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1 INTRODUCTION

Applying the clever Polya’s observation to the Hardy inequality, p > 1

s 20

by changing /' — '/ and tending p — oo we obtain the Knopp in-
equality [8] (c.f. also [2])

00

| ormase| s

0 0

with the geometric mean operator

Gf (x): = exp(%ﬁ logf (1) dt), f=0.

The weighted integral inequality

00 1/q 00 1/p
(J (Gf)"u) sc(J f”v) (1)
0 0

was investigated by several authors [3-8, 9, 11, 12] and a most general
result was found by P. Gurka, B. Opic and L. Pick [11, 12] with, how-
ever, unstable constants pretending to estimate the norm (= the least
possible constant C in (1)) (see (14) and (15) below).

In the present paper we give the precise two-sided estimate of the
norm of G:IP — L7 (see Theorems 2 and 4). In the case
0 <p <g<oo we argue close to the original Polya idea and for
0 < g <p < oo we use the Pick and Opic scheme [12] and a new
form of the criterion for the Hardy inequality with weights (Theorem
3) which is of independent interest. Throughout the paper we denote
V() = fyv="%Y and undeterminates 0 - 0o are taken to be equal to
ZEro.
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2 PICK AND OPIC SCHEME
Put
1(*
Hf ) = —J F(dr.
X Jo

It is well known that

and

@) Gf (x) < Hf (%)
(i) G(f*) =[G, seR.

Let 0 < p, g < 00, u(x) > 0, v(x) > 0 and put

G

Then it follows from (3)(ii) that (1) < (4) < (5), where

(Fm)"=e([7)"

00 p/as 00 1/s
(J (Gf)qs/pW) < C”/S(J fs> , §>0,
0 0

Gl 1s = 1G N1, = G

and

167 lly
|Gllx>y:=sup——.
IGlxy: = spm

729

@)

©)

“)

®)
(6)

1t follows from Jensen’s inequality (see (3)(i)), that ||Gllxy_y < IH|lx—y.
Therefore the upper bounds for ||G||;z_, ;¢ can be derived from the fol-

lowing known estimates of 7 — L, norm of H.
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(a) 1 <p < g <oo. Then

A < |Hllpo s < alp, PA, (7)
where
00 /9
A= o, ) = swp ) = sup( |29 oo
t>0 t>0 t x4
a(p,p) = p'?(p')"""' and (Manakov [10])
o 4) = Ng/a-1) 1"
V=T - )G =1/i—1) :
l<p<g<oo, A=gq/p. 9)
(b) 0<g<p<oo,p>1,1/r=1/q—1/p. Then
B, B < |Hll 10 < Br(p, 9)B, (10)
where
o . /q 1/r
B:=B(p,q) = J 719 (j @ dx) ds ,
0 ¢ Xl
Va4
By =19 @)y, 0<g<p<oo, p>1, q#1,
1, l=g<p<oo, 1 <g<p=o0,
g, l<g<p<oo,
Bp.g) =11, . l=g<p<oo, 1<g<p=o0,
rPptlre)V1, 0 <g<1<p<oo.

This implies the upper bound for ||G|| in the case p > 1. For the lower

bound the following Lemma can be used.



GEOMETRIC MEAN OPERATOR INEQUALITIES 731

LEMMA 1 Let 0 <p < q <09, |G|l := |G|l s < 00. Then
t 1/q
161 supe ([ wwyas) (1n
t>0 0
(s—De \'° -1y, r" w(x) dx\ /7
> —_— s op —_— . 12
o1 = (25 S () a2

Proof We use a modified test function from the proof of ([5], Theorem
14). Fors > 1, ¢t > 0 put

@) = 1Py 4(x) + ()PP, ().
Then ([;°7)"? = (1 + ((s — 1)e*)™")"/? =: a, and (5) brings

t 00 1/q
—aip =asp | W) dx
a,C > [t Jo w(x) dx + ¢ L ~alp

It gives (11) when s — oo by omitting the second term on the right
hand side and (12) by omitting the first term on the right hand side. Il

