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1. Introduction

In this paper, we develop a stochastic control model for a heterogeneous portfolio system
with k classes of insured risks, each containing a large number of insured units. The basic
pricing principle suggests that each policyholder should pay a premium proportional to
the risk that imposes to the total pool. Bowers et al. [1] suggest a time-constant premium,
πi = (1 + θi)μi, for each class i, where μi is the expected value of the total risk of class i, and θi
is the loading factor that is determined such that the probability that the total expected claims
of class i exceed the respective premiums paid equals to ξi. Quite recently, Zaks et al. [2]
proposed an optimal premium calculation for each class of risks by minimizing the expected
squared distance between the total claim amount and the total premium income in each
class.
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Here, we consider this problem in a more general framework by letting also some kind
of solvency interaction between the different classes and using the tools of stochastic control
theory. Although optimal control theory was developed by engineers in order to investigate
the properties of dynamic systems of difference or differential equations, it has also been
successfully applied to financial and actuarial problems. Tustin [3] was one of the firsts
who spot a possible analogy between the industrial and engineering processes and postwar
macroeconomic policy-making (see Holly and Hallett, [4], for further historical details). In
the insurance context, Borch [5] firstly identified the potential synergy between actuarial
problems and control processes. Martin-löf [6] proposed a certain pricing model using the
tools of control theory. Thereafter, a series of papers in this area have been also produced, see
for instance, Asmussen and Taksar [7], Schäl [8], Højgaard and Taksar [9], Taksar [10], Hipp
and Taksar [11], Irgens and Paulsen [12], Yang and Zhang [13], and so forth.

A brief outline of the paper is as follows. Section 2 provides the incentives and the
typical modelling features of the problem. Moreover, it is devoted to some standard results of
stochastic control theory. Section 3 provides the approximation solution for the matrix Riccati
differential equation. In Section 4, we provide an interesting practical example with three
classes containing several independent identically distributed (i.i.d.) insurance risks. Some
interesting and insightful diagrams are also available, while Section 5 concludes the whole
paper.

2. The Framework Heterogeneous Risk Model

We consider an insurance heterogeneous portfolio composed of k risk classes under the
following conditions.

(a) Class i contains ni risks, that is, Xi,1, Xi,2, . . . Xi,ni , for i = 1, 2, . . . , k and n =
∑k

i=1 ni.
Each risk in the ith-class is driven by an independent standard Brownian motion
(sBm) and can take positive or negative sign. It is positive when the insurance
company pays a claim or negative when the company recovers an amount of
money (e.g., due to fraud claims). This uncertainty is modeled via a probability
space, (Ω,F,P). The flow of information is given by the natural filtration {F}t∈[0,T];
that is, the P-augmentation of a one-dimensional Brownian filtration. Without loss
of generality we assume that {F}t∈[0,T] = F, that is, the observable events are
all eventually known. So, we have the following system of stochastic differential
equations:

dXi,l(t) = mi,l(t)dt + σi,l(t)dW
i,l
t (2.1)

for l = 1, 2, . . . , ni and i = 1, 2, . . . , k.
(b) All sizes ni, i = 1, 2, . . . , k are large enough to determine the deterministic functions

mi,l(t) ∈ L2{[0, T); R}, and σi,l(t) ∈ L2{[0, T); R}, which represent the drift and the
volatility, respectively, of the specific l risk in the i class for l = 1, 2, . . . , ni and
i = 1, 2, . . . , k. Consequently, the total risk Si =

∑ni
l=1 Xi,l of the ith class, obeys the

following system:

dSi(t) =
ni∑

l=1

mi,l(t)dt +
ni∑

l=1

σi,l(t)dW
i,l
t , i = 1, 2, . . . , k. (2.2)
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(c) For each class i, the total premium πi(t) is calculated according to the ordinary
differential equation (2.3):

dπi(t) =
ni∑

l=1

mi,l(t)dt +
ni∑

l=1

εi,l(t)σi,l(t)dt, i = 1, 2, . . . , k, (2.3)

where εi,l(t) is the “loading factor” at time t for the specific l risk in the i class of
risks, i = 1, 2, . . . , k. The εi,l(t) ∈ L2{[0, T); R} is the controller for the appropriate
premium pricing strategy which is determined instantly, at every time t.

