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In this paper, we introduce and study the existence of solutions and convergence of
Ishikawa iterative processes with errors for a class of nonlinear variational inclusions
with accretive type mappings in Banach spaces. The results presented in this paper
extend and improve the corresponding results of [4- 9, 11,16-17,19].
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1. INTRODUCTION

Throughout this paper we suppose that X is a real Banach space,
X* is its dual space, (.,.) is the pairing of X and X*. Let D(T) and
R(T) denote the domain and the range of T, respectively.

Let B:XX,g:XX* be two mappings, and o X* R U {+o}
a proper convex lower semi-continuous function. For any givenf X,
we consider the following problem:
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Find an u X such that

g(u) o(0 )

(Bu -f, v g(u)) >_ qo(g(u)) o(v), VvX*,
(1.1)

where c9o denotes the subdifferential of go. The problem (1.1) is called
a nonlinear variational inclusion in Banach space.

Special cases:

1. If B T-A, where T and A are two mappings from X to X, then
the problem (1.1) is equivalent to finding an u X for givenf X
such that

g(u)
(1.2)

(ru -Au -f v g(u)) > qo(g(u)) qo(v), VvX*.

2. If X is a Hilbert space H and B T-A, where T and A are two
mappings from H to H, then the problem (1.1) is equivalent to
finding an u H for given f H such that

g(u) D(Oqo)
(1.3)

(Tu -Au-f, v- g(u)) > qo(g(u)) go(v), VvH,

which is called the variational inclusion problem in Hilbert space
studied by Hassouni-Moudafi [6], Ding [4, 5], Huang [8, 9], Kazmi
[11] and Zeng [19].

3. If X is a Hilbert space H, B= T-A, where T and A are two
mappings from H to H and qo 6/6 where K is a nonempty closed
convex subset of H and r is the indicator function of K, i.e.,

0, x K,
xCK,

then the problem (1.1) is equivalent to finding an u e K for given
f H such that

g(u) e r
(Tu Au f, v g(u)) > 0, Vv e K, (1.4)

which is called the strongly nonlinear quasi-variational inequality
problem studied by Huang [7], Noor [13, 14], Siddiqi et al. [16, 17].
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The purpose of this paper is to study the existence and uniqueness of
solutions and the convergence problem of Ishikawa iterative process
with errors for the nonlinear variational inclusion problem (1.1) with
strongly accretive mapping and -hemieontractive mapping in Banaeh
spaces. The results presented in this paper extend and improve the
corresponding results in Ding [4, 5], Hassouni-Moudafi [6], Huang
[7-9], Kazmi [11], Siddiqi et al. [16, 17] and Zeng [19].

2. PRELIMINARIES

A mapping J :X -- 2x is said to be a normalized duality mapping,
if it is defined by

J(x) (f X*: <x, f) Ilxll" Ilfll, Ilfll Ilxll}, x x.
It is well known (see, e.g., [18]) that J is bounded and ifX is uniformly
smooth, then X is smooth and reflexive, and J is single-valued and is
uniformly continuous on bounded subsets of X.
A mapping T" D(T) X--, X is called accretive, if for any x,

y E D(T), there exists j(x-y) J(x-y) such that

(Tx Ty, j(x y)) > O.

T is called strongly accretive, if there exists a constant k (0, 1) such
that for all x, y D(T) there exists j(x-y) J(x-y) satisfying

(Tx Ty, j(x y)) >_ k. IIx yll 2.

The constant k in above inequality is called the strongly accretive
constant.
T is called -strongly accretive if, for all x, y D(T), there exist

j(x-y) J(x-y) and a strictly increasing function :[0,o) [0, o)
with (0)=0 such that

<Tx Ty,j(x y)) >_ dp(llx Yll)llx YlI.
It is known (see, e.g., [15]) that the class of strongly accretive

mappings is a proper subset of the class of -strongly accretive map-
pings. Closely related to the class of strongly accretive (respectively,
0-strongly accretive) mappings is the class of strongly pseudocontrac-
tive (respectively, -strongly pseudocontractive) mappings.
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A mapping A’D(A)CXX is called strongly pseudocontractive
if, for each x, y D(A), there exist j(x-y) J(x-y) and a constant
> 1 such that

(Ax ay,j(x y)) < -i Ilx yll2"

A is called b-strongly pseudocontractive if, for each x, y E D(A),
there exist j(x-y) J(x-y) and a strictly increasing function

b" [0, o) [0, o) with b(0) 0 such that

(Ax Ay, j(x y)) <_ IIx yll 2 (llx yll)llx yll.

