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1. INTRODUCTION

In [1] Bailey, Everitt, Weidmann and Zettl studied the approximation
of the spectrum of a given singular Sturm-Liouville problem (SLP)
with spectra of regular SLP. These regular problems are constructed
by truncating the singular interval and choosing appropriate boundary
conditions on the truncated interval.
The relationship between spectra of singular and "nearby" regular

problems is investigated further in this paper. But here, instead of

*Corresponding author, e-mail: w.n.everitt@bham.ac.uk
e-mail: mmT@le.ac.uk
e-mail: zettl@math.niu.edu

405



406 W.N. EVERITT et al.

"going from outside in" we take the "inside out" approach. Given a
regular SLP with an endpoint which is close to a singular endpoint,
what happens to the eigenvalues as the regular endpoint is moved
closer to the singular one? We shall see that the answer depends very
strongly on the nature of the spectrum of the singular problem. The
singular spectrum is a "strong attractor": it attracts the eigenvalues
of the regular problems from the truncated intervals toward itself.
This illustrates dramatically the point made by Zettl in I11], and in
particular in [12], that in order to understand the behavior of eigen-
values of regular problems one needs to have a perspective which in-
cludes the singular case.
Some related results are given in [2, 3, 6, 7, 4, 5].
For the general theory of linear differential operators see [9,

Chapter V].
In Section 2 we introduce some notation and summarize the basic

results used subsequently. Section 3 contains our main result for the
case when the spectrum is not bounded below. Section 4 deals with the
case when the spectrum of the singular problem is discrete, and in
Section 5 we study the case when the essential spectrum is not bounded
below and is non-empty.

2. NOTATION AND BASIC RESULTS

In this paper we use the notation and terminology from [1], however
for the convenience of the reader, we introduce some of the basic
notation here. Consider the equation

-(py’)’ + qy Awy on J (a, b) with o < a < b < oo; (2.1)

where the coefficients satisfy

p-l, q, w E Lloe(J, ) and p > O, w > 0 almost everywhere on J. (2.2)

Let {ar r E 1} be a decreasing sequence converging to the endpoint a,
and {br" r 1} an increasing sequence converging to endpoint b; here
d { 1, 2, 3,... }, the spectral parameter A C and a < ar < br < b; also
let Jr (ar, br) for all r
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Under the conditions (2.2) the Eq. (2.1) may be singular at one or
both endpoints, but note that it is regular at each of the truncated
endpoints a, b for r

Let S be a self-adjoint realization of (2.1) on (a, b), and Sr a self-
adjoint realization of (2.1) on (at, b) for r E Il. Then S= S* is a self-
adjoint operator in the Hilbert function space Lz(J, w) and Sr S’; is a
self-adjoint operator in the Hilbert space Lz(J, w) for r E 1. Let tr(S),
tr(S) denote the spectra of S, S, respectively. It is well known, see the
recent paper [8], that the spectra of both S, and Sr are not bounded
above and that the spectrum of S is bounded below and discrete. Let
N0 {0, 1, 2,... } and let

tr(Sr) {An(St): n 0} {An(Jr: ar, Br): n 0}.

Here A,, B, are the matrices which determine the self-adjoint realiza-
tion S, on (at, b,), for details see [12].

In general, the spectrum of S in the singular case may be quite
complicated: there may be no eigenvalues, finitely many, infinitely
many, a mixture of eigenvalues and essential spectrum, there may be
eigenvalues embedded in the essential spectrum, etc. Let

tr0 inf try(S),

where tre(S) denotes the essential spectrum of .S. We distinguish three
cases for tre(S):

tr0=--oo, --oo<tr0<o, tr0=o.

In the first case the essential spectrum is not bounded below, in the
second case it is bounded below and not empty, in the third case it
is empty, i.e., the spectrum of S is discrete but may or may not be
bounded below.
Our results in this paper depend on three Lemmas which we now

state.

