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In this paper, we introduce and study a new class of implicit quasi-variational inclusions,
which is called the generalized nonlinear mixed implicit quasi-variational inclusion with set-
valued mappings. Using the resolvent operator technique for maximal monotone mapping,
we construct some new iterative algorithms for solving this class of generalized nonlinear
mixed implicit quasi-variational inclusions with non-compact set-valued mappings. We
prove the existence of solution for this kind of generalized nonlinear mixed implicit quasi-
variational inclusions with non-compact set-valued mappings and the convergence of
iterative sequences generated by the algorithms. We also discuss the convergence and
stability of perturbed iterative algorithm with errors for solving a class of generalized
nonlinear mixed implicit quasi-variational inclusions with single-valued mappings.
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1 INTRODUCTION

Variational inequality theory and complementarity problem theory are
very powerful tool of the current mathematical technology. In recent
years, classical variational inequality and complementarity problem
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have been extended and generalized to study a wide class of problems
arising in mechanics, physics, optimization and control, nonlinear pro-
gramming, economics, finance, regional, structural, transportation, elas-
ticity, and applied sciences, etc., see [1], [3-7], [9-16], [19-29], [31],
[33-38], [41-43], [45-50] and the references therein. A useful and an
important generation of variational inequalities is a mixed variational in-
equality containing nonlinear term. Due to the presence of the nonlinear
term, the projection method cannot be used to study the existence of a
solution for the mixed variational inequalities. In 1994, Hassouni and
Moudafi [20] used the resolvent operator technique for maximal mono-
tone mapping to study a new class of mixed variational inequalities for
single-valued mappings. In 1996, Huang [21] extended this technique
for a new class of general mixed variational inequalities (inclusions)
with non-compact set-valued mappings and Adly [1] modified this tech-
nique for another new class of general mixed variational inequalities
(inclusions) for single-valued mappings, which includes the mixed var-
iational inequality considered by Hassouni and Moudafi [20] as special
cases. Recently, Huang [22-24] and Huang et al. [25-27] introduced
and studied some new classes of variational inequalities and inclusions
with non-compact set-valued mappings in Hilbert spaces.

On the other hand, Huang [23] introduced and studied the Mann and
Ishikawa type perturbed iterative algorithms with errors for the general-
ized implicit quasi-variational inequality (inclusion) in Hilbert spaces.
Very recently, Huang et al. [26] constructed a new perturbed iterative
algorithm for solving a class of generalized nonlinear mixed quasi-var-
iational inequalities (inclusions) and proved the convergence and stabi-
lity of the iterative sequences generated by the perturbed iterative
algorithm with errors.

Inspired and motivated by recent research works, in this paper, we in-
troduce and study a new class of implicit quasi-variational inclusions,
which is called the generalized nonlinear mixed implicit quasi-varia-
tional inclusion with set-valued mappings. We establish the equivalence
between generalized nonlinear mixed implicit quasi-variational inclu-
sion and fixed point problems by employing the resolvent operator tech-
nique for maximal monotone mapping. Using this equivalence, we
construct some new iterative algorithms for solving this class of general-
ized nonlinear mixed implicit quasi-variational inclusions with set-
valued mappings. We prove the existence of solution for this kind of
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generalized nonlinear mixed implicit quasi-variational inclusions with
non-compact set-valued mappings and the convergence of iterative se-
quences generated by the algorithms. We also discuss the convergence
and stability of perturbed iterative algorithm with errors for solving a
class of generalized nonlinear mixed implicit quasi-variational inclu-
sions with single-valued mappings. The results shown in this paper im-
prove and extend the previously known results in this area.

2 PRELIMINARIES

Let H be a real Hilbert space endowed with a norm || - || and inner
product (-,-). Let G, S, T, P: H — 2! be set-valued mappings, where
2H  denotes the family of all nonempty subsets of H, and
N: H x H— H be a single-valued mapping. Suppose that M: Hx
H — 2 is a set-valued mapping such that, for each fixed €
H,M(-,{): H— 2" is a maximal monotone mapping and range(P) )
dom(M(-, t)) # @ for each t € H. We consider the following problem:

Find ueH, xeSu, ye€Tu, z€ Gu, we Pu such that we
dom(M(-, z)) and

0e N,y +Mw,2). 2.1

The problem (2.1) is called the generalized nonlinear mixed implicit
quasi-variational inclusion with set-valued mappings.