(d) The accumulated profit/loss of the total portfolio Π(t) at time t is derived as

Π(t) =
k∑

i=1

Πi(t), (2.4)

where Πi(t) is the accumulated profit or loss at time t for the ith class of risks,
i = 1, 2, . . . , k, derived by the following differential equation:

dΠi(t) = (Investment income earned from the fund in the time interval [t, t + dt))

+ (Profit/Loss of theiclass of risks in the time interval [t, t + dt))

+
(
Solvency interaction in the time interval [t, t + dt)

)

(2.5)

or equivalently expressed in mathematical functions:

dΠi(t) = ai(t)Πi(t)dt + dπi(t) − dSi(t)

+ [λ1i(t)Π1(t) + · · · + λi−1i(t)Πi−1(t)

+λii(t)Πi(t) + λi+1i(t)Πi+1(t) + · · · + λki(t)Πk(t)]dt

(2.6)

where ai(t) is the rate of return (or borrowing) for the accumulated profit (or loss)
at time t for the ith class of risks, i = 1, 2, . . . , k.

λij(t) is the percentage of the accumulated profit or loss (solvency) transferred from
the ith to the jth class of risks at time t:

∑k
j=1 λij(t) = 1 for all i = 1, 2, . . . , k. Or

equivalently, substituting equations (2.2) and (2.3) into (2.6) we obtain

dΠi(t) = ai(t)Πi(t)dt +
ni∑

l=1

εi,l(t)σi,l(t)dt −
ni∑

l=1

σi,l(t)dW
i,l
t

+ [λ1i(t)Π1(t) + · · · + λi−1i(t)Πi−1(t) + λii(t)Πi(t)

+λi+1i(t)Πi+1(t) + · · · + λki(t)Πk(t)]dt

(2.7)

for i = 1, 2, . . . , k.
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Thus, we derive, in matrix form, the (nonhomogeneous) linear stochastic controlled
differential equation:

dΠ(t) =
{
A(t)Π(t) + Σ(t)ε(t)

}
dt − Σ(t)dW(t),

Π(0) = 0,
(2.8)

where A(t),Σ(t) ∈ L∞{[0, T); Rk×k}

A(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1(t) + λ11(t) λ21(t) · · · λk1(t)

λ12(t) a2(t) + λ22(t) · · · λk2(t)

...
...

. . .
...

λ1k(t) λ2k(t) · · · ak(t) + λkk(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.9)

Π(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Π1(t)

Π2(t)

...

Πk(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ε(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε1(t)

ε2(t)

...

εk(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, εi(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

εi,1(t)

εi,2(t)

...

εi,ni(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.10)

Σ(t) = diag{σ1(t);σ2(t); . . . ;σk(t)}, σi(t) =
[
σi,1(t) σi,2(t) . . . σi,ni(t)

]
, (2.11)

dW(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dW1(t)

dW2(t)

...

dWk(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, dWi(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

dWi,1(t)

dWi,2(t)

...

dWi,ni(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.12)

For any t ∈ [0, T], we denote the set of all 5-tuples (Ω,F,P,W(·), ε(·)) satisfying
the following.

(i) (Ω,F,P) is a complete probability space.

(ii) {W(t)}t≥0is a k-dimensional standard Brownian motion defined on (Ω,F,P)
over [0, T] (with W(0) = 0 almost surely), and Ft = σ{W(r) : 0 ≤ r ≤
t}augmented by all the P-null sets in F.

(iii) The controller ε(·) ∈ L2
F{[0, T); Rk}.

(iv) Under ε(·), for any Π(0) ∈ R
k (2.8) admits a unique solution Π(·) on

(Ω,F, {Ft}t≥0,P).



