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In this paper we prove the existence theorems for the integrodifferential equation

t
y’(t) =f(t’y(t)’/0 k(t’svy(s))ds)’ tel= [0’ T]’
Y (0) = Yo,
where in first part f, k, y are functions with values in a Banach space E and the integral
is taken in the sense of Bochner. In second part f, k are weakly—weakly sequentially
continuous functions and the integral is the Pettis integral. Additionaly, the functions

fand k satisfy some boundary conditions and conditions expressed in terms of measure
of noncompactness or measure of weak noncompactness.
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1 INTRODUCTION

In this paper we establish some existence principles for integrodiffer-
ential operator equations and present existence result for integro-
differential and integral equations.
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326 A. SIKORSKA

The paper is divided into two main sections.
In Section 1 we prove some existence theorems for the problem

70 =130, [ K56 ),

¥(0) = yo,

(1)

where I=[0,T], E is a Banach space with the norm ||-||, f, k, y are
functions with values in a Banach space E and the integral is the Bochner
integral.

In Section 2 we prove some existence theorem for the problem (1),
where f, k, y are functions with values in a Banach space E, f, k are
functions weakly-weakly sequentially continuous and the integral is the
Pettis integral [1]. The results of this paper extends existence theorems
from Krzyska [12], Cichon [6], Meehan and O’Regan [13], O’Regan
[16,17], Cramer et al. [7].

In this paper we use the measure of noncompactness developed by
Kuratowski [11], and the measure of weak noncompactnes developed by
de Blasi [4].

Let A4 be a bounded nonvoid subset of E. The Kuratowski measure of
noncompactness o A) is defined by

a(A4) = inf{e > 0: there exists C € K such that 4 C C +¢eBy},

where K is the set of compact subsets of E and B is the norm unit ball.
The de Blasi measure of weak noncompactness 3(A) is defined by

B(A4) = inf{t > 0: there exists C € K" such that 4 C C+tBo},

where K" is the set of weakly compact subsets of E and By is the norm
unit ball.

The properties of measure of noncompactness a(A) are:

(1% if A C B then a(A) < (B);

(2% o(A4) = a(A), where 4 denotes the closure of 4;
(3% a(A4)=0if and only if 4 is relatively compact;
(4°) a(4U B)=max{a(4), «(B)};
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(5% oA =|Ma(4) (A€R);
(6%) (4 + B) < o((A4) + (B);
(7% a(conv A) = a(A).

The properties of weak measure of noncompactness J are analogous
to the properties of measure of noncompactness, see [2—5,14]. Moreover,
we can construct many other measures with the above properties, by
using a scheme from [5]. We now gather some well-known definitions and
results from the literature, which we will use throughout this paper.

DEFINITION 1 A function f:1x E x E— E is L'-Carathéodory, if the
following conditions hold.

(i) the map t— f(t, x, y) is measurable for all (x, y) € E%
(ii) the map (x,y)— f(t, x, y) is continuous for almost all t € I.
DEFINITION 2 A function k:Ix I x B— E is L'-Carathéodory, if the
Sfollowing conditions hold:

(i) the map (t,s) — f(t, s, y) is measurable for all y € B,
(i) the map y — f(t,s,y) is continuous for almost all (t,s) € I.

In the proof of the main theorem in Section 1 we will apply the
following fixed point theorem.

THEOREM 1 [15] Let D be a closed convex subset of E, and let F be a
continuous map from D into itself. If for some x € D the implication

V =conv({x} UF(V)) = V is relatively compact,

holds for every countable subset V of D, then F has a fixed point.

In Section 2 we will apply the following theorem:

THEOREM 2 [10] Let E be a metrizable locally convex topological vector
space and let D be a closed convex subset of E, and let F be a weakly
sequentially continuous map of D into itself. If for some x € D the
implication

V =conv({x} UF(V)) => V is relatively weakly compact,

holds for every subset V of D, then F has a fixed point.
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2 AN EXISTENCE RESULT FOR INTEGRODIFFERENTIAL
EQUATIONS

Observe that the problem (1) is equivalent to the integral equation

y(t) =yo + /0 tf(z, y(2), /0 zk(z,s, y(s))ds) dz, fortel. (1)

Assume that

(1) afunction a€ L'[0,T],
T
(2) B={x: ||x|| <b, b= ||yl + [, a(r)dt},
(3) kisa L'-Carathéodory function from 72 x Binto E,
(4) fisa L'-Carathéodory function from I/ x B x Binto E,

) ||/ (&, 3(2), fo k(2 5,(s)) ds) || < a(#) almost everywhere on I for
y € B, where B={y € C[0, T]: ||| < b, b= llyoll+ Jfy a(t)de}.

