€¥~!(]-00,~p

Let us prove (a).

If j=n — 1 the thesis is obvious.

Let j<n—1, inequalities obviously hold for k=j Put T=
{j <k <n—1/ such that the inequalities hold}, then T# 0 since j€ T.
Let me T with m<n—2, we denote A, mi1 ="' (I=pms —Pmr1]s
then

inf X,
et (g P71 5 04 1)

- ’
X€U (|00 pmit] S, 0mir)

xe¥-! (51350,-;),,,]) fm (x’ amH)

if Am,m+l = m,

min {xe o d'_‘fo‘o,_pm]) Son(%5 Ot xe}ﬁf " Son(%, Q1) }

{if Amgne1 # 0.
(10)

Sinceme T,

e (it—lgm,+oo[)(®(x) + om1 (¥(x) + pm))

< (®(x) + om (¥ (x) + pm))s
Pm))

inf
x€¥-1(]—00,—
then, by Lemma 2, we have ¥~ !(—p,,) #0 and

inf P(x) + am1 (T(x) + pm
rear P (0) F ama (200) + )

inf ®(x) + U(x) + ,
eun i (@) +an(¥(0) + pw)
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so one has

ﬁ(x’ aj+|) < x fm(x’ am+l)‘

inf inf
x€W!(]-pj+ool) €¥~1(]—00,—pm))

Moreover, if A, m+1 # 0, then the hypotheses imply that

Si(x, 041) < Sm (%, Qmy1).

inf inf
XG\I’"I(]"IJj,'f‘OO[) x€¥1()~pmy—pm+1])

Consequently, by (10), it follows

f)’()C, aj+|) < . ])fm+1(xa Qmt1)- (11)

inf inf
x€¥1(]-pjyto0]) €U (]—00,~pm41

By (7), we have

1 f i(x, a; . 1 f ’)\ ,
rert i gy i 1) = max ligxxe[il,f&.]ﬁ(x )

hence

filx, ege1) 2 inf - sup S (%, A)

inf
x€¥-1(]~pj+o0[) AE[am11,0m42)

fm+l (x’ am+2)},

=min inf X, , inf
{xe\ll-‘(}—oo,—ﬂmll) Tt (%, G x€¥(]=pmy1,+00[)

therefore, by (11), it turns out that

inf (x, o > inf ’ .
xe\v~1(l]l.1.pj’+00[)ﬁ(x Q1) > xewq(]f’l,mﬂﬁoo[)fmﬂ (%, ams2)

Thus we have proved that me T with m<n—2=m+ 1€ T, then the
thesis of assertion (a) is proved.

Let us prove (b).

If j =1 the thesis is obvious.

Let j > 1, the equality obviously holds when k=j. Put T= {1 <k <j/
the equality holds}, then T # @) because j € T. Suppose m € T withm > 1,
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we have that

inf S (X, )

x€¥~!(]-00,~pm])

xe¥-! ( ]—oo,—pm]

( inf Sn=1(x, )

1
x€¥~1(]~00,~pm-1])
if Ay = 0,
(12)
mm{xew' G, S om), nf fne am)}

| i A # 0,

then it is seen, by similar arguments to those in the proof of assertion (a),
that

fm(xa am) =

Sin—1(X; o).

inf inf
X€U1 (]=00,~ pm) x€¥-1(}~00,~pm-1])

Because of (7) and m € T, we also have

) Sm-1(x, ) = ) fi(x, o)

in inf
x€¥~(]~00,~pm-1 x€¥~1(]—00,—p;

) Sn-1(x, am)},

> min inf —1(x, -1 in
{xe\lf'l(]—oo,—p,,,_l})fm (>, am-1), XEU (| =ty +00

which implies, by Lemma 2,

- m) = inf —1(x, am—1)-
Sm-1(x, )_xE\II”'(]l—rlo,—pm-l])fm 1(X, am—1)

in
x€¥-1(]—00,~pm-1])
Since a,,_1 < auy, the opposite inequality holds too, therefore the thesis
is proved.
Now we can prove the equality (6) with the further hypothesis we
stated at the beginning of this step.
If

ﬁ(x’ aj+1) < inf f}(x’ aj)a
D x o)

inf i
x€¥~1(]—-pj,+00 €¥~1(]—00,~
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then by (7),
sup mf((I)(x)+)\\Il(x)+h()\)) inf Si(x, ajq1),
Aefo, 8] ¥€ xev- '(] pj+oo])

owing to (a), it follows that

inf (x, o > 6
et ([ aaapy 0 1) 2

or

Si(xs a441) > inf Sa-1(x, B),
,+oo[)

inf
x€¥=1(]~pj,+o0l) €0 (]=pu-1
hence

sup] 1nf(<I>(x) + A¥(x) + A(N)) > 1nf sup (<I>(x) + A¥(x) + A(N)),
A€[a,B) ¥

that implies (6).
If

inf i(x,05) < inf i(, 01),
xE‘I’“(}—oo,—pjl)j;(x %) < xe‘I'”'(]—pj,+0°[)ﬁ(x 1)

then the equality (6) is implied by assertion (b).