LEPTA 2.1 (Kong, Wu and Zettl). For any fixed r let ,n denote
the n-th Dirichlet eigenvalue and let )n denote the n-th eigenvalues ofany
other self-adjoint realization on the interval (a, b), n o. Then

o for allnENo,’nD _</n+2 _< ’n+2

Proof See [5, Section 4, Theorem 4.1].
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LEMMA 2.2 (Bailey, Everitt, Weidmann and Zettl). Let S be a self-
adjoint realization on (a, b) andS its induced restriction on (at, br). Then
the sequence (:r} is spectral included for S, i.e., given any
A t(S) there exists n(r, )0 ofor each r [ such that

Proof See [1].

LEPTA 2.3 (Bailey, Everitt, Weidmann and Zettl). Let the hypotheses
and notation ofLemma 2.2 hold.

1. If a(S) is bounded below, then the sequence {S r ) is spectral
exact for S below ao(S), this means that if

and A < tro(S), then A e tr(S).
2. If each endpoint of (a, b) is, independently, either R or LC, then

{g:r e Il} is spectral exact for S, regardless of whether the spec-
trum of S is bounded below or not.

3. If a(S) is bounded below and discrete, then

{An(Sir)} "-} An, as r ---, oo, for each n E [o.

Proof See [1]. 1

3. THE SPECTRUM IS UNBOUNDED BELOW

Our first main result deals with the case when the singular spectrum is
not bounded below and shows the effect this has on the eigenvalues of
any self-adjoint extension of the "nearby" regular problems.

THEOREM 3.1 Assume that a(S) is not bounded below. Suppose S
is any self-adjoint realization on the interval (ar, br) with spectrum
a(Sr)= {An(Sr) n E Ilo}. (Sr is, in general, determined by different
boundary conditions for different r.) Then

{An(St)} "-’} -oo as r ---} o0, for each n [o.
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Proof Denote the eigenvalues of the induced restriction S by A
An(S) for all n E 0. By Lemma 2.1 it is sufficient to show that each
sequence of Dirichlet eigenvalues tends to -oo. It is well known that
each Dirichlet eigenvalue is a decreasing function of the increasing
length of the interval. (This follows from the variational characteriza-
tion of the Dirichlet eigenvalues; for a different proof see [7]. This
latter proof of Kong and Zettl makes it clear why each eigenvalue is a
decreasing function of the increasing length of the interval in the case
of Dirichlet boundary conditions and, in general, for no other set of
separated self-adjoint boundary conditions.) Hence for each n E I10
the limit

{ADn (ar, br)} In as r -- oo

exists. We claim: In -oo. Suppose In > -oo. Choose #k E a(S) such
that

#n+3 < #n+2 < #n+ < < # < PO < In.
By spectral inclusion of Lemma 2.2, for each #k there exists an index
sequence n(r, #k) such that

{A(,,,) } -- #k.

From this and Lemma 2.1 it follows that n(r,/Zk) >_ k. Again from
Lemma 2.1 we get that o oA(_,,+)_2 < A, which is a contradiction since
n(r,#n+)-2 >_ n. Thus {AnY(a,, b)} -oo as r--, oo for each nE0,
and the conclusion follows since Ann(at, b,) > An for the n-th eigenvalue
An of any other self-adjoint boundary condition, m

4. DISCRETE SPECTRUM

The next result is part of Lemma 2.3; we state it here to highlight it and
because it contrasts with Theorem 3.1 of Section 3. We remark further
on this contrast below.

THEOREM 4.1 Assume that a(S) is bounded below and discrete with
spectrum a(S)= {An(S)" n E Io}. Suppose r is the induced restriction

of S on the interval (ar, br) as defined in [1] with spectrum
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o’(S) {An(S,) n Io}. Then

{An(St) } --* An (S) as r -- oo for each n o.

Proof This is part (3) of Lemma 2.3.

