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least squares estimators which can simultaneously select significant variables and estimate
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the resulting estimators is established. Information criteria for model selection are also proposed.
We illustrate the effectiveness of the proposed procedures with numerical simulations.
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1. Introduction

Non- and semiparametric regression has become a rapidly developing field of statistics in
recent years. Various types of nonlinear model such as neural networks, kernel methods, as
well as spline method, series estimation, local linear estimation have been applied in many
fields. Non- and semiparametric methods, unlike parametric methods, make no or only mild
assumptions about the trend or seasonal components and are, therefore, attractive when the
data on hand does not meet the criteria for classical time series models. However, the price of
this flexibility can be high; when multiple predictor variables are included in the regression
equation, nonparametric regression faces the so-called curse of dimensionality.

A major problem associated with non- and semiparametric trend estimation involves
the selection of a smoothing parameter and the number of basis functions. Most literature
on nonparametric regression with dependent errors focuses on the kernel estimator of the
trend function (see, e.g., Altman [1], Hart [2] and Herrmann et al. [3]). These results have
been extended to the case with long-memory errors by Hall and Hart [4], Ray and Tsay [5],
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and Beran and Feng [6]. Kernel methods are affected by the so-called boundary effect. A
well-known estimator with automatic boundary correction is the local polynomial approach
which is asymptotically equivalent to some kernel estimates. For detailed discussions on local
polynomial fitting see, for example, Fan and Gijbels [7] and Fan and Yao [8].

For semiparametric models with serially correlated errors, Gao [9] proposed the
semiparametric least-square estimators (SLSEs) for the parametric component and studied
its asymptotic properties. You and Chen [10] constructed a semiparametric generalized least-
square estimator (SGLSE) with autoregressive errors. Aneiros-Pérez and Vilar-Fernández
[11] constructed SLSE with correlated errors.

Like parametric regression models, variable selection of the smoothing parameter for
the basis functions is important problem in non- and semiparametric models. It is common
practice to include only important variables in the model to enhance predictability. The
general approach to finding sensible parameters is to choose an optimal subset determined
according to the model selection criterion. Several information criteria for evaluating models
constructed by various estimation procedures have been proposed, see, for example, Konishi
and Kitagawa [12]. The commonly used criteria are generalized cross-validation, the Akaike
information criterion (AIC), and the Bayesian information criterion (BIC). Although best
subset selection is practically useful, these selection procedures ignore stochastic errors
inherited between the stages of variable selection. Furthermore, best subset selection lacks
stability, see, for example, Breiman [13]. Nonconcave penalized likelihood approaches for
selecting significant variables for parametric regression models have been proposed by Fan
and Li [14]. This methodology can be extended to semiparametric generalized regression
models with dependent errors. One of the advantages of this procedure is the simultaneous
selection of variables and the estimation of unknown parameters.

The rest of this paper is organized as follows. In Section 2.1 we introduce our
semiparametric regression models and explain classical partial ridge regression estimation.
Rather than focus on the kernel estimator of the trend function, we use the basis functions
to fit the trend component of time series. In Section 2.2, we propose a penalized weighted
least-square approach with information criteria for estimation and variable selection. The
estimation algorithms are explained in Section 2.3. In Section 2.4, the GIC proposed by
Konishi and Kitagawa [15], the BICm proposed by Hastie and Tibshirani [16], and the BICp
proposed by Konishi et al. [17] are applied to the evaluation of models estimated by penalized
weighted least-square. Section 2.5 contains the asymptotic results of proposed estimators. In
Section 3 the performance of these information criteria is evaluated by simulation studies.
Section 4 contains the real data analysis. Section 5 concludes our results, and proofs of the
theorems are given in the appendix.

2. Estimation Procedures

In this section, we present our semiparametric regression model and estimation procedures.

2.1. The Model and Penalized Estimation

We consider the semiparametric regression model:

yi = α(ti) + β′xi + εi, i = 1, . . . , n, (2.1)
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where yi is the response variable and xi is the d × 1 covariate vector at time i, α(ti) is
an unspecified baseline function of ti with ti = i/n, β is a vector of unknown regression
coefficients, and εi is a Gaussian and zero mean covariance stationary process.

We assume the following properties for the error terms εi and vectors of explanatory
variables xi.

(A.1) It holds that {εi} is a linear process given by

εi =
∞∑

j=0

bjei−j , (2.2)

where b0 = 1 and {ei} is an i.i.d. Gaussian random variable with E{ei} = 0 and
E{ei2} = σ2

e .

(A.2) The coefficients bj satisfy the conditions that for all |z| < 1,
∑∞

j=0 bjz
j /= 0 and

∑∞
j=0 j

2|bj | <∞.

We define γ(k) = cov(εt, εt+k) = E{εtεt+k}.
The assumptions on covariate variables are as follows.

(B.1) Also xi = (xi1, . . . , xid)
′ ∈ R

d and {xij}, j = 1, . . . d, have mean zero and variance 1.

The trend function α(ti) is expressed as a linear combination of a set of m underlying
basis functions:

α(ti) =
m∑

k=1

wkφk(ti) = w′φ(t), (2.3)

where {φ(ti) = (φ1(ti), . . . , φm(ti))
′} is an m-dimensional vector constructed from basis

functions {φk(ti); k = 1, . . . , m}, and w = (w1, . . . , wm)
′ is an unknown parameter vector to be

estimated. The examples of basis functions are B-spline, P-spline, and radial basis functions.
A P-spline basis is given by

φ(ti) =
(
ti, . . . , t

p

i , (ti − κ1)
p
+, . . . , (ti − κk)

p
+

)′
, (2.4)

where {κk}k=1,...,K are spline knots. This specification uses the so-called truncated power
function basis. The choice of the number of knots K and the knot locations are discussed
by Yu and Ruppert [18].

Radial basis function (RBF) emerged as a variant of artificial renewal network in
late 80s. Nonlinear specification of using RBF has been widely used in cognitive science,
engineering, biology, linguistics, and so on. If we consider the RBF modeling, a basis function
can take the form

φk(ti) = exp

(
−
∥∥ti − μk

∥∥2

2s2
k

)
, (2.5)

where μk determines the location and s2
k

determines the width of the basis function.
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Selecting appropriate basis functions, then the semiparametric regression model (2.1)
can be expressed as a linear model

y = Xβ + Bw + ε, (2.6)

where X = (x1, . . . , xn)
′, y = (y1, . . . , yn)

′, B = (φ1, . . . ,φn)
′ with φi = (φ1(i/n), . . . , φm(i/n))

′.
The penalized least-square estimator is then a minimizer of the function

1
2
(y − Xβ − Bw)′(y − Xβ − Bw) + nξw′Kw, (2.7)

where ξ is the smoothing parameter controlling the tradeoff between the goodness-of-fit
measured by weighted least-square and the roughness of the estimated function. Also K is
an appropriate positive semidefinite symmetric matrix. For example, if K satisfies w′Kw =∫1

0[α
′′(u)]2du, we have the usual quadratic integral penalty (see, e.g., Green and Silverman

[19]). By simple calculus, (2.7) is minimized when β and w satisfy the block matrix equation

(
X′X X′B

B′X B′B + nξK

)(
β

w

)
=

(
X′

B′

)
y. (2.8)

This equation can be solved without any iteration (see, e.g., Green [20]). First, we find Bw̃ =
S(y − Xβ), where S = B(B′B + αK)−1B′ is usually called the smoothing matrix. Substituting
Bw̃ into (2.6), we obtain

ỹ = X̃β + ε, (2.9)

where ỹ = (I−S)y, X̃ = (I−S)X ,and I is the identity matrix of order n. Applying least-square to
the linear model (2.9), we obtain the semiparametric ordinary least-square estimator (SOLSE)
result:

β̂SOLSE =
(
X̃′X̃
)−1

X̃′ỹ , (2.10)

ŵSOLSE =
(
B′B + nξK

)−1B′
(
y − Xβ̂SOLSE

)
. (2.11)

Speckman [21] studied similar solutions for partial linear models with independent
observations. Since the errors are serially correlated in model (2.1), β̂SOLSE is not asymptoti-
cally efficient. To obtain an asymptotically efficient estimator for β, we use the prewhitening
transformation. Note that the errors {εi} in (2.6) are invertible. Let b(L) =

∑∞
j=1 bjei−j , where

L is the lag operator and a(L) = b(L)−1 = a0 −
∑∞

j=1 ajL
j with a0 = 1. Applying a(L) to the

model (2.6) and rewriting the corresponding equation, we obtain the new model:

y = Xβ + Bw + e, (2.12)
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where y = (y
1
, . . . , y

n
)′, X = (x1, . . . , xn)

′, B = (φ1, . . . ,φn)
′ and e = (e1, . . . , en)

′. Here

y
i
= yi −

∞∑

j=1

ajyi−j , φ
i
= φi −

∞∑

j=1

ajφi−j ,

xi = xi −
∞∑

j=1

ajxi−j .