Furthermore, A is said to be b-hemicontractive if the fixed point
set F(A) of A is nonempty, and for each x D(A) and x* F(A),
there exist j(x-x*) J(x-x*) and a strictly increasing function

b" [0, c) [0, o) with b(0) 0 such that

(Ax x*,j(x x*)) < Ilx x*ll2  (llx- x*ll)llx- x*ll.
It was shown in [15] that the class of strongly pseudocontractive

mappings is a proper subset of the class of b-strongly pseudocon-
tractive mappings. The example in [2] shows that the class of b-
strongly pseudocontractive mappings is a proper subset of the class of
the class of b-hemicontractive mappings. It is easy to see that A is a
strongly (respectively, b-strongly) pseudocontractive mapping if and
only if T= I-A is strongly (respectively, b-strongly) accretive where I
is the identity mapping.

In the sequel we need the following Lemmas.

LErIA 2.1 Let X be a real uniformly smooth Banach space, T: X X
a qb-strongly accretive mapping and S"XX an accretive mapping.
Then T+S’X X is also a qb-strongly accretive mapping.

Proof Since X is uniformly smooth, we know that the normalized
duality mapping J is a single-valued mapping. Hence, for any x, y X,
we have

((T + S)x (T + S)y,J(x y)) (Tx Ty, J(x
q- ((Sx Sy, J(x y)>

> ([Ix yll)llx yll.

So T+S is C-strongly accretive mapping.
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LEMMA 2.2 (See [1]) Let X be a real Banach space, then for any x,
y E X the following inequality holds:

IIx + yll2 Ilxll 2 + 2(y,j(x + y)), Vj(x + y)j(x + y).

L.MMA 2.3 (See [12]) Let {an}, {bn}, {cn} be three sequences of
nonnegative numbers satisfying the following conditions: there exists no
such that

an+l < (1 tn)an + bn + Cn, Vn > no,

where

oo +oo

tn(O, 1), ytn=+O, bn=o(tn), cn< +o.
n=0 n=0

Then an 0 (n + o).

LEMMA 2.4 Let X be a real reflexive Banach space, then x*X is a
solution ofthe nonlinear variational inclusion problem (1.1) ifand only if
x* X is afixed point of the mapping S’X 2x defined as follows:

S(x) f (Bx + Oo(g(x)) + x.

Proof Let x* be a solution of the nonlinear variational inclusion
problem (1.1), then g(x*) D(Oqo) and

(Bx* f v g(x*)) >_ qo(g(x*)) qo(v), ’v EX*.

By the definition of subdifferential of qo it follows from the above
expression that

f Bx* Oo(g(x*)).

This implies that

x* f (Bx* + Oo(g(x*))) + x* Sx*,

and so x* is a fixed point of S in X.

Conversely, suppose that x* is a fixed point of S in X. We have

x* Sx* f (Bx* + cgqo(g(x* + x*.
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This implies that

f Bx* E Oqo(g(x*)).

From the definition of 0% it follows that

(v) qo(g(x*)) >_ (f Bx*, v- g(x*)),

(Bx* -f v g(x*)) >_ qo(g(x*)) qo(v), VvX*.

This implies that x* is a solution of the nonlinear variational inclusion
problem (1.1). This completes the proof of Lemma 2.4.

3. MAIN RESULTS

THEOREM 3.1 Let X be a real uniformly smooth Banach space,
B’X--, X be semi-continuous (i.e., Xn-- x implies that Txn-* Tx),
g X--* X* be continuous and qo: X* -, R U { + oo} be a function with a

continuous G?tteaux differential Oqo. Suppose that

(i) B X-X is a strongly accretive mapping with strongly accretive
constant k (0, 1);

(ii) Oo o g: X X is accretive.

