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1 INTRODUCTION

Applying the clever Polya’s observation to the Hardy inequality, p >

._1 f(t)dt dx< fP, f>O

by changing f f/P and tending p c we obtain the Knopp in-
equality [8] (c.f. also [2])

Gf(x) dx < e f

with the geometric mean operator

Gf(x)’=exp(l]i- )x
logf(t)dt f>O.

The weighted integral inequality

(Gf)qu < _, fPv (1)

was investigated by several authors [3-8, 9, 11, 12] and a 1/lost general
result was found by P. Gurka, B. Opic and L. Pick I11, 12] with, how-
ever, unstable constants pretending to estimate the norm (= the least
possible constant C in (1)) (see (14) and (1.5) below).

In the present paper we give the precise two-sided estimate of the
norm of G:/v-+ L (see Theorems 2 and 4). In the case
0 < p _< q < cx we argue close to the original Polya idea and for
0 < q < p < cx we use the Pick and Opic scheme [12] and a new
form of the criterion for the Hardy inequality with weights (Theorem
3) which is of independent interest. Throughout the paper we denote
V(t) v-/q’-) and undeterminates 0. c are taken to be equal to
zero.
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2 PICK AND OPIC SCHEME

Put

1;Hf(x) f(t) dt.
X 0

It is well known that

lim(lIif)/,o \x
Gf(x) (2)

and

(i) Gf(x) < Hf(x)
(ii) G(fs) [G(f)]s, s . (3)

Let 0 < p, q < oo, u(x) > 0, v(x) > 0 and put

Then it follows from (3)(ii) that (1) (4) (5), where

(Gf)qw < C fP (4)

(Gf)qS/Pw <_ Cp/s f’ s > 0, (5)

’/p (6)IIGIlv--,,q, --IIGII/--,qw --IIGI, sq/pL --+L

and

IIGllx- r" sup
f0 IVIIx

It follows from Jensen’s inequality (see (3)(i)), that IlGllxY IIHIIxr.
Therefore the upper bounds for Ilallv_r, can be derived from the fol-
lowing known estimates of LP- Lq

w norm of H.
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(a) <p_<q<oo. Then

(7)

where

A A(p, q) sup A(t) supl|W(x) dx|/qi’f\
tl/P

t>0 t>0 \Jt /xq

(p,p) --p/P(p’)/P’ and (Manakov [10])

r(q/(-1)) ](2-1)/q(P’ q)-" F(2/2- 1)F(q- 1/2-
<p<q<cxz, 2=q/p.

(8)

(9)

(b) 0<q<p_<oo, p> 1, l/r- l/q- lip. Then

fl(P, q) _< IIHllz. flz(P, q), (10)

where

.: [(p, q) t,./q, w(x)
dr dt

Xq

fl(P, q) { ql/q(ff)l/q’
r

0<q<p<o, p> 1, q#l,
=q<p<c, <q<p=cxz,

ql/q(p,)l/q’,
fl2(P, q) 1,

rl /rpl /p(pt) 1/q’

<q<p<cxz,
=q<p<oo, <q<p=oo,

0<q<l<p<oo.

This implies the upper bound for IIGI[ in the case p > 1. For the lower
bound the following Lemma can be used.
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LEMMA Let 0 < p < q < o, GII := GII/ < . Then

G > sup t-1/p W(X) dx
t>0

sup (s- 1)/pG >_ SUPs>l "1 + (s )es] t>0 - ,]

1/q

(11)

(12)

Proof We use a modified test function from the proof of ([5], Theorem
1.4). For s > 1, > 0 put

f(x) t-1/PZto,t](x) + (xe)-S/pt(s- )/P
z[t,oo)(x).

Then (fP)/P (1 + ((s 1)eS)-)/p =: a and (5) brings

[ I;O IcxW(X)-dX’ll/qasC > -q/p w(x) dx + t(s-1)q/P
xsq/p J

It gives (11) when s--+ c by omitting the second term on the fight
hand side and (12) by omitting the first term on the fight hand side.