(2.13)

The regression errors in (2.12) are i.i.d. Because, in practice, the response variable yi is
unknown, we use a reasonable approximation by y

i
based on the work by Xiao et al. [22]

and Aneiros-Pérez and Vilar-Fernández [11].
Under the usual regularity conditions the coefficients aj decrease geometrically so,

letting τ = τ(n) denote a truncation parameter, we may consider the truncated autoregression
on εi:

ei = εi −
∞∑

j=1

ajεi−j , (2.14)

where ei are i.i.d. random variables with E(ei) = 0. We make the following assumption about
the truncation parameter.

(C.1) The truncation parameter τ satisfies τ(n) = c logn for some c > 0.

The expansion rate of the truncation parameter given in (C.1) is also for convenience. Let Tτ
be the n×n transformation matrix such that eτ = Tτε. Then the model (2.12) can be expressed
as

Tτy = TτXβ + TτBw + Tτε, (2.15)

where

Tτ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ11 0 · · · 0

δ21 −δ22 0 · · · 0

...

δτ1 · · · −δττ
−aτ · · · −a1 1

0 −aτ · · · −a1 1

...

0 · · · 0 −aτ · · · −a1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.16)

with δ11 = σe/
√
γ(0), δ22 = σe/

√
(1 − ρ2(1))γ(0), δ21 = ρ(1)(σe/

√
(1 − ρ2(1))γ(0)), . . . . Here

ρ(h) = γ(h)/ρ(0) denotes the lag h autocorrelation function of {εi}.
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Now our estimation problem for the semiparametric time series regression model can
be expressed as the minimization of the function

L(β,w) =
1
2
(y − Xβ − Bw)′V−1(y − Xβ − Bw) + αw′Kw, (2.17)

where V−1 = σe
−2T

′
τTτ and σe

2 = n−1‖Tτε‖2. Based on the work by Aneiros-Pérez and Vilar-
Fernández [11], an estimator for Tτ is constructed as follows. We use the residuals ε̂ = y −
Xβ̂SOLSE − BŵSOLSE to construct an estimate of Tτ using the ordinary least square method
applied to the model

ε̂i = a1ε̂i−1 + · · · + aτ ε̂i−τ + residuali. (2.18)

Define the estimate âτ = (â1, â2, . . . , âτ)
′ of aτ = (a1, a2, . . . , aτ)

′, where

âτ =
(
Ê′τ Êτ

)−1
Ê′τ ε̂, (2.19)

where ε̂ = (ε̂τ+1, . . . , ε̂n) and Êτ is the (n − τ) × τ matrix of regressors with the typical element
ε̂i−j . Then T̂τ is obtained from Tτ by replacing aj with âj , σ2

e with σ̂2
e , and so forth. Applying

least-square to the linear model, we obtain

T̂τy = T̂τXβ + T̂τBw + T̂τε. (2.20)

Then

β̂SGLSE =
(
X̃′
τ̂
X̃τ̂
)−1

X̃′
τ̂
ỹτ̂ ,

ŵSGLSE =
(
B
′

τ̂Bτ̂ + nξK
)−1

B
′

τ̂

(
yτ̂ − Xτ̂ β̂SGLSE

)
,

(2.21)

where X̃τ̂ = (I − S)Xτ̂ and ỹτ̂ = (I − S)yτ̂ , with yτ̂ = T̂τy and Xτ̂ = T̂τX. The following theorem
shows that the loss in efficiency associated with the estimation of the autocorrelation structure
is modest in large samples.

Theorem 2.1. Let the conditions of (A.1), (A.2), (B.1), and (C.1) hold, and assume that Σ1 =
limn→∞n

−1X̃′V−1X̃ is nonsingular. Let β0 denote the true value of β, then

√
n
(
β̂ − β0

)
=
√
n
(
β̂SGLSE − β0

)
+Op

((
τ

n

)1/2
)
, (2.22)

√
n
(
β̂SGLSE − β0

)
→
D
N
(

0,Σ−1
1

)
, (2.23)
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where →
D

denotes convergence in distribution and β̂ = (X
′
τXτ)

−1X
′
τyτ . Assume that Σ2 =

limn→∞n
−1B′V−1B is nonsingular and letw0 denote the true value of w, then one has

√
n(ŵ −w0) =

√
n(ŵSGLSE −w0) +Op

((
τ

n

)1/2
)
, (2.24)

√
n(ŵSGLSE −w0) →

D
N
(

0,Σ2
−1
)
, (2.25)

where ŵ = (B
′
τBτ + nξK)−1B

′
τ(yτ − Xτ β̂).

2.2. Variable Selection and Penalized Least Squares

Variable and model selection are an indispensable tool for statistical data analysis. However,
it has rarely been studied in the semiparametric context. Fan and Li [23] studied penalized
weighted least-square estimation with variable selection in semiparametric models for
longitudinal data. In this section, we introduce the penalized weighted least-square approach.
We propose an algorithm for calculating the penalized weighted least-square estimator of
θ = (β′,w′)′ in Section 2.3. In Section 2.4 we present the information criteria for the model
selection.

From now on, we assume that the matrices Xτ and Bτ are standardized so that each
column has mean 0 and variance 1. The first term in (2.7) can be regarded as a loss function
of β and w, which we will denote by l(β,w). Then expression (2.7) can be written as

L(β,w) = l(β,w) + nξw′Kw. (2.26)

The methodology in the previous section can be applied to the variable selection via
penalized least-square. A form of penalized weighted least-square is

S(β,w) = l(β,w) + n

⎛

⎝
d∑

i=1

pλ1

(∣∣βi
∣∣) +

m∑

j=1

pλ2

(∣∣wj

∣∣)
⎞

⎠ + nξw′Kw. (2.27)

where pλi(·) are penalty functions and λi are regularization parameters, which control the
model complexity. By minimizing (2.27) with a special construction of the penalty function
given in what following some coefficients are estimated as 0, which deletes the corresponding
variables, whereas others are not. Thus, the procedure selects variables and estimates
coefficients simultaneously. The resulting estimate is called a penalized weighted least-square
estimate.

Many penalty functions have been used for penalized least-square and penalized
likelihood in various non- and semiparametric models. There are strong connections between
the penalized weighted least-square and the variable selection. Denote by θ = (β′,w′)′ and
z = (z1, . . . , zd+m)

′ the true parameters and the estimates, respectively. By taking the hard
thresholding penalty function

pλ(|θ|) = λ2 + (|θ| − λ)2I(|θ| < λ), (2.28)
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we obtain the hard thresholding rule

θ̂ = zI(|z| > λ). (2.29)

The L2 penalty Pλ(|θ|) = λ|θ|2 results in a ridge regression and the L1 penalty Pλ(|θ|) = λ|θ|
yields a soft thresholding rule

θ̂ = sgn(z)I(|z| > λ)+. (2.30)

This solution gives the best subset selection via stepwise deletion and addition. Tibshirani [24,
25] has proposed LASSO, which is the penalized least-square estimate with the L1 penalty, in
the general least-square and likelihood settings.