Then the nonlinear variational inclusion problem (1.1) has a unique
solution x* X. Moreover, for any given f X, define a mapping
S:X---,X by

Sx f (Bx + O99(g(x))) + x.

If the range R(S) of S is bounded, then for any given Xo X, the
following Ishikawa iterative sequence {Xn} with errors defined by

Yn (1 ]n)Xn -Jr/nSxn q-
n 0, 1,2,... (3.1)

converges strongly to x*, where {an}, {/3n} are the sequences in [0, 1] and
{u,,}, {v,} are two bounded sequences in X satisfying the following
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conditions:

lim liu.II lim an lim 3n 0, Cn oo. (3.2)
n=0

Proof First we prove that the nonlinear variational inclusion
problem (1.1) has a unique solution x* E X.

From the conditions (i), (ii) and Lemma 2.1, the mapping
B+Ooog"XX is a strongly accretive semi-continuous mapping
with a strongly accretive constant k E (0, 1). By Theorem 13.1 of
Deimling [3], we know that B+0o o g is surjective. Therefore, for any
givenf E X, the equationf= (B+Oo o g)(x) has a solution x*, and so
x* is a fixed point of S, i.e., x*= Sx*. Since X is reflexive, it follows
from Lemma 2.4 that x* is also a solution of the nonlinear variational
inclusion (1.1). Now we prove that x* is the unique solution of the
nonlinear variational inclusion (1.1) in X. Suppose the contrary, u* E X
is also a solution of (1.1), then u* is also a fixed point of S and so

IIx* u*ll = (x* u*,J(x* u*))

(Sx* Su*,(x* *))

<f- (B + Oqo o g)(x*)

+ x* (f- (B + Oqo o g)(u*) + u*),J(x* u*))

IIx* u*ll 2 <(n / 0qo o g)(x*)

(B + Oqo o g)(u*),J(x* u*))

_< IIx* u*ll2 kllx* u*ll 2.

Since k E (0, 1), this implies that IIx*-u*ll==0, Hence x*= u*. This
proves that x* is the unique solution of (1.1).
Next we prove that the Ishikawa iterative sequence {xn} with errors

converges strongly to x*.
Since S has bounded range R(S) and {Un}, {vn} are two bounded

sequences in X, we set

M suP{llSx x*ll + IIx0 x*ll" x X)

+ sup{llunll n > 0) + suP(llvnll n _> 0}. (3.3)
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Obviously, M < oz. Now we prove that for all n > 0,

IIx x*ll _< M, Ily x*ll _< M. (3.4)

In fact, for n 0, it follows from (3.3) that Ilxo-x* II <- M. Therefore
we have

Ily0 x*ll I1( Z0)(x0 x*) + o(Sxo x*) + Zov011
( 0)llxo x’It + 01lsx0 x*ll + ollv011

<M.

Suppose that (3.4) is true for n k > 0, then for n k+ 1, we have

Ilxk/ x*ll I1(1 ,k)(Xk X*) / Ok(Syk x*) + ,kukll
<_ ( ’k)llxk x*ll + kllSyk x*ll + ’kllukll
<M

and

[[Yk+ x*ll [l(1 k+)(Xk+ x*)

<_ (1 &/)llxk/ x*ll
X*+ ilk+llSXk/ II + k+llvk+ll

<M.

From the above discussion, we can conclude that (3.4) is true.
Since the normalized duality mapping J is single-valued, it follows

from (3.1) and Lemma 2.2 that

X* 2IIx.+ II II( n)(Xn X*) + n(Syn x*) + .u.II2

(1 )2{IXn x*ll2 + 2n(Syn X*
+ u.,S(x.+ x*))

( )211x= x*ll2 + 2(Sy x*,J(y
+ 2.l(Sy. * + U.,S(Xn+ X*) a(y. X*))I
+2a.l(u.,J(Y.-X*))l
(1 ,)2[Ix, x*ll 2
+ 2.(Sy. x*,S(y. x*)) + 2.(e. +f.),

(3.5)
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where

e,, I(Sy,, x* + u,,,J(x,,+ x*)
J(Yn x*))l, fn [(Un,J(Yn x*))[.