A well known example [30] of a maximal monotone mapping is the
subdifferential of a proper lower semicontinuous convex function. There-
fore, we can get some special cases of the problem (2.1) as follows:

@M If M(-,9)=0¢(,t) for each te€ H, where ¢ :H xH —
R U {400} such that for each fixed t € H, ¢(-,f) : H—> RU {400} is
a proper convex lower semicontinuous function on H and
P(H) N dom(®¢(-, 1)) # @ for each ¢t € H and 0¢(-, t) denotes the sub-
differential of function ¢(-, f), then the problem (2.1) is equivalent to
finding u € H, x € Su, y € Tu, z € Gu and w € Pu such that

w € dom(0g(-, 2)),
{ (NG Y)Y — W) = 9(w,2) — p(v.2) @2)

for all v e H.
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(I) If G is the identity mapping, then the problem (2.1) reduces to the
problem of finding ue H, xe€Su, ye€ Tu, we Pu such that
w € dom(M(-, z)) # @ and

0 e N(x,y)+ MW, u). 2.3)

(IIT) If G is the identity mapping, then the problem (2.2) reduces to
the problem of finding u € H, x € Su, y € Tu and w € Pu such that

w € dom(0¢(-, z)),
{ (Ne,y). v — W) > o(w, 2) — p(v, 2) 24

forallve H.

(IV) If P is a single-valued mapping, then the problem (2.1) reduces
to the problem of finding u € H, x € Su, y € Tu, z € Gu such that Pu €
dom(M(-, z)) and

0 € N(x, y) + M(Pu, 2). 2.5)

The problem (2.5) is called the generalized nonlinear set-valued mixed
quasi-variational inequality, which was introduced and studied by
Huang et al. [26].

(V) If G is the identity mapping, P ia a single-valued mapping, and
M(s, t) = M(s) for all t € H, where M : H — 2" is a maximal mono-
tone mapping, then the problem (2.1) is equivalent to finding u € H,
x € Su, y € Tu such that Pu € dom(M) and

0 € N(x,y) + M(Pu). (2.6)

This problem (2.6) is called the generalized set-valued mixed varia-
tional inclusion, which was introduced and studied by Huang [24].

(VI) If G is the identity mapping, P is a single-valued mapping, and
M(-,t) =0¢ for each ¢t € H, where ¢ : H— RU {400} is a proper
convex lower semicontinuous function on H and P(H) N dom(0¢))
# () and 0¢ denotes the subdifferential of function ¢, then the problem
(2.1) is equivalent to finding u € H, x € Su, y € Tu such that

[ Pu € dom(¢), @7

(N(x,J’), V_Pu) 2 (P(Pu) - ([)(V)
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for all v € H. The problem (2.7) is called the generalized set-valued
mixed variational inequality, which was studied by Noor, Noor and
Rassias [37]. It is known that a number of problems involving the non-
monotone, nonconvex and nonsmooth mappings arising in structural
engineering, mechanics, economics, and optimization theory can be
studied via the problem (2.7), see, for example, [12], [16] and the refer-
ences therein.

(VL) If G is the identity mapping, P, S and T are all single-valued
mappings, then the problem (2.1) is equivalent to finding u € H such
that Pu € dom (M(-, u)) and

0 € N(Su, Tu) + M(Pu, u), 2.8)

which is called the generalized nonlinear mixed implicit quasi-varia-
tional inclusion.

It is well known [44], [49] that there exist maximal monotone map-
pings which are not subdifferentials of lower semicontinuous proper
convex functions. Therefore the problem (2.1) is more general than
the problems (2.2)—(2.8).

For a suitable choice of the mappings S, 7, G, N, P, M and the space
H, a number of known classes mixed variational inequalities, variational
inequalities, quasi-variational inequalities, complementarity problems,
and quasi-(implicit) complementarity problems in [1], [3], [5], [7],
[10], [13], [14], [20-26], [29], [34-38], [43], [45-49] can be obtained
as special cases of the generalized nonlinear mixed implicit quasi-varia-
tional inclusion (2.1). Further, these type of implicit quasi-variational
inclusions enable us to study many important problems arising in me-
chanics, physics, optimization and control, nonlinear programming,
economics, finance, regional, structural, transportation, elasticity, and
applied sciences in a general and unified framework.