The lower bound for the case 0 < q < p < o, p > follows by put-
ting the usual test function

f(x)= xr/(Pq’) (J? w(z) dz)
in (4) ([12], Lemma 3.2). It brings

IIGII >_ e-r/(pq’) [. (13)

Now, on the strength of (6) the upper bound from (7) and (12) imply the
result of ([11], (1.3)): if 0 < p < q < , then

sup,> + (s i)eU
A’/P s, IIGII

< infS/P0 )As/P0 ) (14)
s>l
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with slightly better factors on both sides and the upper bound from (10)
and (13) contains the result of ([12], (3.18)): if 0 < q < p < cx, then

suP(q(sp ]))
1/q

( q)e(l-qs/p)/(P-q)s/p s,s <_ IIGII
s>l

() (q) (15)< ,>inffl;/p, s, /P s,s
with

and

x,q/p ,]
dt

3 THE CASE0<p_<q<

We are going to use a limiting consideration originally due to G. Polya.
To this end we replace (4) by

(Hf)q/w <_ C fP > 0

which is equivalent to the weighted Hardy inequality

(Hf)q/w < C >0

and using (3) we rcduce the problem to existence of the limits of upper
/ becauseand lower bounds for the norm IIHIIte/_+U

o v’//." (16)

To this purpose we need the following alternate criterion for the weighted
Hardy inequality ([14], Section 2.3).
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THEOREM Let 1 < p < q < oe. Then

(J(Jif)qu(X)dx)
1/q

< C fPv (17)

is true for allf > 0 iff

(Ito )l/q(X) > .A sup V- 1/p(t) U(X)Wq(x) dx
t>o

and

(18)

.,4.1 < C _< ffA1. (19)

Proof With p’ =p/(p- 1), q’= q/(q- 1) inequality (17) is equiva-
lent to

<__ C(Jgq’u-1/(q-I))
1/q’

with the same constant C. We have for g with supp g c (0, cxz)

J "= g dV(x) p’ g g(x) V(x) dx

1/q’(j:(i? )q/(p--1, )l/q<__pt(fgq’u-1/(q-1)) g uOc)vqoc) dX

:= pt gq’u-1/(q-1) j]/q.

Now

u(x) Vq(x) dx

"-l:[d(-(g)q/(p-l’)lltoU(X)Vq(x)dx
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(applying (18) and Minkowski’s inequality)

Thus, J’/P’ < p’jl, (f gq’u-l/(q-1)) l/q’

Z[o,oV-/(p-) in (17) we obtain 4 < C.
= C < p’41. Putting ft

THEOREM 2
f>_0/ff

Let 0 < p <_ q < cx. Then the inequaliO (1) holdsfor all

:= sup t- I/p w(x) dx
t>0

and

(20)

Proof It follows from Theorem 1, that for 0 < < p < q < cxz

and (20) is a consequence of (16). The lower bound in (20) was also
proved in Lemma (1 l).

Remark 1 The factor e1/p is the best possible for p q and attains in
the case u(x) v(x) 1. For p q an alternate form of Theorem
2 was proved in ([5], Theorem 1.4). The factor p’ in (19) is best possible
for only p q. When < p < q < c it can be improved in general
according to the following Lemma.
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LEMMA 2 Suppose < p < q < c and V(o) cx. Then there ex-
ists a weight u*(x) >_ 0 such that A 1 and

f u*(x) dx < *(p, q) fPv

where p’ > *(p, q) and *(p, q) is given by

,(p, q) (p 1)_l/q [.i., F(qpl(q --p)) ](q-P)/qP
(q/(q- p))F((q- 1)pl(q-p)J

Proof Let

(ItoV-1/p(t) u*(x)Vq(x) dx =- 1, t>O.

Then

u*
q v-q/P’-v-/(P-). (21)
P

Using the change of variables

V(t) s,f(t)v/tP-)(t) g(s)

we find

fPv [f(t)v/(P-)(t)]P dV(t)= gP

and

f u*(x) dx
q f(t)v/(P-)(t) dV(t) v-q/P’-(x) dV(x)
P

qJ(ll
q

P g) y-q/P- dy.

Thus, inequality (17) with v and u* satisfying (21) becomes

(I (llg)qy-q/p’-I dy)l/q< ()l/qc(i gp)l/p
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and by the result of G. A. Bliss [1] we conclude that

where

x
F(q/(q p))F(q(p 1)/(q p))

and the result follows.

Now, it makes sense to look what the limiting procedure gives if it
starts from (7-9).

PROPOSITION
holds

Let 0 < p < q < cxz. Then the following upper bound

IIG]IL,.L,q, < 7, q) sup ll/q-1/pwl/q(t), (22)
t>0

where (p, p) e/p and

< e/q p<q.