Since B+Ooog is a strongly accretive mapping with a strongly
accretive constant k E (0, 1), we have

(Syn x*,J(yn x*)) (Syn Sx*,J(yn x*))
(f- (B + Oqo o g)(Yn)
+ Yn (f (B + Oqo o g)x*

+ x*),J(yn x*))

IlY x*ll2 ((B + 0o o g)(Yn)
(B + Oqo o g)(x*),J(yn x*))

< (1 k)llY x*ll 2. (3.6)

On the other hand, from (3.1), (3.3), (3.4) and Lemma 2.2, we have

[]Yn x’l] 2 --11(1 n)(Xn x*) + fln(Sxn X*) -Jr- nv][2

_< (1 )211x x*ll 2 / 2(sx x* / v,j(y,,
_< IIx x*ll 2 / 2n(llSx x*ll / IIvll)" ]]Yn x*ll
<_ IIx x*ll2 / 2M2. (3.7)

It follows from (3.6) and (3.7) that

(Sy x*,J(y x*)) <_ (1 k){llx x*ll 2 / 2M2. (3.8)

Now we prove that

en 0, fn 0 (n ---, oo). (3.9)

In fact, by (3.3), we have

e,, ](Sy,, x* + Un,J(x,,+l x*) J(y,, x*))]
_< M. II/(x+ x*) J(y,, x*)ll.

Since

Xn+ (Yn Xn+ Yn
( ,,)x,,
+ onSyn flnSxn + O[,nUn tn Vn
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and {x}, {Sy}, {Sxn}, {u}, {v} are all bounded, by cO,/n-’*O
(n o), wc obtain

X*Xn+l (Yn X*) -’-* O (n ).

Using the uniformly continuity of J, we know that II(x+-x*)-
(y-x*)ll 0(n ) and so e 0(n ). Furtheore,

f Ilul[. Ily x*ll Ilull. M 0 (n ).

Therefore, (3.9) is true.
It follows from (3.5) and (3.8) that

X* 2IIx.+ [(1 an)2 + 2an(1 k)]llx. x*ll 2

+ 2an[(1 k). 2flnM2 + en +fn].
2 2k)llx x*( + II 2

+ 23,[(1 k)2fl,M2 + e,

[1 ank + n(n k)]]lx x’l]2

+ 2an[(1 k)2nM2 + en +fn]. (3.10)

Since a, 0(n ), there exists an no such that for n no, a, < k.
Hence for any n n0, by (3.10), we have

X*IIx+- II 2 ( k)llx x*ll2 + 2[( -k)2nM2 + en +fn].
(3.11)

Now let [Ix,- x* [[2 a,, ank t,, 2an[(1 k)E,M2+en +fn] bn
and Cn 0. Then the inequality (3.1 l) reduces to

an+ (1 tn)an + bn.

By (3.2), we know that {an}, {bn}, {Cn} and {t} satisfy all conditions
in Lemma 2.3. Hence an O(n ), i.e., Xn x*(n ). This com-
pletes the proof of Theorem 3.1.

THEOREM 3.2 Let X be a real reflexive Banach space, B"XX,
g"XX* and " X* R U {+} be a function with a continuous

Ghteaux derential 0. For any given f X, define the mapping
S’XXby

Sx f (Bx + Oqo(g(x) + x.
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If S is a c-hemicontractive mapping with bounded range R(S), then for
any given Xo E X, the following lshikawa iterative sequence {Xn} with
errors defined by

Xn+l (1 Otn)Xn + otnSyn -Jr- OtnUn, "Yn (1 n)Xn + nSxn + 13nVn, I n 0,1,2,... (3.12)

converges strongly to the unique solution of the nonlinear variational
inclusion problem (1.1), where {cn}, {/3n} are the sequences in [0, 1] and
{un}, {Vn} are two bounded sequences in X satisfying the following
conditions:

lim IlSy. Sx.+ II lira Cn lim Ilull 0, (3.13)

Proof Since S is b-hemicontractive, then the fixed point set F(S) of S
is nonempty. Let x* F(S), i.e., x* Sx*. It follows from Lemma 2.4
that x* is also a solution of the nonlinear variational inclusion problem
(1.1). We will show that x* is the unique solution of (1.1). Suppose
that q X is also a solution of (1.1) and q # x*. Then IIx* qll > 0 and
(llx*-qll) > 0, since b is strictly increasing with b(0)= 0. Hence,

4,(llx* qll)llx* ql] > O. (3.14)

Since S is b-hemicontractive and Lemma 2.4 implies that q F(S),
there exists j(x*-q) J(x*-q) such that

IIx* qll 2 <Sx* Sq,j(x* q)) <_ IIx* qll 2 4,(llx* qll)llx* ql[,

i.e., (llx*-qll)llx*-qll <0, contradicting (3.14). Thus, x* is the
unique solution of (1.1).