Journal of Probability and Statistics 5

(e) Finally, we aim to minimize the following quadratic cost criterion (under the
constraint of differential equation (2.8)):

Jε
(
t,Π

)
= E

t,Π

{∫T

0

[
Π
′
(t)QΠ(t) + (ε(t) − ετ)′R(ε(t) − ετ)

]
dt + Π

′
(T)GΠ(T)

}

, (2.13)

where, T > 0 and define Q = diag{θ1, θ1, . . . , θ1} ∈ R
n, R = diag{θ2, θ2, . . . , θ2} ∈ R

n,
andG = diag{(1−θ1−θ2), (1−θ1−θ2), . . . , (1−θ1−θ2)} ∈ R

n and θ1, θ2 are weighting
factors, that is, 0 ≤ θ1 + θ2 ≤ 1. Note that (·)′ is the transposed matrix of (·).

The weights θ1 and θ2 measure the impact that occurs when the control variables
Π(t) and (ε(t) − ετ) are changed. Obviously, with 1 − θ1 − θ2, we penalize the accumulated
profit/loss at the end of the finite time-horizon T . Definitely, the weighting parameters would
be obtained after research and negotiations with all parties involved in the private insurance
pricing system (i.e., authorities, managerial policy of the insurance company, customers, etc).

Furthermore, we seek to obtain analytical results (formulae) rather than purely
numerical ones, since our model has a very practical interest. In that direction, we propose
a stochastic linear-quadratic approach for the determination of the optimal premium policy
of a heterogeneous portfolio of risks. Stochastic linear quadratic (SLQ) problems have been
studied by many authors, among them we merely mention Wonham [14], McLane [15], Davis
[16], Ichikawa [17], Chen and Yong [18], and so forth. In many recent works on mathematical
finance (see option pricing, utility optimization) as well as in engineering problems (note
that, here, it is sometimes called energy cost function) this criterion has been extensively
applied.

Our stochastic linear-quadratic approach allows us to nest both conventional analyses
of optimal surplus stabilization policy (Π(t), t ∈ [0, T)) and analyses of optimal premium
smoothing policy (ε(t), t ∈ [0, T]). Analytically, this criterion aims to a stable ε(t) and
consequently stable premium policy, which is highly desirable by the customers of the
insurance company. Additionally, the criterion aims to small values of the surplus fund Π(t)
for all times t ∈ [0, T) and especially a small value for the final fund value at time T . The last
condition secures that insurance company will have no problems with solvency requirements
(large surplus/deficit) or explosion of its surplus/deficit at the end of the control period.
Finally, in practice, it should be pointed out that the ετ has to predefine considering the policy
of its insurance company. Thus, in this model the required risk managerial policy is closely
followed. Actually, this very important benefit is derived from our optimal stochastic model.

The above Stochastic Linear Quadratic (SLQ) problem described by (2.8) and (2.13) at
(0,Π(0)) ∈ [0, T] × R

k is solvable if there exists a control (Ω,F,P,W(·), ε ∗(·)) such that

J
(

0,Π(0); ε ∗(·)
)
= inf

ε(·)∈Uω[0,T]
J
(

0,Π(0); ε(·)
)

Δ= V
(

0,Π(0)
)
. (2.14)

In the case, where ε ∗(·) is an optimal control, the corresponding Π
∗
(·) and (Π

∗
(·), ε ∗(·)) are

defined as optimal state process and optimal pair, respectively, to our problem. Closing this
section, we provide the basic formulae (see also the appendix). The optimal controller is given
by a feedback mechanism as

ε ∗(t) = ετ −Ψ(t)Π(t), for t ∈ [0, T], (2.15)
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where Ψ(t) � R−1Σ′(t)P(t) and P(·) ∈ C([0, T]; Rk×k) is the solution of

Ṗ(t) + P(t)A(t) +A′(t)P(t) +Q(t) − P(t)Σ(t)R−1Σ′(t)P(t) = 0,

P(T) = G, a.e. t ∈ [0, T].
(2.16)

3. A Special Case for the General Solution of P(t)

The general solution of the Riccati type equation (2.16) is not an easy task. Here, we describe
in brief the solution for P(·) ∈ C([0, T]; Rk×k), which is actually symmetric. We define
analytically the time-varying matrix P(t) as follows:

P(t) =
(
Pij(t)

)
i,j=1,2,...,k, (3.1)

where Pij(t) are scalars continuous functions.
In order to simplify our calculations (the full extension requires quite cumbersome

calculations), we determine the matrix A ∈ R
k×k to be also symmetric, that is, λij(t) = λji(t),

for i /= j and also assume the following.

