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In this paper we prove that the Landau-Kolmogorov inequality for functions on the half line
holds for any Orlicz space with the constants, which are best possible for L-space.
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1 INTRODUCTION

The Landau-Kolmogorov inequality

f(k)I1 _< K(k, n)ll fll- f(n)I1, (1)

where 0 < k < n, is well known and has many interesting applications
and generalizations (see [1-6, 15, 18-21]). Its study was initiated by
Landau [11] and Hadamard [7] (the case n 2). For functions on the
whole real line [, Kolmogorov [9] succeeded in finding in explicit
form the best possible constants K(k, n) Ck,. in (1), and Stein proved
in [20] that inequality (1) still holds for Lp-norm, 1 < p < c, with
these constants (the same situation also happens for an arbitrary Orlicz
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norm [1 ]). The best constants Q,+,,, for the half line [+ [0, cxz) are not
known in explicit form except for n 2, 3, 4 (see 11, 13]), but an algo-
rithm exists for their computation (Schoenberg and Cavaretta [17]). In
this paper, essentially developing the Stein method [20], we prove
that, for the half line, inequality (1) still holds for an arbitrary Orlicz
norm with the constants Ck+,,.

2 RESULTS

Let G [, [+ or [a, b], " [0, +cx) --+ [0, +c] be an arbitrary
Young function [10, 12-14], i.e., (0)= 0, (t)> 0, (t) 0 and
is convex. Denote by

(t) sup ts (s)
s>0

the Young function conjugate to and L,(G)-the space of measurable
functions u such that

I<u, v)l- U(X)V(x)dx

for all v with p(v, ) < cx, where

p(v, ) (lv(x)l)dx.
G

Then L,(G) is a Banach space with respect to the Orlicz norm

IlulI,,G sup
p(v,)_<

which is equivalent to the Luxemburg norm

Ilfll(’) inf {2 > 0 IG O(If(x)I/2)dx<_ I} <co.
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Recall that II" II(,G II(G) where (I)(t)= p with _< p < c,
and [[(,6) [[c(6) when (I)(t) 0 for 0 _< t _< and (I)(t) o
fort> 1.
We have the following results [13-14]"

LEMMA Let u E L)(G) and v L(G). Then

’GlU(x)v(x)ldx
< IlulI.GIIVlI(,G.

LEMMA 2 Let u L@() and v Ll (). Then

LEMMA 3 [5, p. 37] Let n > 1. Iff L,toc([+) has a generalized n-th
derivative g E L,toc(+), then f can be redefined on a set ofmeasure
zero so thatf(n-) is absolutely continuous andf(n) g a.e. on ff+.

THEOREM Let be an arbitrary Youngfitnction, f and its generalized
derivative f(n) be in L,(+). Then f(k)L(+) for all k E
{1,...,n- 1} and

iIf(,)l. + n-k f(n) kI,+ < C),,n fll,i,,+ II,,+. (2)

Proof We divide our proof into two steps.

Step 1 We begin to prove (2) with the assumption that f(k)6
La>([+), k O, 1 n.

Fix O<k<n. Let e>O be given. We choose a function
v, L([+), p(v, (I)) _< such that

()(x)v(x)dx > f)ll,+ e. (3)
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Put

F.(x) f(x + y)v.(y)dy.

Then F,:(x) 6 Loo([+) by virtue of Lemma 1, and it is easy to check that

Ix) f(")(x + y)v,,. (y)dy, r O, n (4)

in the 79’(0, cxa) sense.
Since p(v., (I)) < 1, [[v.[[(,u+) < 1. So, for all x +, clearly,

IF")(x)l IIf(r)(x + ")ll,,+llv,:llt,+)

Now we prove the continuity ofF") on E+. We show this for r 0 by
contradiction: Assume that for some 6 > 0, a point x and a sequence
{tin} in [ with x + tm .>_ 0 and t,,, --+ 0 we have

(f(x + tm + y) -f(x + y))v,:(y)dy > 6, rn . (5)

Since f 6 L,(+) we easily get f L,to(+). Then f(x+
t,,, + .) --+ f(x + .) in L[0,j] for any j 1,2 Therefore, there exists
a subsequenee, denoted again by {tin}, such thatf(x + tm + y) -’+ f(x + y)
a.e. in [0,j]. So, there exists a subsequence (for simplicity of notation we
assume that it coincides with {tin}) such that f(x +tm +y)--+ f(x+ y)
a.e. in [0, cxa).