2.3. An Estimation Algorithm

In this section we describe an algorithm for calculating the penalized least-square estimator
of θ = (β′,w′)′. The estimate of θ minimizes the penalized sum of squares L(θ) given by
(2.17). First we obtain θ̂SOLSE in Step 1. In Step 2, we estimate Tτ by using ε obtained in Step

1. Then θ̂
HT
SGLSE is obtained using T̂τ(Step 3). Here the penalty parameters λ, and ξ, and the

number of basis functions m are chosen using information criteria that will be discussed in
Section 2.4.

Step 1. First we obtain β̂SOLSE and ŵSOLSE by (2.10) and (2.11), respectively. Then we have the
model

ŷ = BŵSOLSE + Xβ̂SOLSE + ε. (2.31)

Step 2. An estimator for Tτ is constructed followings the work of Aneiros-Pérez and Vilar-
Fernández [4]. We use the residuals ε̂ = y − BŵSOLSE − Xβ̂SOLSE to construct an estimate of Tτ
using the ordinary least square method applied to the model

ε̂i = a1ε̂i−1 + · · · + aτ ε̂i−τ + residuali. (2.32)

The estimator T̂τ is obtained from Tτ by replacing parameters with their estimates.

Step 3. Our SGLSE of θ is obtained by using the model

yτ̂ = Bτ̂w + Xτ̂β + ετ̂ , (2.33)

where yτ̂ = T̂τy, Bτ̂ = T̂τB, Xτ̂ = T̂τX, and ετ = T̂τε. Finding the solution of the penalized
least-square of (2.27) needs the local quadratic approximation, because the L1 and hard
thresholding penalty are irregular at the origin and may not have second derivatives at some
points. We follow the methodology of Fan and Li [14]. Suppose that we are given an initial
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value θ(0) that is close to the minimizer of (2.27). If θ(0)j is very close to 0, then set θ̂(0)j = 0.
Otherwise they can be locally approximated by a quadratic function as

[
pλj (θj)

]′
= p′λj

(∣∣θj
∣∣)sgn

(
θj
)
≈

⎧
⎨

⎩

p′
λj

(∣∣∣θ(0)j

∣∣∣
)

∣∣∣θ(0)j

∣∣∣

⎫
⎬

⎭θj , (2.34)

when θ̂
(0)
j /= 0. Therefore, the minimization problem (2.27) can be reduced to a quadratic

minimization problem and the Newton-Raphson algorithm can be used. The right-hand side
of equation (2.27) can be locally approximated by

l
(
β0,w0

)
+∇lβ(β,w)′

(
β − β0

)
+∇lw

(
β0,w0

)′(w −w0)

+
1
2
(
β − β0

)′∇2
ββ

(
β0,w0

)(
β − β0

)
+

1
2
(w −w0)′∇2

ww

(
β0,w0

)
(w −w0)

1
2
(
β0 − β

)′∇2
βw(w −w0) + nβ′Σλ1

(
β0

)
β + nw′Σλ2(w0)w,

, (2.35)

where

∇lβ
(
β0,w0

)
=
∂l
(
β0,w0

)

∂β
, ∇lw

(
β0,w0

)
=
∂l
(
β0,w0

)

∂w
,

∇2lββ
(
β0,w0

)
=
∂2l
(
β0,w0

)

∂β∂β′
, ∇2lww

(
β0,w0

)
=
∂2l
(
β0,w0

)

∂w∂w′
,

∇2lβ,w
(
β0,w0

)
=
∂2l
(
β0,w0

)

∂β∂w
,

Σλ1

(
β0

)
= diag

⎧
⎨

⎩

p′
λ1

(∣∣∣β(0)1

∣∣∣
)

∣∣∣β(0)1

∣∣∣
, . . . ,

p′
λ1

(∣∣∣β(0)d

∣∣∣
)

∣∣∣β(0)d

∣∣∣

⎫
⎬

⎭,

Σλ2(w0) = diag

⎧
⎨

⎩

p′λ2

(∣∣∣w(0)
1

∣∣∣
)

∣∣∣w(0)
1

∣∣∣
, . . . ,

p′λ2

(∣∣∣w(0)
m

∣∣∣
)

∣∣∣w(0)
m

∣∣∣

⎫
⎬

⎭.

(2.36)

The solution can be found by iteratively computing the block matrix equation:

⎛

⎝X
′

τ̂
Xτ̂ + nΣλ1

(
β(0)
)

X
′

τ̂
Bτ̂

B
′

τ̂
Xτ̂ B

′

τ̂
Bτ̂ + αK + nΣλ2

(
w(0))

⎞

⎠
(

β

w

)
=

(
X
′

τ̂

B
′

τ̂

)
y. (2.37)
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This gives the estimators

β̂
HT
SGLSE =

(
X̃′τ̂ X̃τ̂ + nΣλ1(β

(0))
)−1

X̃′τ̂ ỹτ̂ ,

ŵHT
SGLSE =

(
B
′

τ̂Bτ̂ + nξK + nΣλ2(w
(0))
)(−1)

B
′

τ̂

(
yτ̂ − Xτ̂ β̂

HT
SGLSE

)
,

(2.38)

where ỹτ̂ = (I − Sτ̂)yτ̂ , X̃τ̂ = (I − Sτ̂)Xτ̂ , and Sτ̂ = Bτ̂(B
′

τ̂
Bτ̂ + nξK + nΣλ2(w

(0)))−1B
′

τ̂
.

2.4. Information Criteria

Selecting suitable values for the penalty parameters and number of basis functions is crucial
to obtaining good curve fitting and variable selection. The estimate of θ minimizes the
penalized sum of squares L(θ) given by (2.17). In this section, we express the model (2.15)
as

yτ = Aτθ + e, (2.39)

where Aτ = (Xτ ,Bτ) and θ = (β′,w′)′. In many applications, the number of basis functions m
needs to be large to adequately capture the trend. To determine the number of basis functions,
all models with m ≤ mmax are fitted and the preferred model minimizes some model selection
criteria.

The Schwarz BIC is given by

BIC = n log
(

2πσ̂2
e

)
+ logn

(
the number of parameters

)
, (2.40)

where σ̂2
e is the least-square estimate of σ2

e without a degree of freedom correction. Hastie
and Tibshirani [16] used the trace of the smoother matrix as an approximation to the effective
number of parameters. By replacing the number of parameters in BIC by trSβ, we formally
obtain information criteria for the basis function Gaussian regression model in the form

BICm = n log
(

2πσ̂2
e

)
+ (trSθ) logn, (2.41)

where σ̂2
e = n−1‖y − Sθy‖2 and

trSθ = Aτ

(
A
′

τAτ + nξK̃ + nΣλ(θ)
)−1

A
′

τ . (2.42)

Here Σλ(θ) is defined by (2.44) in what follows.
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We also consider the use of the BICp criterion to choose appropriate values for these
unknown parameters. Denote

Σλ1(β) = diag
{
p′′λ1

(∣∣β10
∣∣), . . . , p′′λ1

(∣∣βd0
∣∣)
}
,

Σλ2(w) = diag
{
p′′λ2

(|w10|), . . . , p′′λ2
(|wm0|)

}
,

(2.43)

Σλ(θ) = (Σλ1(β),Σλ2(w)). (2.44)

Let N1 and N2 be the number of zero components in β0 and w0, respectively. Then the BICp
criterion is

BICp = n log
(

2πσ̂2
e

)
+ nθ̂

′
Σλ(θ)θ̂ + nξθ̂K̃θ̂ + log

∣∣∣JG
(
θ̂
)∣∣∣

− log
∣∣∣K̃
∣∣∣
+
− log |Σλ(θ)|+ − (m −N2) log ξ + Const,

(2.45)

where JG(θ̂) is the (d + m + 1) × (d + m + 1) matrix of second derivatives of the penalized
likelihood defined by

JG =
1
nσ̂2

e

⎛
⎜⎜⎜⎝

A
′
τAτ + nΣλ(θ) + nξK̃

A
′
τΛ1n
σ2
e

1
′
nΛAτ

σ̂2
e

n

2σ̂2
e

⎞
⎟⎟⎟⎠. (2.46)

Here Λ is a diagonal matrix with ith element Λi = diag[e1, . . . , en] and 1n = (1, . . . , 1)′. The
n-dimensional vector q has ith element (Tijyj −Aτ,ijθj)

2/2σ̂4
e −1/2σ̂2

e where Tij is the element
in the ith row and jth column of Tτ . Also K̃ is the (d +m) × (d +m) matrix defined by

K̃ =

(
K Od,m

Om,d Om,m

)
, (2.47)

and |K̃|+ and |Σλ(θ)|+ are the product of the (m−N1) and (d+m−N1−N2) nonzero eigenvalues
of K̃ and Σλ(θ), respectively.