(i) ai(t) = a(t), the same rate of return earned by the accumulated profit or loss at time
t for each class of risk, i = 1, 2, . . . , k.

(ii) λij(t) = λ(t), the same percentage of profit or loss transferred from the ith class of
risks to the ith class of risks at time t, λii(t) = 1 − (k − 1)λ(t) for each class of risk,
i = 1, 2, . . . , k.

The expression of (2.16) can be rewritten as follows:

Ṗ(t) +A(t)P(t) + P(t)A(t) +Q(t) − P(t)Σ(t)R−1Σ(t)P(t) = 0, (3.2)

where the symmetric matrix A(t) takes the following format:

A(t)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a(t) + (1 − (k − 1)λ(t)) λ(t) · · · λ(t)

λ(t) a(t) + (1 − (k − 1)λ(t)) · · · λ(t)

...
...

. . .
...

λ(t) λ(t) · · · a(t) + (1 − (k − 1)λ(t))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.3)

Then, we consider the first three terms of (3.2), that is,

A(t)P(t) + P(t)A(t) +Q(t) =
(
Θij(t)

)
i,j=1,2,...,k, (3.4)

where, the above matrix is symmetric,

(A(t)P(t) + P(t)A(t) +Q(t))′ = A(t)P(t) + P(t)A(t) +Q(t), (3.5)
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as A,P , and Q are k × k symmetric matrices. Thus,

Θij
i≤j

= 2[a + (1 − (k − 1)λ)]Pij + λ

[
i∑

l=1

Pli +
k∑

l=i

Pil − Pij − Pii

]

+ λ

⎡

⎣
j∑

l=1

Plj +
k∑

l=j

Pjl − Pij − Pjj

⎤

⎦ + θ11i≡j .

(3.6)

We also calculate the Σ(t)R−1Σ′(t), that is,

Σ(t)R−1Σ′(t) =
1
θ2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ1(t)σ ′1(t) 0 · · · 0

0 σ2(t)σ ′2(t) · · · 0

...
...

. . .
...

0 0 · · · σk(t)σ ′k(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.7)

and thereafter define

P(t)Σ(t)R−1Σ′(t)P(t) =
(
Zij(t)

)
i,j=1,2,...,k. (3.8)

We can easily prove that PΣR−1ΣP is also symmetric, as P is symmetric, and Σ and R
for j = 1, 2, . . . , k are diagonal matrices. Thus, for i = 1, 2, . . . , k

Zij
i≤j

=
1
θ2

⎡

⎣
i∑

l=1

σlσ
′
lPliPlj +

j∑

l=i

σlσ
′
lPilPlj +

k∑

l=j

σlσ
′
lPilPjl − σiσ

′
iPiiPij − σjσ

′
jPijPjj

⎤

⎦. (3.9)

Substituting the expressions (3.7) and (3.8) into (3.2), we obtain the family of the following
ordinary nonlinear differential equations:

Ṗij + 2[a + (1 − (k − 1)λ)]Pij + λ

[
i∑

l=1

Pli +
k∑

l=i

Pil − Pij − Pii

]

+ λ

⎡

⎣
j∑

l=1

Plj +
k∑

l=j

Pjl − Pij − Pjj

⎤

⎦

+ θ11i≡j +
1
θ2

⎡

⎣
i∑

l=1

σlσ
′
lPliPlj +

j∑

l=i

σlσ
′
lPilPlj +

k∑

l=j

σlσ
′
lPilPjl − σiσ

′
iPiiPij − σjσ

′
jPijPjj

⎤

⎦ = 0.