3 ITERATIVE ALGORITHMS

It is well known (cf. [8], [30]) that, if M is a maximal monotone map-
ping from H to 27, then, for every u > 0, the resolvent (I + uM)™" is a
well-defined single-valued non-expansive operator mapping H into it-
self. By using the resolvent operator technique, it is possible to convert
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the generalized nonlinear mixed implicit quasi-variational inclusion
(2.1) into an equivalent equation which is easier to handle. To do
this, we multiply all the terms in (2.1) with some p > 0 and add w
and then we obtain

w— pN(x,y) € w+ pM(w, z).
Therefore we have the following:

LEMMA 3.1 (4, x, y, z, w) is a solution of the problem (2.1) if and only
if (u, x, y, z, w) satisfies the relation

w=JMCDw — pN(x, y)),

where p > 0 is a constant, J''*?) = (I 4+ pM(:, 2))"" and I is the iden-
tity mapping on H.

Based on Lemma 3.1 and Nadler’s result [32], we now suggest and
analyze the following new general and unified algorithms for the pro-
blem (2.1).

Let N: H x H — H be a mapping and G, P, S, T : H — CB(H) be
set-valued mappings, where CB(H) is the family of all nonempty
bounded closed subsets of H. For given uy € H, we take xo € Suo,
yo € Tug, zo € Guy, wy € Puy, and let

Uy = uUg — wy +J£4(.’Z°)(W0 - pN(xo,yo)).

Since Xo € Suo € CB(H), Yo € Tuo € CB(H), Zp € Guo € CB(H), and
wo € Puy € CB(H), by [32], Nadler’s result, there exist x; € Suj,
y1 € Tuy, zy € Gu; and wy € Puy such that

llxo — x|l < (1 + 1)H(Suo, Su1),

lvo —y1ll <= (1 + D)H(Tug, Tuy),

llzo — z1ll < (1 + D)H(Guo, Guy),
llwo —will < (1 + D)H(Puo, Puy),

where H(-, -) is the Hausdorff metric on CB( H). By induction, we can
obtain our algorithm for the problem (2.1) as follows:
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ALGORITHM 3.1 Suppose that N: H x H — H is a mapping and
G,P, S,T: H— CB(H) are set-valued mappings. For given uy € H,
X, € Sug, yo € Tuy, zo € Guy, and wy € Puy, compute {u,}, {x,}, {¥n},
{zn}, and {w,} from the iterative schemes

Uni1 =ty — Wy + IO (W, — pN (X, yn))
s — Xnll < (1 + (14 1D™DH(Stn, Sttng1),  Xu € Sy,
Y n = Ynrrll < A+ + 1) DH(Tun, i), yu € Tup, G-
Izn = zas1 ]l < A+ (0 + D" YH(Gun, Guns1),  zn € Guy,
1wn — Wil < (1 + (7 + 1)")H(Putn, Puny1),  zn € Pu,

forn=0,1,2,..., where p > 0 is a constant.

From Algorithm 3.1, we can get an algorithm for the problem (2.2) as
follows:

ALGORITHM 3.2 Suppose that N: H x H — H is a mapping and
G,P, §,T: H— CB(H) are set-valued mappings. For given uy € H,
xo € Sup, yo € Tuy, zo € Guy, and wy € Puy, compute {u,}, {x,}, {¥n},
{zn}, and {w,} from the iterative schemes

Uns1 =ty — p(thn) + T2 P(ty) — pN(en, yn))
s — Xnpill < 1+ @+ D)7 )H(Sun, Stt1),  Xn € Sy,
1 Wn=ynall <A+ @+ )" DH(Tun, Tunsr),  yu € Tup, (32)
lzn = zus1 | < (1 + (2 + )"VH(Gun, Gtpsr),  za € G,
Wn = Warll < (1+ (0 + 1) YH(Pun, Puny1),  zn € Puy,

for n=0,1,2,..., where p>0 is a constant and JI?‘/’(‘*Z)=
( + pdo(-,2))”".