Konishi and Kitagawa [15] proposed a framework of Generalized Information Criteria
(GIC) to the case where the models are not estimated by maximum likelihood. Hence, we also
consider the use of GIC for the model evaluations. The GIC for the hard thresholding penalty
function is given by

GIC = n log
(

2πσ̂2
e

)
+ n + 2tr

{
IGJ−1

G

}
, (2.48)
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where IG is a (m + d + 1) × (m + d + 1) matrix. Also IG is basically the product of the empirical
influence function and the score function. It is defined by

IG =
1
nσ̂2

e

⎛
⎜⎝

A
′
τΛ
σ2
e

− Σλ(θ)θ̂1
′
n − ξK̃θ̂1

′
n

q′

⎞
⎟⎠
(
ΛAτ , σ̂

2
eq
)
. (2.49)

The number of basis functions m, penalty parameters ξ, λ1, λ2 are determined by
minimizing BICm, BICp or GIC.

2.5. Sampling Properties

We now study the asymptotic properties of the estimate resulting from the penalized least-
square function (2.27).

First we establish the convergence rate of the penalized profile least-square estimator.
Assume that penalty functions p′λ1j

(·) and p′λ2j
(·) are negative and nondecreasing with

p′
λ1j
(0) = p′

λ2j
(0) = 0. Let β0 and w0 denote the true values of β and w, respectively. Also

let

a1n = max
j

{∣∣∣p′λ1j

(∣∣βj0
∣∣)
∣∣∣ : βj0 /= 0

}
, a2n = max

j

{∣∣∣p′λ2j

(∣∣wj0
∣∣)
∣∣∣ : wj0 /= 0

}
,

b1n = max
j

{∣∣∣p′′λ1j

(∣∣βj0
∣∣)
∣∣∣ : βj0 /= 0

}
, b2n = max

j

{∣∣∣p′′λ2j

(∣∣wj0
∣∣)
∣∣∣ : wj0 /= 0

}
.

(2.50)

Theorem 2.2. Under the conditions of Theorem 2.1, if a1n, b1n, a2n, and b2n tend to 0 as n → ∞,

then with probability tending to 1, there exist local minimizers β̂ and ŵ ofL(β,w) such that ‖β̂
HT
SGLSE−

β0‖ = Op(n−1/2 + a1n) and ‖ŵHT
SLOSE −w0‖ = Op(n−1/2 + a2n).

Theorem 2.2 demonstrates how the rate of convergence of the penalized least-square

estimator θ̂
HT
SGLSE = (β̂

’HT
SGLSE, ŵ

’HT
SGLSE)

′
of L(θ) depends on λij for i = 1, 2. To achieve the root n

convergence rate, we have to take λij small enough so that an = Op(n−1/2).
Next we establish the oracle property for the penalized least-square estimator. Let βS1

consist of all nonzero components of β0 and let βN1
consist of all zero components. Let wS2

consist of all nonzero components of w0 and let wN2 consist of all zero components. Let

x̂(t)′β0 = x̂′S1
βS1

+ x̂′N1
(t)βN1

= x̂S1(t)
′βS1

,

φ(t)′w0 = φ′S2
wS2 + φ

′
N2

(t)wN2 = φS2(t)
′wS2 .

(2.51)

Write

bβ =
(
p′
λ1n

(∣∣β10
∣∣)sgn(β10), . . . , p′λS1n

(∣∣βS10
∣∣)sgn(βS10)

)′
,

bw =
(
p′λ2n

(|w10|)sgn(w10), . . . , p′λS2n
(|wS20|)sgn(wS20)

)′
.

(2.52)



Journal of Probability and Statistics 13

Further, let β̂1 consist of the first S1 components of β̂ and let β̂2 consist of the last d − S1

components of β̂
HT
SGLSE. Let ŵ1 consist of the first S2 components of ŵ and let ŵ2 consist of the

last m − S2 components of ŵHT
SGLSE.

Theorem 2.3. Assume that for j = 1, . . . , d and k = 1, . . . , m, one has λ1 → 0,
√
nλ1 → ∞,

λ2 → 0 and
√
nλ2 → ∞. Assume that the penalty functions p′

λ1
(|βj |) and p′λ2

(|wk|) satisfy

lim inf
n→∞

lim inf
βj → 0+

p′λ1

(
βj
)

λ1
> 0,

lim inf
n→∞

lim inf
ωk→ 0+

p′
λ2
(ωk)

λ2
> 0.

(2.53)

If a1n = a2n = Op(n−1/2) then, under the conditions of Theorem 2.1, with probability tending to 1, the

root n consistent local minimizers β̂
HT
SGLSE = (β̂

′
1, β̂

′
2)
′
and ŵHT

SGLSE = (ŵ′1, ŵ
′
2)
′ in Theorem 2.2 must

satisfy the following:

(1) (sparsity) β̂2 = ŵ2 = 0;

(2) (asymptotic normality)

√
n(IS1 + Σλ1(β))

(
β̂1 − β10 + (IS1 + Σλ1(β))

−1bβ
)
−→NS1

(
0,Σ−1

1(1)

)
,

√
n(IS2 + Σλ1(w))

(
ŵ1 −w10 + (IS2 + Σλ2(w) + ξK)−1bw

)
−→NS2

(
0,Σ−1

2(1)

) (2.54)

Here Σ−1
1(1) and Σ−1

2(1) consist of the first S1 and S2 rows and columns of Σ1 and Σ2 defined in
Theorem 2.1, respectively.

3. Numerical Simulations

We now assess the performance of semiparametric estimators of the proposed in previous
section via simulations. We generate simulation data from the model

yi = α(ti) + β′xi + εi, (3.1)

where α(ti) = exp(−3(i/n)) sin(3πi/n), β = (3, 1.5, 0, 0.2, 0, 0, 0)′ and ε(t) is a Gaussian AR(1)
process with autoregressive coefficient ρ. We used the radial basis function network modeling
to fit the trend component. We simulate the covariate vector x from a normal distribution with
mean 0 and cov(xi, xj) = 0.5|i−j|. In each case, the autoregressive coefficient is set to 0, 0.25,
0.5 or 0.75 and the sample size n is set to 50, 100 or 200. Figure 1 depicts some examples of
simulation data.

We compare the effectiveness of our proposed procedure (PLS + HT) with an existing
procedure (PLS). We also compare the performance of the information criteria BICm, GIC
and BICp for evaluating the models. As discussed in Section 3, the proposed procedure (PLS
+ HT) excludes basis functions as well as explanatory variables.
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Figure 1: Simulation data with (a) n = 50 and ρ = 0.5, (b) n = 100 and ρ = 0.5, (c) n = 200 and ρ = 0.5. The
dotted lines represent α(t); the solid lines α(t) + ε(t).