The lower bound for the case 0 < g < p < 00, p > 1 follows by put-
ting the usual test function

1) = x10D ( J ” M)r/@q)

X Tq

in (4) ([12], Lemma 3.2). It brings

1/q
1Gll = e/0D) (pi) B. (13)

Now, on the strength of (6) the upper bound from (7) and (12) imply the
result of ([11], (1.3)): if 0 < p < g < o0, then

(s —1De )l/p ( sq)
AS/P =) <G
S§‘>111)(1+(s—1)e‘ wp) =1l

< inf o’/? (s, ﬂ)AS/P <s, ﬂ) (14)
p P

s>1
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with slightly better factors on both sides and the upper bound from (10)
and (13) contains the result of ([12], (3.18)): if 0 < ¢ < p < o0, then

/g
sup(——q(s; l)) (1= a/D) =D gs/p (s,gs) <Gl

s>1
< inf B (s, 5‘1) B/ (s, €s> (15)
s>1 14 Y4

with

1/
AP (s, ﬂ) = sup S~ V/P ( J * wx) d") ‘
p

>0 ‘ xsq/l’
BS/P (S, s_‘l) —
pP

3 THECASEO <p<q <

and

o \V
* gaspro-o ([ W@ )10 N
0 P xsq/p ’

We are going to use a limiting consideration originally due to G. Polya.
To this end we replace (4) by

00 1/q ) 1/p
(J (Hfa)q/aw> <C, (J f”) L a>0
0 0

which is equivalent to the weighted Hardy inequality

00 a/q 00 a/p
(J (Hf)"/“w) scg(J f”/"‘) , a>0
0 0

and using (3) we reduce the problem to existence of the limits of upper

and lower bounds for the norm ||H IIZZ% Lol because
T 1/
Gz =l WS e (16)

To this purpose we need the following alternate criterion for the weighted
Hardy inequality ([14], Section 2.3).
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THEOREM 1 Let 1 < p < g < o0. Then

C()os) <e([r)”

is true for all f > 0 iff

t 1/q
oo > Ay = sup VVP(f) (j u(x)V(x) dx) (18)
t>0 0
and
A <C=<pA. (19)

Proof With p' =p/(p—1), ¢ = q/(q — 1) inequality (17) is equiva-

lent to
00 /oo \ P V4 00 1/q
J () o) <e(]] aturver)
0 x 0
with the same constant C. We have for g with supp g C (0, 00)
00 7 po0 \P oo 7 poo \ 1/(=1)
s=[([[e) ww=r [ ([e) " scmmas
0 X 0 x
o 1/g [ oo/ poo N a/(p=1) Ve
([ ) ([([Te) T worees
0 0 x

o /4
=p (J g7 u-l/(q—l)) Jll/q'
0

[ L)
LHAT ) o

Now
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(applying (18) and Minkowski’s inequality)

o

(LA™ o)
([ (o) o)

Thus, J'% < plA(f5°g?u™"eD) "= C < p'A;. Putting £ =
Zo.v~/®Y in (17) we obtain A, < C. -

q/p

THEOREM 2 Let 0 < p < g < oo. Then the inequality (1) holds for all
f=z0ir

t l/q
D := sup t"/”(J w(x) dx) < 00
0

t>0

and

D < |Gllypys < €'PD. (20)

Proof 1t follows from Theorem 1, thatfor0 < a <p <g <0

. p 1/
D), < (25) D

and (20) is a consequence of (16). The lower bound in (20) was also
proved in Lemma 1 (11). |

Remark 1 The factor e'/? is the best possible for p = ¢ and attains in
the case u(x) = v(x) = 1. For p = ¢ = 1 an alternate form of Theorem
2 was proved in ([5], Theorem 1.4). The factor p’ in (19) is best possible
for only p =¢q. When 1 < p < g < o0 it can be improved in general
according to the following Lemma.
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LEMMA 2 Suppose 1 < p < q < 0o and V(o0) = oo. Then there ex-
ists a weight u*(x) > 0 such that A; =1 and