Let

M sup{ IlSx x*ll + Ilxo x*ll" x X}
+ suP{llu.II n >_ O} + suP{llvll n 0}.

Obviously, M < and it follows from the Proof of Theorem 3.1 that
for all n > 0,

x*IIx+ x*ll M, IlY.+ II M. (3.16)
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It follows from (3.12) and Lemma 2.2 that for all j d(x+-x*),

X*IIx/ II 2 [[(1 an)(xn x*) + an(Syn + un x*)ll2

_< (1 an)2llxn x*ll2 + 2an(Syn + un x*,j)

(1 an)2l]xn x’l[ 2 + 2an(Syn Sxn+I,j)
+2(u.,j) +2(SX.+l x*,j). (3.17)

Since S is -hemicontractive, we know that there exists a
": X*J.+,,,e J(x,,+- such that

(Sxn+ x*,yx.+," .x. _< Ilx,+ x*ll z (;b(ilxn+l x* II)llx+l x* II.
(3.)

Substituting (3.18) into (3.17), we have

IIx+ x*ll _< (1 ,)llx x*ll + 2an(Syn Xn+l,Jx.+,,x
+ 2a.(un,Jx.+,,x.)

X* X* X*+2c,llx,,+l- 112-2c,(11x,,+1 II)llx+l- II.
(3.19)

Since a, 0(n oe), there exists a positive integer no such that for
all n >_ no, 2a < 1. By (3.15) and (3.16), we rewrite (3.19) as

(3.20)

for all n > no, where

an I(Syn Sx,,+,jx.+,.,)l + I<u,,,Jx.+,,.)l.

Since {x,,-x*} is a bounded sequence, we know that {J(x,,+-
x*)},, _> o is bounded, and so {Jx.+,,x.}, _>0 is a bounded sequence in
{J(x,,+-x*)},, >_ o. By (3.13), we have

an O, M2on -Jr- 2an ---* 0 (n ---, oo). (3.21)
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Let inf{llx-x*[I "n > 0} =6. Then 6> 0. Suppose 6 > 0, we have
IIx-x*ll_>, n_>0. Since b is strictly increasing, we get

X*(llx+,- II) > b(6). From (3.21), there exists a positive integer
N> no such that M2cn+2an < b(6)6, ’n > N. It follows from (3.20)
that

X* X* On 20n[[Xn+l II 2 _< [INn- II + 12a’’- b(6)6- 12a’-"--’n qb(6)6
On--[Ixn x*ll 1 2ten

b()

This implies that

(*)Y Ilxm x.II 2 < oo,
n=N

which contradicts condition (3.13). Thus inf{ ][x- x* I1" n >_ 0} 0,
so that there exists a subsequence (llx,- x.ll)_-0 of the sequence
(IIx x* II )y0 such that IIx, x* II --+ 0(j --. oo). Let e > 0 be arbi-
trary. Then there exists a positive integer n:. such that

IIx. x*ll < , Mc. + 2an < b(e)e, Vn > n:,. (3.22)

We prove by induction that

X*IIx,.+ I1<, p 1,2, (3.23)

For p= 1, we prove that IIx.+ x*ll < . Suppose Ilx:.+l x*ll ,
then ,(llx..+ x*ll) >_ O(e). By (3.20) and (3.22), we have

X* 82ilXn,.+ II < 2an
b(e)e < e:z,

which contradicts IIx.+ x*ll > . Thus [[Xn:,+l x*ll) < . Assume
(3.23) is true for P=Po> 1. Then we can prove that IIx.+0+)-
x*ll < . In fact, if IIx.+c.0+l x*ll _> , then (llx.+(v0+l x*ll) >_
b(s). It follows from (3.20) and (3.22) that

X* E2llx../(vo+l) II -< 1 2Otn
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a contradiction. So [[x,+(p0+l) X* [I < e. This implies that (3.23) is
true for all p > and therefore limn oollx- x* II o. This completes
the Proof of Theorem 3.2.