First we assess the performance of α̂(t) by the square root of average squared errors
(RASEα):

RASEα =

√√√√n−1
grid

ngrid∑

k=1

{α̂(tk) − α(tk)}2, (3.2)

where {tk, k = 1, . . . , ngrid} are the grid points at which the baseline function α(·) is
estimated. In our simulation, we use ngrid = 200. Table 1 shows the means and standard
deviations of RASEα for ρ = 0, 0.25, 0.5, 0.75 based on 500 simulations. RASEα increases as the
autoregressive coefficient increases but decreases as the sample size increases. From Table 1,
we see that the proposed procedure (PLS + HT) works better than PLS and that models
evaluated by BICp work better than those based on BICm or GIC.

Then the performance of β̂ is assessed by the square root of average squared errors
(RASEβ):

RASEβ =

√√√√ 1
d

d∑

i=1

(
β̂i − βi

)2
. (3.3)

The means and standard deviations of RASEβ for ρ = 0, 0.25, 0.5, 0.75 based on 500
simulations are shown in Table 2. We can see that the proposed procedure (PLS + HT) works
better than the existing procedure. There is almost no change in RASEβ as the autoregressive
coefficient changes (unlike the procedure of You and Chen [10]), whereas RASEβ depends
strongly on the information, BICp works the best among the criteria. We can also confirm the
consistency of the estimator, that is RASEβ decreases as the sample size increases.
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Table 1: Means (standard deviations) of RASEα.

ρ = 0.0 ρ = 0.25 ρ = 0.50 ρ = 0.75
n = 50
PLS BICm 0.069 (0.013) 0.081(0.017) 0.114 (0.037) 0.232 (0.115)

GIC 0.047 (0.013) 0.062 (0.015) 0.106 (0.037) 0.229 (0.120)
BICp 0.042 (0.010) 0.060 (0.019) 0.103 (0.039) 0.226 (0.124)

PLS + HT BICm 0.061 (0.040) 0.070 (0.021) 0.101 (0.038) 0.226 (0.103)
GIC 0.053 (0.017) 0.068 (0.020) 0.101 (0.034) 0.218 (0.097)
BICp 0.046 (0.015) 0.060 (0.019) 0.093 (0.034) 0.214 (0.101)

n = 100
PLS BICm 0.041(0.008) 0.052 (0.012) 0.080 (0.025) 0.172 (0.080)

GIC 0.034 (0.008) 0.044 (0.011) 0.074 (0.026) 0.170 (0.080)
BICp 0.036 (0.010) 0.044 (0.010) 0.070 (0.024) 0.163 (0.079)

PLS + HT BICm 0.042 (0.008) 0.051 (0.016) 0.080 (0.024) 0.172 (0.079)
GIC 0.040 (0.015) 0.048 (0.016) 0.073 (0.024) 0.168 (0.078)
BICp 0.037 (0.011) 0.041 (0.011) 0.068 (0.023) 0.158 (0.075)

n = 200
PLS BICm 0.029 (0.005) 0.040 (0.016) 0.058 (0.018) 0.129 (0.056)

GIC 0.025 (0.008) 0.033 (0.010) 0.056 (0.018) 0.125 (0.057)
BICp 0.029 (0.006) 0.031 (0.007) 0.050 (0.015) 0.114 (0.052)

PLS + HT BICm 0.030 (0.005) 0.040 (0.016) 0.058 (0.019) 0.127 (0.053)
GIC 0.027 (0.009) 0.033 (0.011) 0.054 (0.015) 0.123 (0.054)
BICp 0.019 (0.008) 0.028 (0.009) 0.047 (0.018) 0.109 (0.048)

Table 2: Means (standard deviations) of RASEβ.

ρ = 0.0 ρ = 0.25 ρ = 0.50 ρ = 0.75
n = 50
PLS BICm 0.022 (0.007) 0.023 (0.007) 0.022 (0.007) 0.020 (0.007)

GIC 0.021 (0.006) 0.023 (0.007) 0.023 (0.010) 0.021 (0.007)
BICp 0.021(0.006) 0.022 (0.007) 0.022 (0.009) 0.020 (0.007)

PLS + HT BICm 0.011(0.005) 0.013 (0.007) 0.012 (0.007) 0.010 (0.005)
GIC 0.010 (0.004) 0.013 (0.007) 0.013 (0.009) 0.011(0.006)
BICp 0.010 (0.004) 0.011 (0.005) 0.011 (0.006) 0.010 (0.005)

n = 100
PLS BICm 0.014 (0.004) 0.014 (0.004) 0.014 (0.005) 0.012 (0.004)

GIC 0.013 (0.004) 0.014 (0.004) 0.013 (0.004) 0.012 (0.004)
BICp 0.014 (0.004) 0.014 (0.004) 0.013 (0.004) 0.011 (0.004)

PLS + HT BICm 0.007 (0.003) 0.008 (0.004) 0.007 (0.004) 0.006 (0.003)
GIC 0.007 (0.003) 0.008 (0.004) 0.007 (0.003) 0.006 (0.003)
BICp 0.007 (0.003) 0.007 (0.003) 0.006 (0.003) 0.006 (0.003)

n = 200
PLS BICm 0.009 (0.003) 0.009 (0.003) 0.009 (0.003) 0.007 (0.002)

GIC 0.009 (0.003) 0.009 (0.003) 0.008 (0.003) 0.007 (0.002)
BICp 0.009 (0.003) 0.009 (0.003) 0.008 (0.002) 0.007 (0.002)

PLS + HT BICm 0.004 (0.002) 0.005 (0.002) 0.005 (0.002) 0.005 (0.002)
GIC 0.005 (0.002) 0.005 (0.002) 0.005 (0.002) 0.004 (0.002)
BICp 0.005 (0.002) 0.005 (0.002) 0.004 (0.002) 0.005 (0.002)
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Table 3: Means (standard deviations) of first step ahead prediction errors.

ρ = 0.0 ρ = 0.25 ρ = 0.50 ρ = 0.75
n = 50
PLS BICm 0.136 (0.115) 0.150 (0.116) 0.140 (0.120) 0.158 (0.117)

GIC 0.111 (0.088) 0.127 (0.097) 0.134 (0.098) 0.149 (0.122)
BICp 0.111 (0.088) 0.127 (0.097) 0.131 (0.095) 0.149 (0.122)

PLS + HT BICm 0.121 (0.096) 0.106 (0.086) 0.119 (0.092) 0.139 (0.112)
GIC 0.094 (0.071) 0.118 (0.093) 0.126 (0.094) 0.139 (0.112)
BICp 0.095 (0.071) 0.116 (0.092) 0.124 (0.093) 0.139 (0.112)

n = 100
PLS BICm 0.101 (0.086) 0.105 (0.082) 0.130 (0.112) 0.145 (0.124)

GIC 0.090 (0.070) 0.101 (0.078) 0.105 (0.082) 0.137 (0.109)
BICp 0.091 (0.070) 0.096 (0.072) 0.105 (0.092) 0.137 (0.109)

PLS + HT BICm 0.097 (0.082) 0.096 (0.078) 0.098 (0.088) 0.140 (0.162)
GIC 0.084 (0.063) 0.091 (0.071) 0.103 (0.081) 0.130 (0.111)
BICp 0.084 (0.063) 0.091 (0.071) 0.103 (0.081) 0.130 (0.111)

n = 200
PLS BICm 0.091 (0.070) 0.105 (0.081) 0.114 (0.087) 0.174 (0.129)

GIC 0.087 (0.068) 0.095 (0.072) 0.102 (0.077) 0.139 (0.114)
BICp 0.086 (0.068) 0.095 (0.072) 0.102 (0.077) 0.139 (0.114)

PLS + HT BICm 0.084 (0.066) 0.090 (0.069) 0.091 (0.068) 0.123 (0.096)
GIC 0.083 (0.063) 0.090 (0.069) 0.098 (0.076) 0.126 (0.100)
BICp 0.082 (0.063) 0.092 (0.070) 0.098 (0.076) 0.126 (0.100)

The first step ahead prediction error (PE), which is defined as

PE =
√(

ŷn+1 − yn+1|n
)2, (3.4)

is also investigated. Table 3 shows the means and standard errors of PE for ρ = 0, 0.25, 0.5, 0.75
based on 500 simulations. The PE increases as the autoregressive coefficient increases, but the
PE decreases as the sample size increases. From Table 3, we see that PLS + HT works better
than the existing procedures and there is almost no difference in the PE depending on the
information criteria. The models evaluated by BICm perform well for large sample sizes.