([ o) <ol )"

where p' > o*(p, q) and o*(p, q) is given by

-l T(4p/(q —p)) ](‘”’ v
. 9)=¢-1 [F(q/(q —p)T((q — Dp/(q —p)) ’
Proof Let
¢ 1/q
(| erimae) =1 oo
0
Then
ut =2 y-alr-1,~1/6-1) (21)
p

Using the change of variables

V() = s, [ 0@) = g(s)

we find

Joofpv = ro [f(t)vl/(pﬂl)(t)]p v = Joogp
0 0 0

and

Jw ( r f)qu* Wdr=1 ro ( r LD dV(t))q V=il (x) AV (x)
0 PJo \Jo

0
qro(r )q —q/p'~1
== gly dy.
Plo

0
Thus, inequality (17) with v and «* satisfying (21) becomes

(7 0)r0) ) e70)
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and by the result of G. A. Bliss [1] we conclude that

1/q
P
- C = C), )
(q) e

where
~19 /p(p — I\ ~VP
a=(-1) (%)
y [ [(ap/(a —p)) ]‘q“"’/""
(q/(q —pP)T (> — 1)/(qg — )
and the result follows. |

Now, it makes sense to look what the limiting procedure gives if it
starts from (7-9).

PROPOSITION 1  Let 0 < p < g < oo. Then the following upper bound
holds

IGll e < y(p, @) sup t'/4-1Pywlla(y), (22)
>0

where y(p, p) = e'? and

(q/p-171""4
o= [(g—l)(r(q_iﬁ))ql ] <e, p<q.

Proof Since lim,,, y(p, q) = e'/7, we consider the case p < g only.
Using (7) and (9) we find for0 <a <p <gq

s N(g/¢.~ 13) e
S < (e )

where

00 dx 1/q
A, = su t'/““'/”(J _____w(x) ) .
S .l
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Denote g/a(A — 1) = x. It is known that

T(q/(A — Da)

T(q/( — Do — 1/(A = D)(g/(A — D)/~
_ I'(x)
TTG—1/( = Do

1, x— ooc.

Hence, (16) yields

|IG"L{,’—>Lz <, CI) sug Ao(t),
>
where

o q g ww(x)dx)l/q
Aolt) = hrilﬁ)up(at qPJt x/0*)

Denoting q/a = s 1 oo when o | 0 we observe that

— A/a=1/py; s—1 ooW(x)d")l/q
Aolt) = 177 pl“:}i?p( ~l, o)

Without loss of generality we suppose that w(x) is a step function, and
note that

X(1,00)X)(s — Dx™° — d1(x), 51 00,
where d;(x) is the Dirac delta function with the unit mass at x = 1. Then
Ag(t) = /97 1Pyw(f) ae. t > 0

and (22) follows. Finally we prove that

1. q) <€, p<q.

Indeed, this is equivalent to

g(2) == (- nr+! (Tﬁ_f) >e !,
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We have
00 A-1
e = (| = 0o Ve )
0
a-1
= > /0= g=1/G=1) ds
0 A—1
1 [ =1
— (] _mjo (1 _ tl/(l—l))e—t/(l—l)dt) )
Plainly

00 1
J (1 = /0=y~ t/C=D) q¢ < J (1 = /D)= 1/0=D gs < 1,
0 0

Thus,

4 THECASEO <q<p <o

The aim of this section is to find a criterion for the inequality (1) similar
to (20) in the opposite case of relation between parameters p and q. It
means that we want to replace the Pick and Opic result (15) by a
two-sided estimate with stable factor as in (20). For this purpose we
need a new criterion for the weighted Hardy inequality in the case

q=<p

THEOREM 3 LetO0<g<p <oo,p> 1, 1/r=1/q—1/p. Then (17)
is true for all f > 0 iff

0

Moreover, if V(oo) = oo, then

‘ r/p tr
Jqu> u(Vir@yde ] < oo.