2nd Step
We prove that the equality (6) holds, when inf,.c y ¥(x) # —oo and there
exists 1 < k < n — 2 such that

<i<k —pi < i
for1<i<k p,_)lcxel)t;\ll(x),

fork+1<i<n—1 inf¥(x)<—p; <sup¥(x).
xeX xeXx

We have

sup inf (<I>(x) + AT(x) + h(X)
A€(a,8] ¥€X

= max inf sup (®(x)+ A¥(x)+p)+a), (13)

k+1<i<n—1%€X ye[a,001]
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and

mf sup (®(x) + AT(x) + A(A))

xG/\

mf max sup  (®(x) + AP (x) + pi) + ai). (14)
X€X fe+1<i<n—1 Aefoy,0141)

Put g = Ay, , g, then the equality (6) follows from the 1st step, where g
takes the place of 4, and from (13), (14).

3rd Step
Letfor 1 <i<n—1, —p;<infy ¥ # —o0, then we have

sup inf (<I>(x) + AU(x) + h(N) = )16161{/ Jo-1(x,B)

Aela,8) XX

= inf sup (®(x) + AT(x) + A(N)).

x€/\

Letfor1<i<n-—1, —p;>supy ¥(x) # +o0, then we have

s1[1p] 1nf((I>(x) + AU(x) + h(N)) = mfﬁ(x o)
Ae[a,0] ¥EX

= inf sup ](<I>(x) + AU (x) + A(N)).
xeX /\6 "3

4th Step B
Suppose that there exists 2 < k < n — 1 such that

for 1 <i<k—1, —p <sup¥(x),
xeX

fork<i<n—1, —p; >sup¥(x).
x€X

We have
sup 1nf (<I>(x) + A¥(x) + h(X)) = sup mf (<I>(x) + A¥(x) +g(\)
Ae[a,8] *€ Aelayaf] *€
and

mf sup (<I>(x) + A¥(x) + (V) = mf s[up ](<I>(x) + A¥(x) + g(N),

x€X xela,d]

where g = A4 q,). Therefore the equality (6) follows from the previous
steps, where g takes the place of 4.
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LEMMA 4 Let o,B€R, with a<f and g:[a,3]— R be a concave
Sunction such that max{|g;(a)|,|g;(B)|} # +oo. There exists a non-
increasing sequence of functions {g,},en pointwise convergent to g on

[a, B] such that for every n €N, g,, is formally defined as the function h in
Lemma 3.

Proof FixneN, we set

6,(;') =a+ kﬂZn__la

(n) () _

=gi(@), p» =gJ(B) andfor 1 <;j<2"—1

1

Y

g/(8")  with k , if jis odd,

Nl

o =

g/(6™)  with k = 15 if j is even,

el P8 r0<j< 2,

oz((,")—-a, ozz,,+1 =fandfor1<;<2"

8 e =%,
o’ =1 oW
J J— n n
—(,,)—'m if pj # Pic1>
Pi-y

with k=j/2 if jis even, k = (j+ 1)/2 if j is odd.
Because gisconcave, then { p,(:') }o<k< is NON-increasing, moreover it is
easily seen that {a,(c" Yo<k<ars1 is @ subdivision of the interval [a, 8].
Now we define the function:

g =Y Xe a0y V) (o2 + ) for each A € [a, ],
j=0

from the definition of a] "), one has a( Do=a” + (" — P,(i)l) ™ for
every 0 <j<2"—1.
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We prove that {g,} is pointwise convergent to g on the 1nterval [a, B):

Fix \€[a, Blandn €N, weputk,, =max{0< k< 2" I 6 < A};since

o) = 6" and off) ,, = 8.",,, one has \ € [ag,? Lo ), then

lgn(X) — g(N)| < max{|g (a)], Igs(ﬂ)l} 2,, )
+max {|g(6%) — gV, | (81) — g}

The function g is continuous, then, since

lim 6" = lim 6", =\,

n—o00 kn n—o0 nt
we have
Jim |g,(2) —g(A)] =0.

Let ne N and )\ €[a, (], it results that g,(\) > g,41(N).

There exists 0 <j < 2"*1guch that \ € [aj"H), ,ﬁl)] , then we have to
examine the different cases which can occur.