The means and standard deviations of the number and deviation of basis functions
are shown in Tables 4 and 5. The BICp gives a smaller number of basis functions than
the other information criteria. The models evaluated by BICp also give smaller standard
deviations of the number of basis functions. The models determined by BICp tend to choose
larger deviations of basis functions than those based on BICm and GIC. The number of basis
functions increases gradually as the sample size or ρ increase. From Table 4, it appears that
the number of basis functions does not depend on the sample size n. From Table 5, it also
appears that the deviations of basis functions do not depend on the sample size n and ρ.

We now compare the performance of our procedure with existing procedures in terms
of the reduction of model complexity. Table 6 shows simulation results of the means and
standard deviations of the number of parameters excluded (β = 0 or w = 0) by the proposed
procedure. The results indicate that the proposed procedure reduces model complexity. From
Table 6, It appears that the models determined by BICp tend to exclude fewer parameters
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Table 4: Means (standard deviations) of the number of basis functions.

ρ = 0.0 ρ = 0.25 ρ = 0.50 ρ = 0.75
n = 50
BICm 7.87 (1.38) 8.85 (1.13) 8.76 (1.24) 8.82 (1.17)
GIC 8.06 (1.44) 8.75 (1.27) 8.84 (1.20) 8.84 (1.24)
BICp 6.02 (0.14) 6.15 (0.53) 6.17 (0.37) 6.21 (0.48)
n = 100
BICm 7.98 (1.31) 8.83 (1.17) 8.71 (1.30) 8.71 (1.30)
GIC 8.01 (1.37) 8.91 (1.18) 8.67 (1.29) 8.95 (1.20)
BICp 6.20 (0.50) 6.22 (0.44) 6.31 (0.60) 6.35 (0.66)
n = 200
BICm 7.93 (1.33) 8.18 (1.44) 8.25 (1.48) 8.20 (1.39)
GIC 8.11 (1.35) 8.11 (1.52) 8.39 (1.41) 8.55 (1.37)
BICp 6.15 (0.66) 6.22 (0.73) 6.46 (1.03) 6.93 (1.43)

Table 5: Means (standard deviations) of the deviations of basis functions.

ρ = 0.0 ρ = 0.25 ρ = 0.50 ρ = 0.75
n = 50
BICm 0.10 (0.02) 0.10 (0.02) 0.10 (0.02) 0.10 (0.02)
GIC 0.11 (0.03) 0.10 (0.03) 0.10 (0.03) 0.10 (0.03)
BICp 0.14 (0.02) 0.18 (0.03) 0.16 (0.03) 0.16 (0.03)
n = 100
BICm 0.10 (0.02) 0.09 (0.02) 0.09 (0.02) 0.09 (0.03)
GIC 0.11 (0.03) 0.09 (0.02) 0.10 (0.03) 0.09 (0.02)
BICp 0.15 (0.02) 0.15 (0.04) 0.15 (0.03) 0.13 (0.03)
n = 200
BICm 0.10 (0.02) 0.11 (0.03) 0.11 (0.03) 0.10 (0.03)
GIC 0.11 (0.03) 0.12 (0.04) 0.11 (0.04) 0.10 (0.03)
BICp 0.15 (0.03) 0.17 (0.02) 0.16 (0.03) 0.14 (0.04)

and give smaller standard deviations for the number of parameters excluded. This is due
to the selection of a smaller number of basis functions compared to the selection based on
the other criteria (see Table 4). There is almost no dependence of the number of excluded
parameters on ρ. The models evaluated by BICp give a larger number of excluded parameters
as the sample size increases. On the other hand, the models evaluated by BICm or GIC give a
smaller number of excluded parameters as the sample size increases.

Table 7 shows the means and standard deviations of the number of basis functions
excluded as w = 0 by the proposed procedure. From Table 7 it appears that the models
evaluated by BICp tend to exclude fewer basis functions than those based on GIC and BIC.
Again this is due to the selection of a smaller number of basis functions (see Table 4). The
models determined by BICp also give smaller standard deviations of the number of basis
functions than the other criteria. There is almost no dependence of the number of basis
functions on ρ.

Table 8 shows the means and standard deviations of the number of basis functions
excluded as β = 0 by the proposed procedure. The number of β which values really 0 was five.
From Table 8 we see that the proposed procedure gives nearly five. The models determined
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Table 6: Means (standard deviations) of the number of parameters excluded.

ρ = 0.0 ρ = 0.25 ρ = 0.50 ρ = 0.75
n = 50
PLS + HT BICm 7.715 (0.915) 6.910 (1.087) 7.300 (1.364) 6.888 (1.343)

GIC 8.345 (1.568) 7.404 (1.850) 7.620 (1.715) 7.337 (1.598)
BICp 4.950 (0.419) 5.020 (0.502) 5.070 (0.492) 5.092 (0.421)

n = 100
PLS + HT BICm 7.506 (0.784) 7.334 (1.251) 5.698 (0.772) 5.460 (0.700)

GIC 7.916 (1.239) 7.718 (1.435) 5.906 (0.919) 5.740 (0.866)
BICp 4.990 (0.184) 5.076 (0.332) 5.092 (0.316) 5.086 (0.327)

n = 200
PLS + HT BICm 7.062 (0.723) 5.594 (0.744) 5.544 (0.736) 5.460 (0.702)

GIC 7.450 (1.116) 5.764 (0.847) 5.656 (0.864) 5.586 (0.802)
BICp 5.008 (0.109) 5.152 (0.359) 5.162 (0.385) 5.086 (0.356)

Table 7: Means (stnadard deviations) of the number of basis functions excluded.

ρ = 0.0 ρ = 0.25 ρ = 0.50 ρ = 0.75
n = 50
BICm 3.52 (2.29) 4.21 (2.23) 3.98 (1.60) 3.96 (1.49)
GIC 3.74 (2.15) 4.40 (1.90) 4.18 (1.51) 4.26 (1.46)
BICp 1.03 (0.22) 1.20 (0.60) 1.28 (0.54) 1.24 (0.49)
n = 100
BICm 3.35 (2.19) 4.49 (2.04) 3.78 (1.58) 3.95 (1.60)
GIC 3.67 (2.15) 4.62 (1.84) 3.91 (1.53) 4.30 (1.60)
BICp 1.06 (0.31) 1.78 (0.96) 1.31 (0.60) 1.36 (0.66)
n = 200
BICm 3.64 (2.13) 3.26 (1.71) 3.26 (1.71) 3.61 (1.60)
GIC 3.86 (2.02) 3.43 (1.81) 3.65 (1.69) 3.89 (1.76)
BICp 1.12 (0.34) 1.23 (0.75) 1.46 (1.03) 1.93 (1.44)

by BICp give results more close to five and smaller standard deviations of the number of basis
functions than the other criteria. The number of basis functions approaches five as the sample
size increases. The standard deviations of the number of basis functions excluded decrease as
ρ increases. These results indicate that the proposed procedure reduces model complexity.

Table 9 shows the percentage of times that various βi were estimated as being zero.
As for the parameters βj /= 0, j = 1, 2, 5, these parameters were not estimated zero for every
simulations, we omit to show the corresponding results on Table 9. The results indicate that
the proposed procedure excludes insignificant variables and selects significant variables.
It can be seen that the proposed procedure gives a better performance as the sample size
increases and that BICp is superior to the other criteria.