(3.10)

The last expression (3.10) converts the nonhomogeneous matrix Riccati differential
equation (2.16) into a Cauchy problem for a system of first-order differential equations, where
P(T) = G, a.e. t ∈ [0, T].

Consider the Cauchy problem of the first-order differential equation:

Ṗr = fr
(
t, Pij

)
, for i ≤ j, i, j, r = 1, 2, . . . , k, (3.11)
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or equivalently

Ṗ = f(t, P), (3.12)

where

P =
(
P11, P12, . . . , P1n, . . . , Pij , . . . , Pkk

)
, (3.13)

and also

f
(
t, P11, P12, . . . , P1n, . . . , Pij , . . . , Pkk

)

=
(
f1
(
t, P11, P12, . . . , P1n, . . . , Pij , . . . , Pkk

)
, . . . , fk

(
t, P11, P12, . . . , P1n, . . . , Pij , . . . , Pkk

))

(3.14)

with the initial condition, after a change of variable,

P(t) = P(T − t). (3.15)

So,

P0 = P(0) = G, a.e. t ∈ [0, T], (3.16)

where G = θIn, θ = 1 − θ1 − θ2 is a weighting factor, that is, 0 ≤ θ ≤ 1 − θ1 − θ2.
The method of successive approximations obtains the solution P(T − t) as the limit of a

sequence of functions P (n)(T − t) which are determined by the following recurrence formula:

P (n)(T − t) = P (0) +
∫T

T−t
f
(
r, P (n−1)(T − r)

)
dr. (3.17)

It has been shown by Petrovsky [19] that if f(t, P) is continuous in a rectangle Q ∈
R
n+1{|t| ≤ k1, |P − P0| ≤ k2}, then the error of the approximate solution P (n)(T − t) on the

interval [0, h] is estimated by the inequality

εn =
∣
∣
∣P(T − t) − P (n)(T − t)

∣
∣
∣ ≤MKn (T − t)

n+1

(n + 1)!
, (3.18)

where M = max(t,P)∈Rn+1 |f(t, P)|, and h is determined by h = min(k1, k2/M).
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4. A Numerical Application for a Portfolio Composed of
Three Risk Classes

We consider a special portfolio composed of three risk classes indexed from 1 to 3. The system
of equations is described as follows:

dΠ(t) =
{
A(t)Π(t) + Σ(t)ε(t)

}
dt − Σ(t)dW(t),

Π(0) = 0,
(4.1)

where

A =

⎡

⎢
⎢
⎣

a(t) + (1 − 2λ(t)) λ(t) λ(t)

λ(t) a(t) + (1 − 2λ(t)) λ(t)

λ(t) λ(t) a(t) + (1 − 2λ(t))

⎤

⎥
⎥
⎦, (4.2)

Σ(t) = diag{σ1(t);σ2(t);σ3(t)}, σi(t) =
[
σi,1(t) σi,2(t) . . . σi,ni(t)

]
, (4.3)

Π(t) =

⎡

⎢
⎢
⎣

Π1(t)

Π2(t)

Π3(t)

⎤

⎥
⎥
⎦, ε(t) =

⎡

⎢
⎢
⎣

ε1(t)

ε2(t)

ε3(t)

⎤

⎥
⎥
⎦, where εi(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

εi,1(t)

εi,2(t)

...

εi,ni(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.4)

dW(t) =

⎡

⎢
⎢
⎣

dW1(t)

dW2(t)

dW3(t)

⎤

⎥
⎥
⎦, where dWi(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

dWi,1(t)

dWi,2(t)

...

dWi,ni(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

for i = 1, 2, 3. (4.5)

We also define P(t) as follows:

P(t) =
(
Pij(t)

)
i,j=1,2,3, (4.6)

where Pij(t), i ≤ j, i, j = 1, 2, 3 are scalars continuous functions and

P(T) = G⇐⇒ P11(T) = P22(T) = P33(T) = θ, Pij(T) = 0, ∀i /= j; i, j = 1, 2, 3. (4.7)

Moreover, we obtain

Ψ(t) = R−1Σ′P(t) =
1
θ2

⎡

⎢
⎢
⎣

σ ′1 0 0

0 σ ′2 0

0 0 σ ′3

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

P11(t) P11(t) P13(t)