For a suitable choice of the mappings S, 7, G, N, P, M and the space
H, many known iterative algorithms for solving various classes of var-
iational inequalities and complementarity problems in [1], [13], [14],
[20-22], [24], [26], [34], [37], [38], [46], [47], [49] can be obtained
as special cases of Algorithms 3.1 and 3.2.
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4 EXISTENCE AND CONVERGENCE THEOREMS

In this section, we prove the existence of a solution of the problem (2.1)
and the convergence of iterative sequence generated by Algorithm 3.1.

DEFINITION 4.1 4 mapping g : H — H is said to be

(1) strongly monotone if there exists a number & > 0 such that

(g(ur) — g(u2), uy — up) > dlluy — uz)?

forallu;e H, i=1,2,
(2) Lipschitz continuous if there exists a number 6 > 0 such that

llg(u1) — gu)ll < olluy — uz|
forallu;e H, i=1,2.

DEFINITION 4.2 A set-valued mapping S : H — CB(H) is said to be
(1) H-Lipschitz continuous if there exists a number n > 0 such that
H(S(u1), S(u2)) < nlluy — w2l

forallu;e H i=1,2,
(2) strongly monotone if there exists a number y > 0 such that

(1 —x2, w1 — ) = ylluy — uz?

Jorall x; € S(u;), i = 1,2,
(3) strongly monotone with respect to the first argument of
N(-,-)H x H — H, if there exists a number 6 > 0 such that

(N(X], ') - N(x2’ ')v U — uZ) = a"ul - u2"2

Jorall x; € S(u;), i =1,2.

DEFINITION 4.3 The operator N : H x H — H is said to be Lipschitz
continuous with respect to the first argument if there exists a constant
f > 0 such that

[IN(u1, -) = N(uz, )Nl < Bllur — uzl|
Joralluie H, i=1,2.
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In a similar way, we can define Lipschitz continuity of the operator
N(., -) with respect to the second argument.

THEOREM 4.1 Let N be Lipschitz continuous with respect to the first
and second arguments with the constants B, £, respectively. Let
S : H — CB(H) be strongly monotone with respect to the first argument
of N(-, -) with the constant o. Let S, T, G : H — CB(H) be H-Lipschitz
with the constants 1, y and s, respectively, P : H — CB(H) be strongly
monotone and H-Lipschitz continuous with the constants 6 and o, re-
spectively. Suppose that there exist numbers A > 0 and p > 0 such that,
for each x, y,z € H,

I C0@) = 1@l < Allx -yl @.1)

and

_at &= _ Vit &k — DY — 02" — EyHkQ2 k)
P~ &2 | PR~ 2 ’

o> (1=k& + vV — EyHk@ —k), np> &,

{ply <1 —k, k=As+241-20+402, k<]l.
4.2)

Then there exist u € H, x € Su, y € Tu, z € Gu, and w € Pu satisfying
the problem (2.1). Moreover,

Up —> Uy Xy => X, Vn =V, Zn —>Z, Wy —> W aS H —> 00,

where {un}, {x,), (¥}, {20}, and {w,)} are sequences defined in Algorithm
3.1.
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Proof From Algorithm 3.1 and (4.1), we have

ltnsr = ttall = lttn = ttn—t = W = Wa1) + T2 (0 = PN (5, ¥2))
= 0w,y — N1, ya-1))l
< lltn = ttn1 = W = WDl + 3 (W — pN (X, )
— 3D,y — pN 1, YD)
< llun — ttn—t — (Wn — wn—1)l
+ Y Wyt = PN 1, Yam1))
— TV 34,y — pNConot, yae )l + I
X (Wn = PN (tn, y)) = I, Waet = PN (1, yu1))
< Nttn = ttp—1 — Wp — Wo—1)|| + Al|zn — zp—1 |
+ 1(Wn — PN Cén, Y1) = (Wn—1 = pPNCtn—1, Yu-1))
< 2un — tn—1 — (Wn — W)l + Allzn — zp—1 |
+ lun — ttn—1 — pP(NGn, yu) = NGn—1, ya—1)l
< 2|t =ttt = Wn — Wa—))I| + Allzn — za-1 |
+ lttn = tha—1 = pN (s yn) — NCin1, )l