4. Real Data Analysis

In this section we present the consequence of analyzing the real-time series data using pro-
posed procedure. We use two data in this study; the data about the spirit consumption data
in United Kingdom and the association between fertility and female employment in Japan.
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Figure 2: Application data-set: (a): yi = log(the annual per capita consumption of spirits); (b): xi1 = log(per
capita income); (c): xi2 = log(price of spirits).

Table 8: Means (standard deviations) of the number of explanatory variables excluded.

ρ = 0.0 ρ = 0.25 ρ = 0.50 ρ = 0.75
n = 50
BICm 4.14 (1.60) 4.15 (1.63) 4.69 (0.92) 4.79 (0.74)
GIC 4.28 (1.47) 4.35 (1.41) 4.70 (0.89) 4.72 (0.87)
BICp 4.97 (0.21) 4.95 (0.26) 4.97 (0.23) 4.99 (0.14)
n = 100
BICm 4.15 (1.59) 4.17 (1.55) 4.72 (0.92) 4.77 (0.87)
GIC 4.22 (1.51) 4.29 (1.47) 4.77 (0.84) 4.65 (1.03)
BICp 4.98 (0.14) 4.95 (0.26) 5.00 (0.04) 5.00 (0.06)
n = 200
BICm 4.14 (1.59) 4.78 (0.82) 4.78 (0.82) 4.72 (0.86)
GIC 4.16 (1.55) 4.68 (1.01) 4.75 (0.88) 4.66 (1.04)
BICp 4.99 (0.11) 4.99 (0.15) 5.00 (0.00) 5.00 (0.04)

4.1. The Spirit Consumption Data in the United Kingdom

We now illustrate our theory through an application to spirit consumption data for the United
Kingdom from 1870 to 1938. The data-set can be found in Fuller [26, page 523]. In this data-
set, the dependent variable yi is the logarithm of the annual per capita consumption of spirits.
The explanatory variables xi1 and xi2 are the logarithms of per capita income and the price of
spirits, respectively, and xi3 = xi1xi2. Figure 2 shows that there is a change-point at the start
of the First World War (1914). Therefore, we prepare a variable z: z = 0 from 1870 to 1914 and
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Table 9: Percentage of times βi is estimated as zero.

β3 = 0 β4 = 0 β6 = 0 β7 = 0 β8 = 0

n = 50 ρ = 0

BICm 0.84 0.83 0.82 0.83 0.82

GIC 0.87 0.85 0.87 0.86 0.83

BICp 1.00 0.99 0.99 1.00 1.00

ρ = 0.25
BICm 0.83 0.83 0.84 0.83 0.83

GIC 0.86 0.86 0.86 0.89 0.87

BICp 0.99 0.99 0.99 0.99 0.98

ρ = 0.50

BICm 0.95 0.93 0.94 0.94 0.93

GIC 0.94 0.94 0.93 0.94 0.95

BICp 0.99 0.99 1.00 1.00 0.99

ρ = 0.75

BICm 0.96 0.96 0.95 0.95 0.97

GIC 0.94 0.93 0.95 0.94 0.96

BICp 1.00 1.00 1.00 1.00 1.00

n = 100 ρ = 0

BICm 0.83 0.83 0.84 0.82 0.82

GIC 0.85 0.84 0.85 0.84 0.84

BICp 1.00 0.99 1.00 0.99 1.00

ρ = 0.25

BICm 0.83 0.84 0.83 0.82 0.85

GIC 0.87 0.85 0.88 0.85 0.85

BICp 0.99 0.99 0.99 0.99 1.00

ρ = 0.50

BICm 0.95 0.93 0.95 0.95 0.94

GIC 0.96 0.95 0.94 0.96 0.95

BICp 1.00 1.00 1.00 1.00 1.00

ρ = 0.75

BICm 0.96 0.95 0.95 0.95 0.95

GIC 0.93 0.94 0.94 0.92 0.92

BICp 1.00 1.00 1.00 1.00 1.00

n = 200 ρ = 0

BICm 0.92 0.93 0.92 0.91 0.94

GIC 0.94 0.94 0.94 0.95 0.95

BICp 1.00 1.00 1.00 1.00 0.99
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Table 9: Continued.

β3 = 0 β4 = 0 β6 = 0 β7 = 0 β8 = 0
ρ = 0.25
BICm 0.95 0.94 0.94 0.95 0.93
GIC 0.94 0.94 0.94 0.94 0.93
BICp 1.00 1.00 1.00 1.00 1.00

ρ = 0.50
BICm 0.97 0.95 0.95 0.96 0.95
GIC 0.96 0.95 0.95 0.94 0.95
BICp 1.00 1.00 1.00 1.00 1.00

ρ = 0.75
BICm 0.96 0.94 0.95 0.95 0.93
GIC 0.93 0.93 0.93 0.94 0.94
BICp 1.00 1.00 1.00 1.00 1.00

Table 10: Estimated Coefficients for Model 4.1.

PLS estimators SE PLS + HT estimators SE
β1 −0.653 3.080 0
β2 −1.121 5.962 0
β3 1.842 9.164 0
β4 3.570 3.761 2.395 0.421
β5 −2.553 4.455 0
β6 −1.25 7.763 −2.411 0.524

z = 1 from 1915 to 1933. From this we derive another three explanatory variables: xi4 = xi1z,
xi5 = xi2z, and xi6 = xi3z. We consider the semiparametric model:

yi = α(ti) + β′xi + εi, i = 1, . . . , 69. (4.1)

We computed the basis function estimate for α using the existing procedure (PLS) and
the proposed procedure (PLS + HT) with BICp. The resulting estimates and standard errors
(SEs) of β are given in Table 10. The selected number of basis function is seven with one
excluded basis function and the spread parameter s is estimated as 0.12. Therefore, we obtain
the model

ŷi = α̂(ti) + 2.395xi4 − 2.411xi5, i = 1, . . . , 69. (4.2)

The results indicate that the proposed procedure excludes some variable and reduces model
complexity. Table 10 shows that PLS + HT selects only β4 and β6. That indicates possible
interactions between consumption and income and between consumption and income×price
after 1915. Consumption increases as income increases; however, as income increases and the
price also increases, consumption decreases. We plot the estimated trend curve, residuals and
autocorrelations functions in Figures 3 to 5. The residual mean square is 1.7 × 10−4.
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Figure 3: Plots of estimated curves. The solid line represents y; the dotted lines are the estimates of y; the
dashed lines are the estimated curve α̂.
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Figure 4: Plot of residuals.

You and Chen [10] used the following semiparametric partially linear regression
model:

yi = α(ti) + β1xi1 + β2xi2 + εi, i = 1, . . . , 69. (4.3)

The semiparametric least-square (SLS) regression gives ŷi = α̂(ti) + 0.65xi1 − 0.95xi2. The
residual mean square is 2.2 × 10−4, which is more than that of our SGLSE fit. For a fair
comparison, we use model (4.3) to revise You and Chen’s estimation. Our semiparametric
generalized least-square gives ŷi = α̂(ti) − 0.71xi2. The result indicates that xi1 is insignificant
in model (4.3).
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Figure 5: ACF plot of residuals.
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Figure 6: Plots of standardized total fertility rate and female labor force participation rate for women aged
15 to 49 in Japan, 1968–2007. The solid line represents standardized TRF; the dotted lines are standardized
FLP.

4.2. The Association between Fertility and Female Employment in Japan

Recent literature finds that in OECD countries the cross-country correlation between the total
fertility rate and the female labor force participation rate, which until the beginning of the
1980s had a negative value, has since acquired a positive value. See for example, Brewster and
Rindfuss [27], Ahn and Mira [28], and Engelhardt et al. [29]. This result is often interpreted
as evidence for a changing sign in the time series association between fertility and female
employment within OECD countries.

However, OECD countries, including Japan, have different cultural backgrounds. We
investigate whether or not the relation between the total fertility rate (TFR) and the female
labor force participation rate (FLP) has changed in Japan from a negative value to a positive
value. This application challenges previous findings and could be good news for policy
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y; the dashed lines are the estimated curves of α.