THEOREM 3 Assume, that conditions (1)—(5) holds and in addition, that

(6) there exists a constant ¢y such that «(f(t,A,C)<
¢y max{a(A4), a(C)}, for any subsets A, C of B,

(7) thereexists an integrable function cy: I* — R* such that forevery t € I,
€ > 0 and for every bounded subset X of B there exists a closed subset
I, of I such that mes(I\I.) < € and

a(k(t, T x X)) < sup c2(t,s)a(X) for any compact subset T of I..
seT
(8) the zero function is the unique continuous solution of the inequality:

T
p(r) <aT sup/ c2(z,8)p(s)ds on I
zel JO

Then there exists at least one solution of problem (1).

Proof We define the operator N: C[0, T]1— C[0, T] by

Ny(s) = yo + /Otf(z,y(z), /Oz k(z, s, y(s)) ds) dz.
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We require that N : B — B is continuous. Because

@

INy (D)l = |[yo + /otf(z,y(z), /02 k(z,s,y(s)) ds) dz
<ol + | [ A(z00) [ kespes) az
< lyoll + /ot f(z,y(z),/oz k(z, s,y(s))ds)

T
< Ioll + /0 a(t)dt = b

so Ny(f) e B,fortel.
Now we will show continuity of N.

(ii)) Lety,— yin C[0, T]. Then
W3 =yl = sup | [ f(z, 7@ [ kz5.0m(5) ds) dz
refo,1)ilJo 0
- / ’ f (z, y(2), / ’ k(z,s,y(s)) ds) dz
0 0
< sup [ [f( e [ Kese) ds)

—f(z, y(2), /02 k(z,s,y(s)) ds)] dz

t z
r:;g] /0 f(z, yn(2), /0 k(z,s, y,,(s))ds)

_f(z,y(z), /Oz k(z,s,y(s)) ds)
s (oo [resnione)
_f(z,y(z), /Oz k(z, s, yn(s)) ds)

=y 1o [ kesmones)

“f(Z,y(Z), /Oz k(z,s,y(s)) ds)

dz

IA

idz

IA

dz

dz.
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Because f and k are L'-Carathéodory functions and ||y, — y|| — 0 so
| Ny, — Ny|| — 0.

From (i) and (ii) follows that N : B — B is continuous.
Now we will show that the set N(B) is equicontinuous subset. This

follows from inequality:
t z
[ (e [ wessnas) az
nJr 0

(=@ [ ke 5.5(9) ds)

INy(£) — Ny(r)|| = sup
tef0,T

dz

t
< |
t€[0,7] J1
t
< / a(z)dz for every y € B.
.

Observe that the fixed point of the operator N is the solution of the
problems (1) and (1'). Now we prove that fixed point of the operator N
exists using fixed point Theorem 1.

Let ¥ C Bbe a countable set and V7 = conv(N(¥) U {x}). Because V'
is an equicontinuous then ¢ — v(f) = a(V(¢)) is continuous on I. Let t € 1
and € > 0. Using the Lusin’s theorem, there exists a compact subset I,
of I such that mes(/\I,) <¢ and a function s— c¢y(t,s) is continuous
on I.. We divide on interval I=[0,T]: 0=ty < t; <---<t,=T, like this

lea(t, 5)v(r) — c2(t, w)v(2)|| <& for s,r,u,z€ T; =DiNI,

where D; = [ti_y, 8], i=1,2,...,n. Let Vi = {u(s): u € V, s € D;}.
We notice

a( /1 k(t,5, V(s))ds) < a( /1 k(t,5, V(s)) ds + /1 ks V(s))ds)

< a(/le k(t,s, V(s)) ds) + e,

where ey - 0if e — 0
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and

fl k(z,s, V(s))ds C ; /T k(z,s, V(s)) ds

n
C Zmes T;convk(z, T; x V3).

i=1

Using the properties of measure of noncompactness « we have
n
a( / k(z,s, V(s)) ds) < Zmes Tio(k(z, T; x V3))
1 i=1

n
< Z mes T; sup c(z, s)a(V7)

i=1 seT;

n
- Zmes Tica(z, qi)v(si),

i=1

where ¢;€ T}, s; € D;.
Moreover, because ||ca(t, s)v(s) — c2(t, g:)v(s:)|| < € for s € T; we have

n
Z mes Tjca(t, gi)v(si)
pa
n n
< 3 mes Tilea(t, )v(s) = ea(t,s)v(s)ll + D mesTiea(t,:)v(s)
P i=1
n
<ert Zmes Tica(t, si)v(si),
pa

where g, — 0if ¢ — 0. So
a( / k(z,s,y(s)) ds) < / c(z, 5)v(s)ds + ez
1 L

then, because £, — 0 if ¢ — 0 so

a( /1 k(z, s, y(s)) ds) < /1 cx(z, s)v(s) ds.
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Because ¥ = Conv(N(V) U {x}), then by the property of measure of
noncompactness we have

a(V(1)) = a(conv(N(V(1)) U {x})) < a(N(V(?)))
< a( /0 e ve), /0 “k(z,5, V(s)) ds) dz