0

@)\ (q/P"" 278 < C < ¢''?p\ D' B (23)
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and if 0 < V(00) < 00, then

[ +2r/qrr—1 —2r/p(qp/)—-r/q] /

1/r , 1/
< (-;) [4‘1 (2 ‘”] ‘B 24)

Proof Suppose that V(o0) = co. Then

s= @) ([ ([or) o)

Indeed, if B < oo, then

ot r/q t x rlq
(J uV") VP = V”/”(t)j d(J uV")
0 0o \Jo
r t
5 p—
q J 0 (
Integrating by parts we find that B > (¢/p)"/"By. Hence, By < oo and
t r/q t r/q poo
(J uV") V() = (J uV") J d(—V""P(x))
0 0 t
r 00
S _—
th (
Again, integrating by parts, we see that By > (p/q)'/"B. Consequently,

B = (q9/p)"/"By. The same arguments work if we start with By < co.
Observe, that if 0 < V(00) < 00, then

1/r

1/r
= (g) Bo.

X r/p
J uV") ux)VIrP(x)dx — 0, ¢ — 0.
0

x r/q
J uV") V(x)dv(x) - 0, t— oo.
0

q 00 r/q q
B =1 V"’/P(oo)(j qu) +2B). (25)
r 0 p

For the lower bound we suppose that inequality (17) holds with C < oo.
Then according to [13]

C> ql/q(p/)llq’ %B, (26)
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where

1/r

00 r/q
J u) V"/q’(x)dV>

By < 29)"(p/r)"'" (27)

We show that

and the lower bound (23) will be proved. By writing
r0O / (X x r/q
B, = (J V"(t)d(——J u)) V"9 (x) dV (x) (28)
Jo
we find
J u) Vil ) dv ()

0 t
roo(-Jx) =]

=gq JY‘ (Jx u) ya-ital 2”(t)} V=1 (e dv(t)

0 t

applying Hoélder’s inequality with the exponents r/q and p/q

x /ex \'"/q x a/p
<gq J (J u) yla-1+a/mwr/a gy (J V-‘/2dV)
0 0

t
This and (28) imply

00 X
By < q’/‘iz"/PJ ( (
0 \JO

r/q
_ q,./pz,./p Jm( *© u) Vr/q’+r/2p(t) dV(l) Joo V"/Zp—r/q(x) dV(x)
0 Jit !

r/ 00 /oo \ I/
SMJ ( ”) "y )y av o)

r 0 Jt

q/r

t

r/
Joo u) ! yla=1+a/2p)r/q dV(t)) V=14 (x) dV (x)

and (27) follows, which together with (26) gives the lower bound of
(23).
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For the upper bound we assume first that B < oo and V(o0) =
Then

s ([ [ ([

—g w(j )u(x)Vq(x)jm ~0-1(5) d/(s) dx =: Jo
JO

X

=q V q—‘(s)< ( )qu(x)V"(x)dx) dv(s)
0

<af {([7) ol ()rofaro
Jo 0 0
(applying Holder’s inequality with the exponents p/q and r/q)
00 / ¢S ‘DdV(S) q/p
=a(], (Lf ) ) B

It is easy to see, that by Theorem 1

00 / ps pdV(S))UP /( 00 ) )1/1’
(Jo (Jof) Ve(s) =P Jo ™y

and the upper bound in (23) follows.
Now, let 0 < V(o0) < 0o and B < oo. Arguing as above we find

J=Jy+ V7 (o0) J:o( J:f)qu(x)Vq(x) dx =: Jo + J1.