For simplicity of notations we consider only the case when x ---0.
Because inequality (2) holds for f if and only if it holds for f/C,
where C is an arbitrary positive number, without loss of generality we
may assume that p(2f, ) < cxz. By the Young inequality we get

I.f(tm + Y) f(y)llv.(y)l

_< I)(I f(tm + y) -f(Y)l) + ((Iv,,,(y)l)

< 21-(2lf(y)l) + 1/2dO(2lf(tm +Y)I) + (Iv,(y)l). (6)
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Since (2lf[), (Iv,l) LI([+) and tm -- O, there are positive num-
bers M and h such that for all m

>t
((21 f(Y)l) + (21 f(tm "+ Y)I) + (Iv(y)l))dy < - (7)

and

t(21f(y)l)dy < - d(21f(tm +y)l)dy < g, (]v(y)l)]dy < -(8)if B C N+, mes(B) < h. On the other hand, by the Egorov theorem,
there is a set A C [0, M], mes(A) < h such thatf(tm + y)v,(y) uniformly
converges tof(y)v,(y) on [0, M]\A. Therefore, applying (6) and (8), we
have

lmi.rno f(t +y) -f(Y)l Iv,(y)ldy

< lim If(t,, + y)
m---> cx:

[0,MI\A

f 6 6 6 6
lina JA If(tm + y) -f(y)l[v(y)ldy Z - +- + - 5"

(9)

Combining (7), (9) and using (6), we get for sufficiently large m

l(f(tm +y)-f(y))v(y)ldy < ,
which contradicts (5). The cases 1 < r < n are proved similarly. The
continuity ofFr) has been proved.
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The functions F") are continuous and botmded on +. Therefore, it
follows from the Landau-Kolmogorov inequality and (3)-(4) that

(llJm)ll.,+- e,)" IF)(0)l" IIFk)ll
< C+ (lO)

On the other hand,

IIF,llo IIf(x + ")11..+ IIv,(’)ll,+) Ilfll,+, (11)

IIF,l")llo < IIf(")(x + ")ll,,+llv,,(’)ll(,+) (12)

Combining (10)-(12), we get

(11 f) I1,,+ e,)" < C+k,n II.zCll "-a,,+ f")

By letting e -+ 0 we have (2).

Step 2 To complete the proof, it remains to show that f(’)6
L.(+), Yk 6 n if f,ft") L.(R+). By Lemma 3 we can
assume thatf,f’ f("-) are continuous on + andf("-!) is absolutely
continuous on +.
We define for k 0, n,

f(t)(x),f)(x) o,

Let J 6 C(O, cx)), >_ O, tp(x) 0 for x >_ and Ju t/J(x)dx 1. We
put t/C(x) 1/2.(x/2), 2 > 0 and J). -fo)* .
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Fix b>0. Then YqgC(b,o) we have for 0<2<b and
k--1 n

So, we have proved that for 0 < 2 < b and k n

=), , (13)

in the "D’(b, c) sense. Therefore, for 0 < 2 < b we have

II(fio) * ’z)(’) IIq>,i,) lift,) * ll,,t,)
_< fn) * q’, I1, --< Jn)I1,

J,,)II,i,,+ f(n)I1,+.
(14)

On the other hand, using (fo) * P)(’) fo) * P’) L([),
Yk O, n and the proved in Step Landau-Kolmogorov in-
equality for functions on [b, cx)), we get for k 1 n l,

i1,,_: fj(n) ik
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Hence, combining (13), (14) we obtain for all 0<2<b, k=
n-l,

(15)

On the other hand, because f,) is continuous on I+, we easily get

lim fk) * $),(x) =fo(x) =f()(x), ’v’x > O.
20

(16)

Indeed, for 2 < x we have from the continuity offk) at x that

For each function v L-[b, oo), p(v, )< and 0 < 2 < b, by (15)
and the definition of the Orlicz norm we get

I(fk) * q),)(x)v(x)ldx < Q,+,,,llfll "-k f(") k
*,to,) *,Io,)"

Therefore, using Fatou’s lemma, (15) and (16) we obtain
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So, by the definition of the Orlicz norm we have

f(k) ll,t,o C+,.ll "- f(n)fll,,t0,ll Ila,,[0,o < .
On the other hand, it follows from the continuity off(k) on [0, ) that
f(k) 6 Lo[O, b] for any b > O. Therefore,

f(k)II.,t0,) f(k)I[,[0,bl -+- f(k)Ila,t,) < .
The proof is complete.

Remark 1 To obtain Theorem 1 we have developed the Stein method
because, for example, the property [g(x + h)- g(x)]/h g’(x) in the
Lp mean (1 < p < ), which is used in [16], holds for L, only if
satisfies the A2-condition (see 12, 14]).

REMARK 2 By the representation [14]

ull,) sup
Ilvll._<1

it is easy to see that Theorem 1 still holds for any Luxemburg norm.
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