+ PUNGn—1, Yn) — N1, yu-1Il-
(4.3)

By the H-Lipschitz continuity and strong monotonicity of P and
Algorithm 3.1, we obtain

s — thn—t — W — wa—0)|I?
= ttn = thn1 > = 2t — thn—1, W — W1} + Wy — W1 |17
< Nt — -t 1> = 28ty — tny 1> + (1 + 1™ 'Y [H(Puty, Puy—1)
< =25+ (1 +n7"))llun — s 1%
4.4
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Since S is H-Lipschitz continuous and strongly monotone with respect
to the first argument of N and N is Lipschitz continuous with respect to
the first argument, we have

4 — a1 — PN (Xn, y) — N(Gn1, ya)II?
= llttn — thn—1 > = 20(tn — thu—1, NCtn, 1) = NGn1, ¥n))
+ P*IN s Y1) = NGen-1, y)II?
< (1 =2po+ p*n* (L + 17"V Bty — s |17 4.5)

Further, since 7, G are H-Lipschitz continuous and N is Lipschitz con-
tinuous with respect to the second argument, we get

INGen=1, 1) = Nn—1, Ya—Il < Ellyn — yu-1ll

< &A4+n Dy —uprll  (4.6)
and
lIzn = za—1 ]l < sQU+ 1) "lttw — 1]l 4.7)
From (4.3)~(4.7), it follows that
tn =ttt | < Onlltt — tn I, (4.8)

where

0 = As(1 + 1) + 21 = 26 + 2(1 + n1)?

1= 2004 PR+ 02 o (L4 7).

Letting

0=k+\/1—2pa+p2n2ﬁ2+p€%

where k = As + 24/1 — 26 + o2, we know 6, N\ 0. It follows from (4.2)
that 0 < 1. Hence 0, < 1 for n sufficiently large. Therefore, (4.8) im-
plies that {u,} is a Cauchy sequence in H and we can suppose that
u, > ueH.



818 R. P. AGARWAL et al.

Now we prove that x, —> x € Su, y, > y€ Tu, z, > z€ Gu and
w, — w € Pu. In fact, it follows from Algorithm 3.1 that
6 = Xnal < (L4 n"nlletn, — s,
1yn = Yn-tll < (U427 pllity —
120 = zo—1ll < (1 + 27 Dsllty — -1,
Iwa — waetll < (1 + 17 Do lluy — tn1 ],
which imply that {x,}, {y.}, {z.} and {w,} are all Cauchy sequences in H.
Let x, = x, y» = y, z, — z and w, — w. Furthermore,
d(x, Su) = inf{|lx — v|| : v € Su}
< llx = Xull + d(xn, Su)
< llx = xull + H(Su, Su)
< lIx = xull +nllun — ull — 0.

Hence, we have x € Su. Similarly, we have y € Tu, z € Gu, and w € Pu.
This completes the proof.

From Theorem 4.1, we have the following result:

THEOREM 4.2 Let N, S, T, G, P be the same as in Theorem 4.1.
Suppose that there exist numbers A > 0 and p > 0 such that, for each x,
yzeH,

17990 (z) = JPI(2)]) < Allx -yl

and the condition (4.2) in Theorem 4.1 holds. Then there exist u € H,
x € Su, y € Tu and z € Gu, satisfying the problem (2.2). Moreover,

Uy => Uy Xy => X, Vn => Y, Zn —> Z, Wy > W asn— 00,

where {u,}, {x,}, W}, {20}, and {w,} are sequences defined in Algorithm
3.2,

For an appropriate and suitable choice of the mappings S, 7, G, N, P,
M and the space H, we can obtain several known results in [1], [14],
[20-22], [24], [26], [34], [37], [38], [46], [47], [49] as special cases
of Theorems 4.1 and 4.2.
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5 PERTURBED ALGORITHMS AND STABILITY

In this section, we construct a new perturbed iterative algorithm with er-
rors for solving the generalized nonlinear mixed implicit quasi-varia-
tional inclusion (2.8) and prove the convergence and stability of the
iterative sequence generated by the perturbed iterative algorithm with
errors.