If j is even and k=j/2 is also even, for some 0 <m <2""!, one has
j=2k =4m. In this case, at first, we have

[0, af17] € o, o],

hence
80N = 21 (N) = (A + ) — (o702 + 0" =

If j is even and k=j/2 is odd, then j=2k=4m+2 for some 0<
m<2""'— 1. In this case, it results that

oV, 1] € o, @]

Since forevery A € |l otV [N ], ol [, we have

80\ — gha (V) = p5 — Pl 2 0
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and
2 (oY) = gusr (o) = (65 — Pl ) (cri] — i) > 0,
it follows that

ga(\) 2 g (V), if A€ &, a0 0 (o), o).

Since for every A € ]aj(."“), a(f,’l) [n]a, i [, one has

2N — g (V) <0,
and
gn(yt”) —gwn (") =0,
it follows that
&N 2 () if A€ [of . afiTV] 0 [0}, o).

In the remaining cases, the inequality g,()\) > g,,.1(}) also holds, the
proof is analogous to the previous ones.

3. PROOF OF THEOREM 1
In the first instance, we remark that if p € Jinfy ¥, supy ¥[, then

inf sup(®(x) + \(¥ = @
Infsup(®(x) + A(¥(x) =p)) = inl

(i) = (if)

Let p € linfy ¥, supy U[, thenlimy_, | o, inf,c x (P(x) + AM(¥(x) — p)) = —00
moreover the function X € [0, +oo[ — inf,.c y (B(x) + M¥(x) — p))isu.s.c.
then attains its supremum. Consequently there exists A, € [0, 4-oo[
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such that

inf(2(x) + A, (¥(x) = p)) = sup inf(2(x) + M(¥(x) - p))
X€E A>0 X€X

inf @,
- (]-o00,0])

so we have

<I>(x) - infq,_l(]_ooyp]) P

sup
xe¥(Jp,oof) p— ¥(x)
B(x) — infy-1(1_o0 @
<hs in (x) "l (o)
€W (]-c0,0]) p—¥(x)

then owing to arbitrariness of p the thesis is proved.

@)= ()
Let p € Jinfy ¥, supy ¥[, since

@(X) - infqpl(]_w’p]) P

0 S mn < +OO,
xe®-1(]~c0,p() p—¥(x)
we can set
®(x) —infg-1,1_ P
M= in () —infe (oo @
xe¥!(]-00,0]) p— U(x)
so we have

| L
nf(2(x) + X)) ) 2 inf

= inf sup(®(x) + M¥(x) — p)),
X€X x>0

therefore the equality

sup inf (®(x) + A(¥(x) — p)) = inf sup(®(x) + A(¥(x) — p))
A>0 X€X x€X >0

holds.
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In order to complete the proof we have to prove that, if
R\Jinfy U, supx U[ # 0, for every p € R\ Jinfy ¥, supy ¥[ the equality in
(i) holds.

If supy ¥ # 400 and p > supy ¥ then

inf sup(®(x) + A(¥(x) — p)) = inf &(x),
x€X \>0 xeX

thus the equality follows because

sup inf (®(x) + A(¥(x) — p)) > inf &(x).
A>0 X€X xeX

Now we suppose that infy ¥ # —oco and p <infy V. It is necessary to
distinguish the following two cases:

(1) ¥ does not have absolute minimum.
(2) ¥ has absolute minimum.

Let (1) be true.
Since for every x € X, ¥(x) — p > 0, it follows that inf,c y sup>o (P(x) +
M¥(x) — p)) = +o00. We assume that

sup inf(®(x) + AM(¥(x) — p)) < inf sup(®(x) + A(¥(x) — p)),
A>0 X€EX X€X \>0

then there exists a € R such that sup o infye x (B(x) + M(¥(x) — p)) =«
Consequently, for every ne€ N, there exists x,, € X such that ®(x,)+
n(¥(x,) — p)<a+1, since for every neN, ¥(x,)—p>0, it follows
®(x,) < a+ 1, then the weak coerciveness of ® implies that {x,},cN is
bounded. Because of the hypotheses about E and X, there exist x* € X
and a subsequence {x,, },cy such that x,, — x* weakly for k — co. The
function ® is weakly sequentially 1.s.c., then

o(x*) + lilzn infrg(¥(xn,) — p)

< liinian(x,,,() + (U (xp) —p) < a+1,
00

consequently, it follows lim infy_,oc ¥(x,,) = p.
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Therefore we have the absurd p < ¥(x*) < liminfi_o, ¥U(xp,) = p,
being ¥ weakly sequentially L.s.c. The absurd follows from the hypothesis
that the equality in (i) does not hold, so the thesis is proved.

Let (2) be true.

If wechoose p < infy ¥, since for every x € X, U(x) > p, we can proceed
asin (1).