Remark 3.1

(1) In Theorem 3.2, if S is an uniformly continuous mapping with
bounded range, {u,}, {v.} are bounded sequences and an0,

0(n oo), then IlSy-axe+ tll 0(n o) (See [10]). In fact,
from the Proof of Theorem 3.1, we know that IlY.-X.+ll
0(n--- o) and so IlSy-Sx+ll--,O(n--,).

(2) Theorems 3.1 and 3.2 extend and improve the corresponding
results in Ding [4, 5], Hassouni-Moudafi [6], Huang [7-9], Kazmi
[11 ], Siddiqi et al. [16, 17] and Zeng 19].

References

[1] Chang, S. S. (1997). On Chidume’s open questions and approximate solutions of
multivalued strongly accretive mapping equations in Banach spaces, J. Math. Anal.
Appl., 2!6, 94-111.

[2] Chidume, C. E. and Osilike, M. O. (1994). Fixed point iterative for strictly hemi-
contractive maps in uniformly smooth Banach spaces, Numer. Func. Anal. and
Optim., 15, 779-790.

[3] Deimling, K., Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
[4] Ding, X. P. (1997). Perturbed proximal point algorithms for generalized quasi-

variational inclusions, J. Math. Anal. Appl., 210, 88-101.
[5] Ding, X. P. (1993). Generalized strongly nonlinear quasi-variational inequalities,

J. Math. Anal. Appl., 173, 577-587.
[6] Hassouni, A. and Moudafi, A. (1994). A perturbed algorithms for variational

inclusions, J. Math. Anal. Appl., 185, 706-721.
[7] Huang, N. J. (1997). On the generalized implicit quasivariational inequalities,

J. Math. Anal. Appl., 216, 197-210.
[8] Huang, N. J. (1998). Mann and Ishikawa type perturbed iterative algorithms for

generalized nonlinear implicit quasi-variational inclusions, Computers Math. Appl.,
35(10), 1-7.

[9] Huang, N. J. (1996). Generalized nonlinear variational inclusions with noncompact
valued mapping, AppL Math. Lett., 9(3), 25-29.

[10] Huang, N. J. and Bai, M. R. (1999). A perturbed iterative procedure for multi-
valued pseudo-contractive mappings and multi-valued accretive mappings in
Banach Spaces, Computers Math. Appl., 37(6), 7-15.

[11] Kazmi, K. R. (1997). Mann and Ishikawa type perturbed iterative algorithms for
generalized quasi-variational inclusions, J. Math. Anal. Appl., 209, 572-584.

[12] Liu, L. S. (1995). Ishikawa and Mann iterative processes with errors for nonlinear
strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., 194, 114-125.

[13] Noor, M. A. (1988). General variational inequalities, Appl. Math. Lett., 1,
119-122.

[14] Noor, M. A. (1991). An iterative algorithm for variational inequalities, J. Math.
Anal. Appl., 158, 446-455.



NONLINEAR VARIATIONAL INCLUSION 561

[15] Osilike, M. O. (1996). Iterative solution of nonlinear equations of 0-strongly
accretive type, J. Math. Anal ,4ppl., 200, 259-271.

[16] Siddiqi, A. H. and Ansad, Q. H. (1992). General strongly nonlinear variational
inequalities, J. Math. Anal. ,4ppl., 166, 386-392.

[17] Siddiqi, A. H., Ansad, Q. H. and Kazmi, K. R. (1994). On nonlinear variational
inequalities, Indian J. Pure ,4ppl. Math., 25, 969-973.

[18] You, Z. Y., Gong, H. Y. and Xu, Z. B., Nonlinear Analysis, Xi’an Communication
Univ. Publishing House, 1991.

[19] Zeng, L. C. (1994). Iterative algorithms for finding approximate solutions for
general strongly nonlinear variational inequalities, J. Math. Anal. Appl., 187,
352- 360.