DEFINITION 5.1 Let T be a self-mapping of H, xo € H and let
Xnt1 = f(T, xn) define an iteration procedure which yields a sequence of
points {x,}22, in H. Suppose that {x e H: Tx =x} # @ and {x,};2,
converges to a fixed point x* of T Let {y,) CH and let
&n = |Vnr1 — (T, y)ll. Iflimy,_, o &, = 0 implies that lim,,_, o y, = x*,
then the iteration procedure defined by x,11 = f(T, x,) is said to be T-
stable or stable with respect to T If Y .,&, < +oo implies that
lim,, oo ¥n = X%, then the iterative procedure {x,} is said to be almost T-
stable.

‘We remark that an iterative procedure {x,} which is T-stable is almost
Tstable and an iterative procedure {x,} which is almost 7-stable need not
be T-stable (see [40]).

Some stability results of iterative procedures have been established by
several authors (see [2], [17], [18], [26], [27] and [39]). As pointed out
by Harder and Hicks [18], the study on the stability of various iterative
procedures is both of theoretical and numerical interest.

DEFINITION 5.2 Let {M"} and M be maximal monotone mappings for
n=0,1,2,.... T hg sequence {M"} is said to be graph-convergence to
M (we write M"—>M) if the following property holds: for every
(x,y) € Graph(M), there exists a sequence (x,,y,) € Graph(M") such
that x, — x and y, —> y as n — oo.

For our results, we need the following lemmas:

LEMMA 5.1 (See [27]) Let {a,}, {bn}, and {c,} be three sequences of
nonnegative numbers satisfying the following conditions: there exists ny
such that

apy1 < (1 - tn)an + buty +cp
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Jor all n > ngy, where

o0 00
tnel0,1], Y tp=+o0, limb,=0, Y ¢, <+oo.

n=0 oo n=0

Then a, — 0 as n - +o00.
LEMMA 5.2 (See [4]) Let {M"} and M be maximal monotone map-

pings from H into the power of H forn =0, 1,2, .... Then M" S M if
and only if

L) = T

for every x € H and 4 > 0.

ALGORITHM 5.1 LetN: H x H — HandS,T,P : H — H be single-
valued mappings. Suppose that M": H x H — 2" is a sequence of set-
valued mapping such that, for each y € H, M"(-,y): H — 2! is a
maximal monotone mapping for n =0, 1,2, .... For given uy € H, the
perturbed iterative sequence {u,} are defined by

Upr1 = (1 — ottty + [V — Pvy
+ IO (P, — pN(Svy, Tvn))] + onen,
Vnp = (1 - ﬂn)un + ﬂn[wn — Pw,
i 5.1
+ TPy, — PN (SWa, TW)] + B

wy = (1 - ')’,,)un +')’n[un — Pu,

+ J:’"("u")(Pun - PN(Sum Tun))] + Yn&n

Jorn=0,1,2,..., where {e,}, {1}, and {g,} are three sequences of the
elements of H introduced to take into account possible inexact computa-

tion and the sequences {a,}, {B,}, and {y,} satisfy the following condi-
tions:

o0
0Z0mBya <1 (n20), ) oy=o0.
n=0
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Ify,=0forn=0,1,2,..., then Algorithm 5.1 reduces to the follow-
ing algorithm:

ALGORITHM 5.2 Let N, S, T, B and M" be the same as in Algorithm
5.1. For given uy € H, the perturbed iterative sequence {u,} are defined
by

Unt1 = (1 — o)ty + ay[ve — Pvy +ngn(”v")(PVn — pN(Svy, Tvy))]
+ anena
Vo = (1= Bty + Bylutn — Puty +J)"" (P, — pN (S, Tu))]

L + Bufa

for n=20,1,2,..., where {e,} and {f,} are two sequences of the ele-
ments of H introduced to take into account possible inexact computation
and the sequences {o,} and {f,} satisfy the following conditions:

o0
0<oy B, <1 (20), Y oy=00.