Remark 4.1 Note the contrast between Theorem 3.1 and Theorem
4.1. This illustrates dramatically the enormous influence that the
spectrum of a singular problem has on the eigenvalues of nearby
regular problems. This point becomes even more interesting when
viewed in terms of the asymptotic behavior of the eigenvalues: For
any fixed r and any fixed self-adjoint realization S on the interval
(a, b,) the eigenvalues are asymptotic to n as n oo; more precisely,
see [10],

An(___) _ e= (f,?/2

5. THE ESSENTIAL SPECTRUM IS BOUNDED
BELOW AND NON-EMPTY

When a(bO is bounded below and -oo < r0(S) < oo then the spectrum
of regular problems on truncated intervals is affected by both the
essential spectrum and by the eigenvalues below the essential
spectrum. The next result details the effect of the eigenvalues below
the essential spectrum and the very special and strong attraction
of the starting point of the essential spectrum a0(S); for illustrations
of the effect of the first few spectral bands and gaps see the paper by
Zettl [11].

THEOREM 5.1 Assume that the spectrum of S is bounded below and
-oo < tro(S) < oo. Suppose is the induced restriction of S on the
interval (ar, br) as defined in [1] with spectrum tr() {A/n (St)" n o}.
Then

1. If S has no eigenvalue below ao(S), we have

{A/n(S,)} go(S) as r --, oo for each n E o.
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2. If S has exactly k eigenvalues below ao(bO, say Ao, A,..., Ak-1,
k E [, we have

{A(Sr)} Aj as r oo; forj O, 1,... ,k- 1;

and

{A(St)} An as r oo for each n k, k + 1, k + 2,...

3. If S has an infinite number of eigenvalues below tro(S), say
{An "n E No} then

{A(S,) } -- An as r oo for each n o.

Proof Proceed as follows:

1. To prove (1) choose a strictly decreasing sequence {#kEa(S):
kEN} converging to a0(S); such a sequence exists since the
essential spectrum is closed. Now argue as in the Proof of Theorem
3.1 with a0(S) playing the role of -oo.

2. To prove (2) and (3) see the arguments in [1, Theorems 5.3 and
6.4]; the proofs required are similar to those given for these
quoted theorems, although the latter cover the case of a discrete
spectrum.

Remark 5.1 The eigenvalues below a0(S), if there are any, are
approximated by An(a, br) for fixed n 0, 1, 2,..., k- in the case of
exactly k eigenvalues and for all n if there are an infinite number of
such eigenvalues. By spectral inclusion every point A of the spectrum
a(S) can be approximated by some sequence of eigenvalues,
with n(r,A) [. If A > a0(S) then this sequence of indices {n(r, A)}
cannot be constant, in fact it cannot be bounded. Thus there is
extensive "index jumping" in process for the sequence {A<, )} for
each such A.

Theorem 5.1 describes the behavior of the eigenvalues for the
inherited boundary conditions on the truncated intervals (ar, br). What
about the eigenvalues of other self-adjoint problems from these
intervals? By combining Theorem 5.1 with Lemma 2.1 we get in-
formation about the location of the eigenvalues of arbitrary self-
adjoint realizations from the truncated intervals.
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THEOREM 5.2 Assume that the spectrum of S is bounded below and
-oo < ao(S) < oo. Jr (at, br) with either separated or coupled bound-
ary conditions; these realizations may be different for different r. Then

1. If S has no eigenvalue below ao(S), we have

{An(ar, br)} 0(S) as r for each n o.
2. If S has exactly k eigenvalues below o(, k , then

{An+2(ar, br)} ao(S) as r for all n k.

3. IfS has an infinite number ofeigenvalues below ao(, say {An:n o}
then the eigenvalues An (dr, br) "bunch up to the left of ao(". Let
In limrA(a,,b,), n o. Then

n

Proof Parts (1) and (2) follow from Theorem 5.1 and Lemma 2.1.
To obtain the inequality of part (3) let r o in the inequality

An (a,, b,.) An(a,,< b,) < An+(a,,b,),
and recall the well known fact that, since the spectrum is bounded
below, the eigenvalues below tr0(S) can accumulate only at tro(S). I

Remark 5.2 If the spectrum of one self-adjoint extension is bounded
below then the spectrum of every self-adjoint extension is bounded
below. Thus in each of the above theorems where we assume that a(S)
is or is not bounded below, this is not an assumption about a par-
ticular operator S. The minimal operator of (2.1) is bounded below
if and only if the spectrum of every self-adjoint realization of (2.1) is
bounded below.
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