P12(t) P22(t) P23(t)

P13(t) P23(t) P33(t)

⎤

⎥
⎥
⎦, (4.8)
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Table 1: Application parameters. The amounts are in $10.000

Class Population in class Claim probability Mean St. deviation
k n q μ σ m v
1 4000 0.05 0.21 0.0316 0.0105 0.0463
2 2200 0.10 1 0.0447 0.1 0.3
3 800 0.21 1.3 0.0316 0.273 0.530

where, P11(t), P22(t), P33(t), P12(t), P13(t), and P23(t) can be calculated by using the successive
approximation method of Picard; see Section 3. However, in the numerical application; see
also next section, a time discrete approximation is applied for the derived polynomials, see
expression (4.8) and the following lines.

For the calculation of Π(t), we follow a numerical stochastic method (one of
the simplest time discrete approximations of an Itô process) named as Euler-Maruyama
approximation; see Kloeden and Platen [20] for more details. We obtain the numerical
calculation of the following expression:

ε ∗(t) = ετ − R−1Σ′(t)P(t)Φ(t)

{∫ t

0
Φ(s)−1Σ(s)ds +

∫ t

0
Φ(s)−1Σ(s)dW(s)

}

(4.9)

on t ∈ [to, T] with the initial value ε ∗(to) = ετ ,

ε ∗(t) = ετ − R−1Σ′P(to)Σ

{

ετ

∫ t

to

ds +
∫ t

to

dW(s)

}

, (4.10)

and for a given discretization, the Euler approximation is a continuous time stochastic process
Y = {Y (t), to ≤ t ≤ T} satisfying the iterative scheme

Yn+1 = Yn − R−1Σ′P(tn)Σ{ετΔn + ΔWn} (4.11)

for n = 0, 1, 2, . . . ,N − 1 with initial condition Y0 = ετ , where we have written Yn = ε ∗(tn)
for the value of the approximation at the discretization time tn. Furthermore, the Δn which
is defined as Δn = tn+1 − tn = δ, in the simplest equidistant case, has step size δ = T/N, and
additionally, it is derived that tn = to + nδ.

Moreover, the increments, ΔWn = Wtn+1 − Wtn , are independent Gaussian random
variables with mean E(ΔWn) = 0 and variance E[(ΔWn)

2] = Δn. In the application we can
use a sequence of independent Gaussian pseudorandom numbers generated by one of the
random number generators of MatLab.

As we have mentioned before, the first class contains n1, the second n2, and the third
n3 insured risks (n =

∑3
i=1 ni). Additionally, we have probability qi, i = 1, 2, 3 for a claim.

For this numerical application, we apply the data set which used by Zaks et al. [2]. This data
consists of 7000 policyholders, 4000 for the 1st, 2200 for the 2nd, and 800 for the 3rd risk class.
The mean, μi, and the variance, σ2

i , of each class and the mean, mi = μiqi, and the variance
s2
i = μ

2
i qi(1 − qi) + σ

2
i qi of the total claims of each class are presented analytically in Table 1.

Furthermore, the numerical application is subject to the following basic parameters:
rate of return a = 5%, the percentage of profit or loss (solvency) transferred equals to λ = 10%,
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Figure 1: 1st class of a heterogeneous Portfolio, during 100 unit-time period (an enlargement region, where
the results are more clear).
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Figure 2: 2nd class of a heterogeneous Portfolio, during 100 unit-time period (an enlargement region,
where the results are more clear).

the weights θ1 = θ2 = θ3 = 1/3, and the T = 100 unit-time periods. Note that according to
the renewal policy of each client (i.e., annual or six-month insurance contract) the insurance
company may reconcile the unit-time period in which the premium is controlled.

It is clear from the figures, see Figures 1(a), 2(a), and 3(a), that there is a difference
between the stable premium (which has been determined statistically; see Bowers et al. [1])
and the controlled premium (determined by the proposed dynamic approach).