< /Ot a(f(z, V(z)), /Oz k(z,s, V(s)) ds) dz
< /0 o1 - max(a(V(2))), a( /0 “k(z, 5, V(s) ds) dz
<¢-T- sztérl)a(/oz k(z,s, V(s))ds)

<ea-T- sup/ c2(z, s)v(s) ds.
zel JI

So

T
v(t) < ¢;- T sup / c2(z, 8)v(s) ds.
zel JQ

By (8) we have that v(r) = a(¥V(¢)) = 0. Using Arzela—Ascoli’s theorem
we obtain that Vis relatively compact. By Theorem 1 the operator N has
a fixed point. This means that there exists a solution of problem (1).

Remark Theorem 1 extends the existence theorem from Meehan and
O’Regan [13] and O’Regan [17].

3 AN EXISTENCE RESULT FOR INTEGRODIFFERENTIAL
EQUATIONS IN WEAK SENSE

In this part we prove a theorem for the existence of pseudo-solutions to
the Cauchy problem

70 =150, [ K5 85),

¥(0) = yo
in Banach spaces. Functions f and k will be assumed Pettis integrable
but this assumption is not sufficient for the existence of solutions. We

impose a weak compactness type condition expressed in terms of
measures of weak noncompactness. Throughout this part (E, || - ||) will

2
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denote a real Banach space, E* the dual space. Unless otherwise stated,
we assume that “ [” denotes the Pettis integral.

A function g: E— E is said to be weakly—weakly sequentially
continuous if for each weakly convergent sequence (x,) C E, a sequence
(g(x,)) is weakly convergent in E.

Fix x* € E*, and consider the equation

()]
() (1) = x*f(t,x(t), / ks, x(s))ds), tel
0

Now, we can introduce the following definition:

DEFINITION 3 [6,8] A function x:I— E is said to be a pseudo-solution
of the Cauchy problem (2) if it satisfies the following conditions:

(i) x(-) is absolutely continuous,
(ii) x(0) = xo,
(iii) foreach x* € E* there exists anegligible set A(x*) (i.e. mes A(x*) =0),
such that for each t ¢ A(x*):

6020 = ({130, [ ke ) ).

In other words by a pseudo-solution of (2) we will understand an
absolutely continuous function such that x(0) = xo, and x(-) satisfies
(2) a.e., for each x* € E*.

In this part we use a weak measure of noncompactness of de Blasi’s 3.
It is necessary to remark that the following lemma is true:

LEMMA 1 [9,14] Let H C C, (1, E) be a family of strongly equicontin-
uous functions. Then the function t+— v(t) = B(H(t)) is continuous and
B(H(I)) = sup{B(H(r)): t € I'}.

Assume that in addition to (1), (2), (5) and (6),

(10) k is a Carathéodory’s weakly—weakly sequentially continuous
function I? x Binto E;

(11) fis Carathéodory’s weakly—weakly sequentially continuous func-
tion from I x B x Binto E;

(12) for any continuous function y:I— E, functions k(-,-,y(-)) and
£ (~, y(), fo(.) k(-,s,y(s)) ds) are Pettis integrable.
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THEOREM 4  Assume, in addition to (1), (2), (5) and (10—12) that

(13) there exists a constant c3 such that for every interval J C I and for
any subsets A, C of B

B(f(J, 4, C) < csmax{B(4),5(C)},

(14) there exists an integrable function c4: I — R* such that for every t € I,
€ > 0andfor every bounded subset X of B there exists a closed subset I,
of I such that mes (I\1,) < € and

Bk(J,J x X)) < su? ca(s)B(X), foranyJC I

Then there exists at least one pseudo-solution of the problem (2).

Proof We define the operator G: C[0, T] — C[0, T] by

t z
G0 =yo+ [ fGy(a). [ (zi5.p0s)do)
We require that G : B — B is weakly sequentially continuous, where
T
B={yecu.: bl <b.b=lnl+ [ atar}.