Let p=infy U, then

. W
;gxigg( (x) + A(¥(x) - p)) xeg}f(p)é(x),

in fact, if we assume that sup,soinfycx(®(x)+ A(T(x)—p))<
infyeg-1 (p)®(x), we can choose v € R such that

sup inf (®(x) + M(¥(x) —p)) <y < inf &(x).
A>0 ¥eX xel-1(p)

Therefore for every A € [0, +oo it results that

cex ol 20 +AT(x) = p)) <7,

hence, for every n €N, there exists x, € X with ¥(x,) > p and ®(x,)+
n(¥(x,) — p) <. Since for every n € N, ®(x,,) <, there exist x* € X and
a subsequence {xy, },cn such that x, — x* weakly when k— oo, so
p < U(x*) < liminfy_ ¥(x,,) = p, that implies x* € ¥~'(p). We also
have

®(x*) < liminf®(x,) <y < inf ®(x),
k—o00 xe¥-1(p)

that is absurd since x* € ¥~(p).

(iii) = (i) is obvious.

(&) = (iii)

Consider a concave function 4: [0, +oo[ — R, let 0 < a < 3 be arbitrary
real numbers and set g = k), ), the function g meets the hypotheses of

Lemma 4, hence we can consider a non-increasing sequence of func-
tions {g,}nen pointwise convergent to g such that, for every neN,
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by Lemma 3,

/\s1[1pﬂ] ;telf (®(x) + AT(x) + ga(N)) = mf sup (<I>(x) + A¥(x) + gn(N)).
(15)

Since [, 3] is compact and {g,,},en is @ monotone sequence of functions
pointwise convergent to g, it follows that g,, — g uniformly on [a, 3] when
n — 400, by the Dini’s theorem. Hence

sup mf((I)(x) + A¥(x) +g(N))
A€fe, 8] ¥€X

= lim sup mf(tI>(x)+)\'Il(x)+g,,()\))
n—o0o Ae[ ﬂ]

= lim inf sup (®(x) + AU(x) + g.(}))

n—oo xeX Ae[a,B]

> inf sup (<I>(x) + AU(x) + g(N)),

xeX /\G

where the last inequality is due to g(A\) =inf,cn g4()) for any A € [, 8]
Thus the equality follows.
Since 3 > a is arbitrary, it follows that

sup mf (<I>(x) + AU (x) + A(N))
Ae[a,+oo ¥€
= supinf sup (®(x) + A¥(x) + h(N)).
B>a *€X \g[a,B]
Let us suppose that
sup inf sup (<I>(x) + A (x) + h(N))
B>a *€X \gla,B
< 1nf sup (®(x) + A¥(x) + A(N)),
*€X \ela,+oo]
then we can choose v € R such that
sup inf sup (<I>(x) + A¥(x) + h(N))
B> *€X \g[a,g]

<y< 1nf sup (®(x) + A¥(x) + h(N)),

X€X xe[o,+oo]
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consequently for every 3 > o there exists x5 € X such that

sup (P(xp) + AP (xg) +h(N)) <7

efa,f)

in particular ®(xs) + a¥(xg) < v — h(c), that implies {x 3} 3> is bounded
owing to the weak coerciveness of the functional ®(-) + a¥(-). Therefore
there exist x* € X and a subsequence {x, };cn With x, — x* when
k — +o00. Fix § > a, there exists k € N such that n, > 6 for each k > k,
moreover the function x € X — supaefa,s1 (2(x) + A¥(x) + h()))is weakly
sequentially 1.s.c., then it is

sup (®(x*) + AT(x*) + A(N)) < 7.

A€[a,6)

Because of the arbitrariness of § > a, it follows that

sup (®(x*) + AT(x*) + (X)) < 9,
A€[a,+00[

from which, we obtain the absurd

inf sup (®(x)+ A¥(x)+ h(N))

*€X \elo,+00]
<v<inf sup (®(x)+ AU(x)+ h(N)).
*€X \e[a,+00]

Thus, at this point, we have for each o> 0
sup nf({)(x) + AU (x) + h(X))
€[, +00] xeX
=inf sup (D(x)+ A¥(x)+ A(N)),
*€X \e[a,+o0]
from which, it follows that
sup inf(®(x) + A¥(x) + h(N))
A€]0,+-00[ ¥EX

= sup mf sup (®(x) + AU(x) + A(N)).

a>0 ¥€X xela, +oo|
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It is easily seen, by similar arguments as above, that

sup inf sup (<I>(x) + A¥(x) + k(X))
>0 *€X \gla, 400

= inf sup (<I>(x) + AU(x) + h(N)).
¥EX \e]0,+00

Since h is concave, for each x € X the function X € [0, +oo[ — ®(x) +
A¥(x) + () is Ls.c., then

sup (®(x) + A¥(x) +h(A)) = sup (P(x)+ A¥(x) + A(N)),
A€[0,+00[ A€0,400[

therefore

Tup [mf (®(x)+ AT (x)+ A(N)) = mf ?up (®(x) + A¥(x)+A(N)),
A€]0,+o00[ ¥€EX

that implies the thesis.
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