n=0

THEOREM 5.1 Let N be Lipschitz continuous with respect to the first
and second arguments with the constants f, &, respectively. Let
S: H — H be strongly monotone with respect to the first argument of N
with the constant . Let S, T : H — H be Lipschitz continuous with the
constants 1 and v, respectively, P. H — H be strongly monotone and
Lipschitz continuous with the constants 0 and o, respectively. Suppose
that M" : H x H — 2! is a sequence of set-valued mapping such that,
foreachy € H,M"(-,y) : H — 2! is a maximal monotone mapping for
n=0,1,2,...,M"(-,y) > M(.,y), and there exist numbers . > 0 and
p > 0 such that, for each x, y, z € H,

17/ (@) = I @) < Allx = pll, (5.2)

WMD) — JM )| < 2l -yl (5.3)
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and

_at k=D _ Vet &k= 0P = F - EPke— B
n2p* — &2 2B — E3y2 ’

o> (1= k)& + V0 — EyDk@ —k), 0B > &,
péy < 1—k, k=2+4+2J1-20+3% k<l.

5.4
Let {y,} be any sequence in H and define {e,} by
&n = Y1 — {(1 = otn)yn + %talxn — Pxy +J:I"(.’x")
X (Pxp — pN(Sxn, Txn))] + anen}ll,
X, = (l — ﬂn)yn + ﬂn[zn — Pz, +J/I,i/1(~,zn)
(5.5)
X (Pz, — pN(Szp, Tz,))] + ﬂnﬁv
Zp = (1 =y, )Vn + Vulvn — Pyn + J:’I”(’xvn)
X (Pyn = pPN(Syn, Tyn))] + 718n
Jor n=0,1,2,.... If lim,,lles] =0, limy ||full =0 and

lim,, o llgnll = 0, then

(1) The sequence {uy,} defined by Algorithm 5.1 converges strongly to
the unique solution u* of the problem (2.8).
(D) If Y020 on < 00, then limy_,o yn = u*.
am) If lim,_,o. y, = u*, then lim, &, = 0.

Proof (1) It follows from (5.2), (5.4) and Theorem 4.1 that there exists
u* € H which is a solution of the problem (2.8) and so

Pu* = JNO(Pu — pN(Su*, Tu*)). (5.6)
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From (5.3), (5.5), (5.6) and Algorithm 5.1, it follows that
Ntns1 — ||
= I(1 = )ity + a[v — P, +J)" 0™
X (Pvy — pN(Svy, Tvp))] + otnen — (1 — oty )u*
— an[u* — Pu* + IO Py — pN(Su*, Tu))|
< (1= op)llttn — ™| + nllve — Pvn — (" — Pu")|| + ctullenll
+ 0|y Py — N (Svi, Tvn)
— I Pu* — pN(Su*, Tu")|
< (A —a)llun — u*|| + o llve — u* — (Pvy, — Pu®)|| + anllenl]
+ oI} (P, — PN (SVa, Tv)
— L CM(Pu* — pN(Su*, Tu*))|
+ o |} (Pu — pN(Su*, Tu*))
— IO Put — pN(Su®, Tu"))|
+ ol Pu* — pN(Su*, Tu"))
— IO Pu* — pN(Su”, Tu))|
< (1= a)llun — || + 204 ||ve — 4" — (Pv, — Pu)||
+ on(llenll + k) + anllve — u* — p(N(Sv,, Tu¥)
= N(Su*, Tu*))|| + Ao |lve — u||
< (1= an)llun — u*|| + 204 |V — 4" — (Pvy — Pu*)|| + otn(llenll
+ hn) + tnllve — 4" — p(N(SVn, Tvy) — N(Su™, Tv,))||
+ oapIN(Su*, Tvy) — N(Su*, Tu*)|| + Aan||ve — u™,
(5.7)

where

by = | CPu* — pN(Su*, Tu*))
— IO Pyt — pN(Su*, Tu*))||.
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From Lemma 5.2, we know that 4, — 0 as n — oo. By the Lipschitz
continuity of N, S, 7, P and the strong monotonicity of S and P, we ob-
tain

v — u* = (Pvw = Pu*))> < (1 =26+ P)va —u* 1>, (5.8)

Vw — " — p(N(SV, TV,) — N(St*, Tv,))|)?
< (1 =2pa+ p’n*B)lvn — u*|I? (5.9)

and
IN(Su*, Tvy) — N(Su*, Tu*)|| < Eyllve — u™]l. (5.10)
It follows from (5.7)~(5.10) that

Netnr — ¥l < (1 — o)ty — ™| + Ootp ||V — || + ctn(llenll + ),
(5.11)

where

0=1+2m+\/1 — 2pa+ p*2 % + péy.