Because

(i) For any y* € E* such that ||y*|| < 1 and for any y € B,

5 [f(z, »(2), /0 k(25 7(5) ds)] ‘

<1 f(z,y<z>, [ ks )

S ‘

<a(z)

SO

f (Z, y(2), /0 ’ k(z,5,(s)) ds)
V' Gy(0)] < *pol + /

A% [f(z,y<z), [ sy ds)]

t T
< lyoll + /0 a(t)dr < |lyoll + /0 a(t)di = b

dz




VOLTERRA INTEGRAL AND DIFFERENTIAL EQUATIONS 335

From here
sup{|y*Gy(#)|: y* € E*, |ly*|| <1} < b and ||Gy(1)|| < b

so Gy(f) € B. )
(ii) Now we will show that set G(B) is strongly equicontinuous subset.
This follows from the inequality

y*[Gy(7) — Gy(7)]|

[ A(z0. [ Kesrore)d]
< / ’ y*f(z,y(z), /O ks, y(s))ds) dz < / ' a(z) dz

(iii) Now we will show weakly sequentially continuity of G.
Let y,— y in (C[0,T], w).

Then
7| [ (znter [ Kasm(o)as)
- /0 lf(z, ), /0 “k(zs, y(s))ds) dz]
Pz, [ kesnoa)
—f(z,y(z), /0 ’ k(z, 5, yu(s)) ds)j dz
Pzt [ ks es)
~A(z36e) [ K p(o) ds) ||z

< [P [z, [ ks as)
(2@ [ Ko s) | os

[ [z, [ ks e)

f( ), / k(z,s y(s))ds)} dz.

1y*[Gya(t) — Gy(D]| =

<

+
0
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Because f and k are L'-Carathéodory functions and y, —y in
(Cl0, T],w) so

[y*[Gyn(t) = Gy(1)]| — O.
From here

sup{y*[Gya(t) — Gy(1)]: y* € E, V" <1} — 0.

From (i) and (iii), follows that G : B — B is weakly—weakly sequen-
tially continuous.

Observe that the fixed point of the operator G is the pseudo-solution
of the problem

s =n+ [ 'f(m(z), JRES) ds) @ @)

Now we prove that fixed point of the operator G exists using fixed point
Theorem 2.

Let ¥ C B be a countable set and ¥ = conv(G(¥) U {0}). Because
V is equicontinuous then ¢— v(¢)= B(V(¢)) is continuous on I (by
Lemma 1).

Let t € I'and € > 0. Using the Luzin’s theorem, there exists a compact
subset I, of I such that mes(I/\l.)<e and a function s— c4(s) is
continuous. We divide an interval I=[0,T]: 0=ty <t1<---<t,=T,
like this ||ca(s)v(r) — ca()(z)|| <e for s,r,u,z € T=D;NI, where
D; = [ti-1, ti).

We notice

o([A(zve. [ Kes v es) az)
<o([A=ve [ Hes vy ar) a:)
va( [ v [[Hon o) e
<o([ =7 [ kesviopas) ) ve.
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Using the properties of weak measure of noncompactness 3 we have

B ( /Ie f (z, V(z), /0 ’ k(t,s, V(s)) ds) dz)

8 (i mes T; Wf(Ti, V(Ty), zn: mes T;conv k(t;, T}, V,-)) )
i=1 ;
)

IA

i=1

IA

i=a

mes T,ﬂ (f(T,, V( T,), zn: mes T,mk( Ti, T,', V,)))
1

~
= |

IN

i=1

Il
-

mes Tc3 - max 8(V(T3)), B (zn: mes T;conv k(T;, T;, V,~))

n
mes Tic3 Z mes T;8(k(T;, T, Vi)
1 i=1

n
< Te3 Z mes T; sup ca(s)B(Vi)
i=1 S€T;

M=

=Tcs Xn: mes Tica(s:)B(V(T;))

=
= T [Z. mes Tiea(1)B(V(1)
3 mes T ()A(V0) = ) V(t.-»]}
From hare
ﬂ( /, f(z, V@), /0 ks, V(s))ds) dz)
< T [ )86 ds e

Because e, — 0 if ¢ — 0 we have

BV(1) < BG(V(D))

<s(/ ’f(z,y<z>, [ ke pio)as) az)

< Tc; / t ca(s)v(s)ds.
0
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So

W) < Tes /0 e )BV(s)) ds.

By Gronwall’s inequality we have that v(¢) = B(V(¢)) = 0.

Using Arzela—Ascoli’s theorem we obtain that V is weakly relatively
compact.

By Theorem 2 the operator G has a fixed point. This means that there
exists a pseudo-solution of problem (2).

Remark Theorem 4 extends the existence theorems from Krzyska [12],
Cichon [6], O’'Regan [16] and others.
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