Proof Since limq+p y(p, q)= e/p, we consider the case p < q only.
Using (7) and (9) we find for 0 < < p < q

i1/ F(q/(2 1)) ).]
(2-1)/q

IIH"L"’-’L",/’ <-- [’(2/(2- 1))r(((q/)- 1t/(2- 11

where
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Denote q/(2 1) x. It is known that

r(q/(2- 1)- 1/(2- 1))(q/(2- 1))/(z-)

r(x)
--+1, x --+ oo.

F(x- 1/(- 1))x/(-)

Hence, (16) yields

GII < ),(p, q) sup/0(t),
t>0

where

/o(t) =limsup(t-q/pl;w(x)dxl/q
Denoting q/ s c when $ 0 we observe that

Ao(t) tl/q-/P limsup(S l I? w(x)dx /q

Without loss of generality we suppose that w(x) is a step function, and
note that

Zt,o)(x)(s 1)x- -+ 61 (x), S

where 6 (x) is the Dirac delta function with the unit mass at x 1. Then

Ao(t) tl/q-1/Pw(t) a.e. > 0

and (22) follows. Finally we prove that

(P, q) < e1/q, p < q.

Indeed, this is equivalent to

g(2)’=(2-1)F-l( 2)2-i -1>e



738 L.-E. PERSSON AND V. D. STEPANOV

We have

g(2) (x(X 1))l/(-l)e-X dx

tl/(;o_)e_t/(2_) dt
2-

/(2-1))e-t dt

Plainly

(1 t/(x-)e-/0"- dt < (1 t/(-)e-/(- dt < 1.

Thus,

g(2) >
2- 1 > e-l"

4 THE CASEO<q<p_<

The aim of this section is to find a criterion for the inequality (1) similar
to (20) in the opposite case of relation between parameters p and q. It
means that we want to replace the Pick and Opic result (15) by a
two-sided estimate with stable factor as in (20). For this purpose we
need a new criterion for the weighted Hardy inequality in the case
q<p.

THEOREM 3 Let 0 < q < p < cxz, p > 1, 1/r 1/q lip. Then (17)
is true for allf > 0 iff

B ,[0 uVq u(t)vq-"//’(t) dt

Moreover, if V(cx) cx, then

(p’)/q’(q/r)/’"2-1/ql3 < C < q/Ppl/"p’13 (23)
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and if O < V(cx) < c, then

’- B<Cq + 2r/qrr-lq 2r/p(qp ) r/q 1/r

() 1/r [4 ()q/r]
1/q

< q + q(p’)q (24)

Proof Suppose that V(o) oe. Then

p)l/r(i(jt0
r/q

B uVq) v-r/q(t)dV(t)

Indeed, if/3 < cx, then

(j’o UVq)/qv-r/P(t) V-r/p(t) Ito d(ll uVq) r/q

< Ugq u(x)Vq-rIp(x) dx O,
q -- O.

Integrating by parts we find that B > (q/p)/rBo. Hence,/30 < cxz and

(itO )r/q (itouVq V-/P(t) uVq I d(-V-/P(x))

< uVq V-r/q(x) dV(x) --+ O, --+ cx.
P

Again, integrating by parts, we see that 13o > (p/q)l/rl. Consequently,
13 (q/p)/"Bo. The same arguments work if we start with/30 < .

Observe, that if 0 < V(o) < , then

(I )
r/q q r (25)]r

q v-r/P(O uVq -[- ]3
0

For the lower bound we suppose that inequality (17) holds with C < o.

Then according to 13]

C > q/q(p )l/q q
B, (26)
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where

B u V"/q’ (x) dV

We show that

130 < (2q)l/q(p/r) l/r (27)

and the lower bound (23) will be proved. By writing

’-- l (Jl vq(t)d( Jiu))
r/q

v-r/q(x) dV(x) (28)

we find

Iivq(/)d(-Ji/,/) "-qIi(Iiu)vq-l(t)dV(l)
q .Ii [ (Ji u) Vq-+q/2t’(t) } v-q/2t’(t) dV(t)

applying H61der’s inequality with the exponents r/q and p/q

< q u V(q-l+q/2p)r/q dV V-/z dV
0

This and (28) imply

]) <_ q"/q2’’/I’ tt V(q- l+q/2p)r/q dV(t) Vr/2p-r/q(X) dV(x)
0

q"/P2r/p u vr/q’+r/2p(t) dV(t) vr/2p-r/q(x) dV(x)