Similarly, we have

Ve —u*ll < (1= B)llun — u*l| + 0B, llwn — u™|| + B, I/l
and

Iwn — "Il < (1= y)llun — u* || + Opyllun — vl + lignll.
The condition (5.4) implies that 0 < 0 < 1. It follows that

W — u*ll < lluw — | + 7,llgnll

and so

vn = w*ll < llun — "Il + B (uligall + Ifall)- (5-12)
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From (5.11) and (5.12), we have

Nt — u*|| < [1 = o1 — O]l — ¥} + 0tu B, 00y, lignll + 121D
+ an(llenll + An)
<1 = on(1 = Olletn — *|| + 2(1 = O)dy, (5.13)

where

Bn(ynllgnll + WalD) + llenll + An

dn = 1-0

— 0 asn— oco.

It follows from (5.13) and Lemma 5.1 that u,, — u* as n — oo.
Now we prove that * is a unique solution of the problem (2.8). In
fact, if u is also a solution of the problem (2.8), then

Pu = J},‘“"")(Pu — pN(Su, Tu))

and, as in the proof of (5.11), we have
lu* —ull < Oflu* —ull,

where 0 < 0 < 1. Therefore, #* = u. This completes the proof of the
conclusion (I).
Next we prove the conclusion (II). Using (5.2) we obtain
Iyner = w1l < Wynrr = {1 = @n)yn + ainlixy — Py 4,70
X (Pxp — pN(Sxn, Txn))] + otnen} |
+ (1 = o)y + oy — Py +J)" 0
X (Pxy — pN(Sxu, Txy))] + otnen — u*||
= [I(1 = atn)yn + 0nln — Py +J,""
X (Px, — pN(Sxp, Txn))] + otnen — u*|| + €. (5.14)

As in the proof of the inequality (5.13), we have

1L = )y + s — Pty + I (P, — pN (S, Ten) + ey — |
= (1 - 0‘n(l - 0))"yn - u*" + 0‘n(l - O)dn (5'15)
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It follows from (5.14) and (5.15) that
nsr — u*l < (1 = on(1 = OPllyn — u*ll + otn(1 — O)dy + &4 (5.16)

Since Y p2 o &n < 00,d, = 0,and Y ;2 a, = 00, it follows from (5.16)
and Lemma 5.1 that lim,_, o y, = u™.

Now we prove the conclusion (III). Suppose that lim,_, oy, = u*.
Then we have

en = Vnr1 — {(1 — tu)yn + atalxy — Px, + )70
X (Pxy — pN(Sxn, Txn))] + e}
< Iyntr = w1+ 11 = )y + atnliy — Py 4,70
X (Pxn — pN(Sxy, Txn))] + otnen, — u*||
S Aynsr = u I + (1 = 0 (1 = O)llyn — u*[| + ata(1 — O)dy — 0

as n — o0o. This completes the proof.
From Theorem 5.1, we have the following result:

THEOREM 5.2  Suppose that N, S, T, P, and M" are the same as in
Theorem 5.1. Let {y,} be any sequence in H and define {&,} by

en = lyni1 — {(1 = o)y + ol — Py + )70
X (Pxn — pN(Sxu, Txn))] + otnen}ll,
xn = (1= By)n + Bulvm — Py +JH"C
X (Pyn = PN(Syn, Tya))] + Bofa
forn=0,1,2,.... If the conditions (5.3) ~ (5.5) hold, then

(I) The sequence {u,} defined by Algorithm 5.2 converges strongly to
the unique solution u* of the problem (2.8).
A1) If 300 otn < 00, then limy_oo vy = u*.
dmy Iflim,_,o y, = u*, then lim,_,, &, = 0.
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