12 Journal of Probability and Statistics

0 20 40 60 80 100

Time periods

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
A

m
ou

nt
(i

n
$1

00
00
)

3rd Portfolio

Claims
Controlled premium
Stable premium

1 2 3 4 5 6 7

Time periods

0.2

0.25

0.3

0.35

0.4

A
m

ou
nt

(i
n

$1
00

00
)

3rd Portfolio

Claims
Controlled premium
Stable premium

(a)

Figure 3: 3rd class of a heterogeneous Portfolio, during 100 unit-time period (an enlargement region, where
the results are more clear).

Table 2: Optimal premium allocation.

Class Expected principle Uncontrolled allocation Uniform allocation Semiuniform allocation
k αi = 5% αi = 5% αi = 5%
1 109.81 117.08 116,69 134.05
2 1045.81 1105.53 1110.63 1052.81
3 2855.06 3039.18 3138.19 2875.23

Following Figures 4(a), 4(b), and 4(c), we focus on the process of εi,l(t), the so called
“loading factor”. Note that the probability that the total amount of maluses exceeds the
total bonuses, for each insured class of risk, is a predetermined small number αi = 0.05 for
i = 1, 2, 3. According to Zaks et al. [2], see Table 2, it should be stressed that the premiums
of the three classes (see green line on the Figures 1(a), 2(a), and 3(a)) are smaller and so
more competitive in the majority of cases (considering the uncontrolled, the uniform, and the
semiuniform allocation method). This is due to the fact that the controlled premium follows
more or less the evolution of the claims.

The interesting but expected result of this model is the balanced evolution of the
solvency margin. The fund does not explode to infinity as the premium controller realizes
the upward movement and consequently reduces the spread from the drift of the process; see
Figures 5(a), 5(b), 6(a), 6(b), 7(a), and 7(b).

5. Conclusions

In traditional risk theory the procedure of premium calculation is well established using the
classical individual risk model. Each risk i is statistically described by the triplet (qi, μi, σ2

i )
where
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Figure 4: The evolution of the 1st, 2nd and 3rd classes of a heterogeneous Portfolio for the respective
incidents, during 100 unit-time period.
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Figure 5: The accumulated profit/loss for (stochastic) controlled premium and stable premium,
respectively, for the 1st class of a heterogeneous Portfolio for the respective incidents, during 100 unit-
time period (300000 simulations).
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Figure 6: The accumulated profit/loss for (stochastic) controlled premium and stable premium,
respectively, for the 2nd class of a heterogeneous Portfolio for the respective incidents, during 100 unit-
time period (300000 simulations).
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Figure 7: The accumulated profit/loss for (stochastic) controlled premium and stable premium,
respectively, for the 3rd class of a heterogeneous Portfolio for the respective incidents, during 100 unit-
time period (300000 simulations).

qi is the probability of occurring the ith –risk,

μi is the mean of the distribution of claims upon the ith-risk occurs, and

σ2
i is the variance of the distribution of claims upon the ith-risk occurs.

Then, the premium is calculated using the mean plus a fixed percentage of the variance
of the risk. Of course, this approach results an explosive solvency margin as the additional
safety loading is continuously accumulated over time.

In this paper, we introduced and developed a dynamic approach to the premium
rating process for a heterogeneous portfolio of risks. The portfolio is divided into several
classes where each class interacts to the others. Furthermore, the risks are modeled not
statistically by distributions but dynamically by standard Brownian motions. The safety
loading included in the premium is continuously revised using the volatility of the Brownian
motion and the total accumulated solvency margin up to the specific time point.
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The resulting model exhibits two highly preferable features. Firstly, it has a balanced
surplus development and not an explosive one till the end of the control period. Secondly, it
concludes a much more competitive premium than the traditional approach.

Finally, we should stress three possible directions of further research. The first
direction considers the same problem with a generalization as regards to the introduction of
risky assets and consequently expansion of the number of the control variables. The second
direction considers the substitution of the standard Brownian motions for the risks with
fractional Brownian motions. Finally, the third direction considers the introduction of a non
Markovian delay controller for smoothing the whole procedure. For those three projects, there
is some research work in progress.