(2q)r/qp
U g"/q’(t) dg(t)

and (27) follows, which together with (26) gives the lower bound of
(23).
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For .the upper bound we assume first that/3 < cxz and V(cx)
Then

J := f u(x) dx f u(x)Vq(x)V-q(X) dx

q f u(x)Vq(x) v-q-1 (s) dV(s) dx =" Jo

=qJ v-q-l(s)(Ii ( llf)qu(x)Vq(x)dx) dV(S)

<- q I { ( Iif)qv-q(s)} { (Ii uVq) V-l(s)} dV(S)

(applying H61der’s inequality with the exponents p/q and r/q)

< q(I ( Iif)P dV(s)) q/p

w(] o.
It is easy to see, that by Theorem

and the upper bound in (23) follows.
Now, let 0 < V(c) < cz and/3 < cxz. Arguing as above we find

u(x) vq(x) ax =: J0 + J.

We need to estimate J. To this end let {xk} c (0, c), k < N < c be
such a sequence, that

2kf-- k<U,

f < 2N+I XN+I
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The last is possible because

Thus,

vq(cK3)Jl
kN axk

Xk+

u(X)Vq(x)dx < Z 2(k+l)q uVq
k<_N

<_ 4q fPv
k<N .-

q/P’
V- 1/(P-1 IIVq

,I Xk

<_ 4q fPl,’) vr/P’(Xk) UVq

\,Xk

< 4q v)
q/p dx)

q/r

()q/" tIfp (I(JibIvq)r/Pbl(x)Vq+r/P’(x)
t)

q/r

(Ij )q/P<_ 4q vq(o) "Pv q.

Therefore,

()l/r[ ()q/r_l_4q]l/qJ/q <_ q(p’)q
l/p

and the upper bound in (24) is proved. For the lower bound we note that
(17) withf v-/I’-) brings

C >_ V-I/p((x)) uVq

Now, combining this with (25-27), we obtain the left hand side of (24).
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The main result of this section is the following.

THEOREM 4 Let 0 < q < p < oo, 1/r 1/q- 1/p. Then

IIGll--,,q, w w(x) dx

with factors ofequivalence depending on p and q only.

Proof It follows from (6), (10) and (15) that

IIGIIL-,L H/p
rsq/p S

t ---’w

and from the case V(o) oo of Theorem 3 we know that

(i(iI )rip/P w w(x) dx := t3wIIHIILSL/p

with factors depending on p, q and s > but not w. More precisely,

(p, q)Bw < IIGIILvL, < T2(P, q)Bw,

where

5 CONCLUDING REMARKS

The results obtained in this paper can be formulated in a more general
way. Here we just as an example study the operators

a-llnf(t)ldt a>0,
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and put

Ua(X) --X/- UX/),
a

v. l_x/O_v(x/)
a

and

Wa Ga -a Ua

Then Theorem 2 can (formally) be generalized as follows:

THEOREM 5 Let 0 < p < q < oo. Then the inequality

(Gof)qu < Ca fPv f > 0 (29)

is valid if and only if

(It0Da sup t- /p wa(x) dx
t>O

and

v < el/PDaDa < Ga t.,, I,,

Proof Note that

G.f(x) lnf(t) dta,

make the variable transformation y and after that z x in (29) and
the result follows from Theorem 2.

In particular, by applying Theorem 5 with v(t) t/ and u(t) we
obtain:

Example
equality

Let 0,fl6, a>0 and 0<p<q<oo. Then the in-

(ix(expax_a iixa_l lnf(t)dt)q) < C(J(f(x))PxI dx)
l/p
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for some finite C > 0 iff

a - a =0.
Moreover

(( ) (1"" 1/q
_

//
C < al/q-1/Pe((l+/)/aP) + fl q )

a p a

In particular, for the case p q 1, fl we obtain the following
well-known inequality by Cochran and Lee ([3], Theorem 1):

x exp ax-a X
a-1 lnf(t) dt dx < e(+l)/a xf(x) dx.

c.f. also [4].
In the same way Theorem 4 can be generalized in the following way:

THEOREM 6 Let 0 < q < p < o, 1/r 1/q lip. Then the in-

equality (29) holds for allf > 0 iff

Ca wa Wa(X) dx < oo

and

Ga LLqu ’ Ca.
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