We need to estimate J;. To this end let {x;} C (0, 00), £k < N < oo be
such a sequence, that

Xk
J f=2, k<N,
0

oQ

N+1
Jf§2+, XNl = OO.
0
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The last is possible because

00 00 /p
J f= (J f”v) VP (00) < oo0.
0 0

Xk

J»xf)qu(x) V"(x)dx < Z 2(k+l)qJ +1 e

0 k<N Xk

Xk q/p 7 pxk q/P pxis
<40 (J fpv> (J v~l/<p—1>) J uV
k<N \J k-1 Xg--1 Xk
00 q/r , Xk 41 r/q arr
J ./"’V) PR (xk)(J qu)
0 k<N Xk
2 \ 9/7 00 q/p o0 /(X r/p ,
< (5) 49 (J fP v) J (J uV") u(x)Va+iP (x) dx
0 0

0

Therefore,

1r . 1/ 00 1
S < (g) [q(p’)"(’;’)q/ +4q] qB(L f"v) ’

and the upper bound in (24) is proved. For the lower bound we note that
(17) with f = v='/=D brings

00 1/q
C> V“/”(oo)(J qu) .
0

Now, combining this with (25-27), we obtain the left hand side of (24).
|

q/r
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The main result of this section is the following.

THEOREM 4 Let0 <g<p < oo, 1/r=1/q—1/p. Then

00 3 r/p
1Gllss ~ (L C?L w) w0o) dx)

with factors of equivalence depending on p and q only.

1/r

Proof 1t follows from (6), (10) and (15) that

1Glgzg % NHIY e 5> 1

and from the case V(00) = oo of Theorem 3 we know that

s/, © 1\ v
”H"Lsp_)[,fg/l’ ~ L (;Jow) wx)dx)] =B,

with factors depending on p, ¢ and s > 1 but not w. More precisely,
1@, OBy = Gliz— 1z < 720, 9)Bw,

where

I/p =1/r s/p—1/q s/p
, =2—vq(g) (l_z) supslr (2 (1_2) ,
1@, 9) 5 Sup _1) 5
1/p /
h(nq)=<%) infs‘/"<ss )”’. n
s>1 —1

5 CONCLUDING REMARKS

The results obtained in this paper can be formulated in a more general
way. Here we just as an example study the operators

Gf(x) = exp(%J: 2 I |f ()| dt), a>0,
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and put

1 1
ua(x) — Exl/a—lu(xl/a)’ Vg = ;xl/a-—lv(xl/a)

1 q/p
el
Va

Then Theorem 2 can (formally) be generalized as follows:

and

THEOREM 5 Let 0 < p < q < oo. Then the inequality

00 1/q 00 1/p
(j (Gaf)"u) < C(j f"v) . 20 29)
0 0

is valid if and only if

t 1/q
D, :=sup t"'/”(J wa(x)dx) < 00

t>0 0

and
D, < “Ga"L(',—>LZ = e‘/pDa-

Proof Note that

1 "X

G.f(x) = —J Inf(t)de,

X Jo
make the variable transformation y = ¢* and after that z = x? in (29) and
the result follows from Theorem 2.

In particular, by applying Theorem 5 with v(r) = ¢# and u(f) = * we
obtain:

Example Let o, €R, a>0 and 0 <p <q < oo. Then the in-
equality

00 x a\ /g 00 /p
(J x* (exp ax™ J x*VInf(f) dt) ) <C (J Fy«P dx)
0 0 0
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for some finite C > 0 iff

1+a\1 1+p 1_0
a )q a Jp
Moreover

1/
C < atfa-Vegspyap (1 _LHBY g | A+ @\
- a Jp a

In particular, for the case p =g =1, f = o« we obtain the following
well-known inequality by Cochran and Lee ([3], Theorem 1):

0 0

(o] X 00
J x* exp(ax"’J ¥ nf @) dt) dx < @tD/a J Xf (x) dx.
0

c.f. also [4].
In the same way Theorem 4 can be generalized in the following way:

THEOREM 6 Let 0 <g<p<oo, 1/r=1/q—1/p. Then the in-
equality (29) holds for all f > 0 iff

1/r

([ )

I Ga”L{f—»Lz ~ Cy.

and
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