Appendix

A. Stochastic Control Theory

In this short appendix, we provide two basic theorems from Yong and Zhou [21] with respect
to the necessary optimal control framework.

Theorem A.1. Let the linear quadratic stochastic control problem (A.1)-(A.2)

dΠ(t) =
{
A(t)Π(t) + Σ(t)ε(t)

}
dt − Σ(t)dW(t),

Π(0) = 0,
(A.1)

Jε
(
t,Π

)
= E

t,Π

{∫T

0

[
Π
′
(t)QΠ(t) + (ε(t) − ετ)′R(ε(t) − ετ)

]
dt + Π

′
(T)GΠ(T)

}

. (A.2)

Then the optimal control for the ε ∗(·) vector is being described as a state feedback form

ε ∗(t) = ετ −Ψ(t)Π(t) − ψ(t) for t ∈ [0, T], (A.3)

where

Ψ(t) � R−1Σ′(t)P(t), BΨ(t), DΨ(t) ∈ L∞
(

0, T ; Rk×k
)
, (A.4)

ψ(t) � R−1Σ′(t)φ(t), Bψ(t), Dψ(t) ∈ L2
(

0, T ; Rk
)
. (A.5)

while P(·) ∈ C([0, T]; Rk×k) is symmetric and φ(·) ∈ C([0, T]; Rk) are obtained from the following
matrix-stochastic equations:

Ṗ(t) + P(t)A(t) +A′(t)P(t) +Q(t) − P(t)Σ(t)R−1Σ′(t)P(t) = 0,

P(T) = G, a.e. t ∈ [0, T],
(A.6)
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and also

φ̇(t) +
{
A(t) − Σ(t)R−1Σ′(t)P(t)

}′
φ(t) = 0,

φ(t) = 0, a.e.t ∈ [0,T].
(A.7)

The proof of this theorem may be found in Yong and Zhou [21] work.
Moreover, the solution of (A.7) has the following form:

φ(t) = ζ(t, 0)φ0, (A.8)

we define

Ã(s) =
[
A(s) − Σ(s)R−1Σ′(s)P(s)

]′
. (A.9)

Using Picard’s successive approximation, the state transition matrix is given by the
following expression, which is called the Peano-Baker series; see Antsaklis and Michel [22]:

ζ(t, 0) = I +
∫ t

0
Ã(s)ds +

∫ t

0
Ã(s1)

∫ s1

0
Ã(s2)ds2ds1 + · · · +

∫ t

0
Ã(s1) · · ·

∫ sn

0
Ã(sn)dsn · · ·ds1 + · · · .

(A.10)

However, it is profound that due to the terminal conditions φ(T) = 0 and ζ(T, 0)/= 0, we
obtain φ0 = 0,which consequently gives ψ(t) � 0.

The proof for the following theorem may be also found in Yong and Zhou [21] work.

Theorem A.2. For A(t), C(t) ∈ L∞(0, T ; Rk×k), and b(t), d(t) ∈ L∞(0, T ; Rk) one can consider the
following linear stochastic differential equation:

dX(t) = {A(t)X(t) + b(t)}dt − Σ(t)dW(t),

X(0) = 0,
(A.11)

and Φ(t) the solution of the following ordinary differential matrix equation:

dΦ(t) = A(t)Φ(t)dt,

Φ(0) = I,
(A.12)

and then the strong solution for X(t) of system (A.7) can be represented as

X(t) = Φ(t)

{∫ t

0
Φ(s)−1b(s)ds +

∫ t

0
Φ(s)−1Σ(s)dW(s)

}

, (A.13)
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where also

d
(
Φ(t)−1

)
= −Φ(t)−1A(t)dt,

Φ(0)−1 = I.
(A.14)

Thus, the solution of the (nonhomogeneous) linear stochastic differential equation is given by
the following expression:

Π(t) = Φ(t)

{∫ t

0
Φ(s)−1b(s)ds +

∫ t

0
Φ(s)−1Σ(s)dW(s)

}

. (A.15)
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