Table 11: Estimated coefficients for Model 4.4.

log(FLP) PLS estimators SE PLS + HT estimators SE
for 1968–1984 −0.32 −1.99 −0.36 −2.16
for 1984–2007 −0.28 −2.00 −0.31 −2.18
for 1968–1979 0.02 0.17 0
for 1980–1989 0 1.37 0
for 1990–1999 −0.04 −0.51 0
for 2000–2007 0.04 0.17 0

makers, as a positive relationship implies that a rising FLP is associated with an increasing
TFR.

Usually, FLP contains all women aged 15 to 64. However, TFR is a combination of
fertility rates for ages 15–49, so we use the FLP of women aged 15 to 49 instead of women
aged 15 to 64. We take the TFR from 1968 to 2007 in Japan. The estimation is a semiparametric
regression of log(TFRi) on log(FLPi). As the law of the Equal Employment Act came into
force in 1985, we use the interaction variables “dummy for 1968–1984 × log(TFR)” (xi2) and
for 1985–2007 (xi3). We also use dummy variables for 1990–1999 and 2000–2007 (xi4, xi5) and
consider the semiparametric model

log (TFR)i = α(ti) + β′xi + εi, i = 1, . . . , 40. (4.4)

We applied the existing procedure (PLS) and proposed procedure (PLS + HT) with
BICp. The resulting estimates and standard errors (SE) of β are given in Table 11. Therefore,
we obtain the model

ŷi = α̂(ti) − 0.27xi1 − 0.20xi2, i = 1, . . . , 40. (4.5)

The residual mean square of PLS + HT is 2.24×10−2 and that of PLS is 2.47×10−2. The selected
number of basis functions is six with one excluded basis function and the spread parameter s
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is estimated as 0.30. Table 11 shows that PLS + HT selects only log(FLPi) 1968–1984 and 1985–
2007. That indicates a negative correlation between TFR and FLP for 1968–2007, especially
for 1968–1984, which means TFR decreases as FLP increases. We could not see the positive
association in 80s which has been reported in recent studies, see, for example, Brewster and
Rindfuss [27], Ahn and Mira [28], and Engelhardt et al. [29]. We plot the estimated trend
curve, residuals and autocorrelation functions in Figures 7 to 9.

5. Concluding Remarks

In this article we have proposed variable and model selection procedures for the semi-
parametric time series regression. We used the basis functions to fit the trend component.
An algorithm of estimation procedures is provided and the asymptotic properties are inves-
tigated. From the numerical simulations, we have confirmed that the models determined by
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the proposed procedure are superior to those based on the existing procedure. They reduce
the complexity of models and give good fitting by excluding basis functions and nuisance
explanatory variables.

The development here is limited to the case with Gaussian stationary errors, but
it seems likely our approach can be extended to the case with non-Gaussian long-range
dependent errors, along with the lines explored in recent work by Aneiros-Pérez et al. [30].
However, the efficient estimation for regression parameter is an open question in case of
long-range dependence. This is a question we hope to address in future work. We also plan to
explore the question of whether the proposed techniques can be extended to the cointegrating
regression models with an autoregressive distributed lag framework.

Appendix

Proofs

In this appendix we give the proofs of the theorems in Section 2. We use ‖x‖ to denote the
Euclidian norm of x.

Let aτ,n = (a1,n, . . . , aτ,n)
′ be the infeasible estimator for aτ = (a1, . . . , aτ)

′ constructed
using OLS methods. That is aτ,n = (a1,n, a2,n, . . . , aτ,n)

′ = (E
′
τEτ)

−1E
′
τε, where ε = (ετ+1, . . . , εn)

′

and Eτ = [εi,j], i = 1, . . . , n, j = 1, . . . , τ with εi,j = εi−j−τ . For ease of notation, we set âj,n =
aj,n = 0 for j > τ , and â0,n = a0,n = 1. We write Γ(k) for cov(ε0, εk). Then we can construct
the infeasible estimate V using aτ,n and Γ(k), k = 0, . . . , τ . The following lemma states that the
estimators β̂ and ŵ given in Theorem 2.1 have asymptotically normal distributions.

Lemma .1. Under the assumptions of Theorem 2.1, one has

√
n
(
β̂ − β

)
→
D
N
(

0,Σ−1
1

)
, (A.1)

√
n(ŵ −w) →

D
N
(

0,Σ−1
2

)
, (A.2)

where Σ−1
1 and Σ−1

2 are defined in Theorem 2.1.

Proof of Lemma .1. From model (2.6), y − Xβ − Bw can be written as

y − Xβ − Bw = y − Bw +
(
ỹ − X̃β

)
−
(
ỹ − X̃β

)
− Xβ

=
(
ỹ − X̃β

)
+
(
X̃ − X

)
β − (ỹ − y) − Bw

=
(
ỹ − X̃β

)
+ S(y − Xβ) − Bw

=
(
ỹ − X̃β

)
− B(w − w̃),

(A.3)
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where ỹ, X̃, and w̃ are given by ỹ = (I−S)y, X̃ = (I−S)X, and w̃ = (B′B+nξK)−1B′ε, respectively.
Hence w̃ can be expressed without using β. Then the minimization functionL(β,w) in (2.17)
can be written as

L(β,w) =
1
2

{(
ỹ − X̃β

)′
V−1
(
ỹ − X̃β

)
− 2(w̃ −w)′B′V−1

(
ỹ − X̃β

)

+ (w − w̃)′B′V−1B(w − w̃)
}
+ αw′Kw

≡ I1(β) + I2(β,w) + I3(w) + I4(w).

(A.4)

First we consider asymptotic normality for ŵ, using the model

y = Xβ0 + Bw0 + ε. (A.5)

The estimators ŵ minimize the function L(β,w), which yields

∂L(β,w)
∂(w)

= I ′2(β,w) + I ′3(w) + I ′4(w)

= −B′V−1
(
ỹ − X̃β

)
+ B′V−1B(w −w0)

+ B′V−1B(w0 − w̃) + 2nξK(w −w0) + nξKw0.

(A.6)

Then the minimization of this quadratic function is given by

ŵ −w0 =
(
B′V−1B + nξK

)−1
B′V−1

{(
ỹ − X̃β

)
− B(w̃ −w0) − nξVB−1Kw0

}

=
(
B′V−1B + nξK

)−1
B′V−1

(
ỹ − X̃β

)

+
(
B′V−1B + nξK

)−1
B′V−1B(w0 − w̃)

− nξ
(
B′V−1B + nξK

)−1
B′V−1VB−1Kw0

≡ A1 +A2 +A3.

(A.7)



28 Journal of Probability and Statistics

We now deal with A1, A2, and A3. First we evaluate A1. From the expansion (A + aB)−1 =
A−1 − aA−1BA−1 +O(a2), we can see that

A1 =
(
B′V−1B + nξK

)−1
B′V−1ε

=

(
B′V−1B

n
+ ξK

)−1
B′V−1ε

n

=

⎧
⎨

⎩

(
B′V−1B

n
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K
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(
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)
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n
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n
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K
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n
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(
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)B′V−1

n
ε
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(
B′V−1B

n

)−1
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n
ε +O(ξ) +O

(
ξ2
)
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(A.8)

Similarly, we obtain

A2 =
(
B′V−1B + nξK

)−1
B′V−1B(w0 − w̃)

=

(
B′V−1B

n
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⎩
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)
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(A.9)

Finally, we can evaluate A3 as follows:

A3 = −
(
B′V−1B + nξK

)−1
B′V−1B−1nξKw0

=
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B′V−1B

n
+ ξK

)−1

ξKw0

=

⎧
⎨

⎩

(
B′V−1B

n

)−1

− ξ
(

B′V−1B
n

)−1

K

(
B′V−1B

n

)−1

+O
(
ξ2
)
⎫
⎬

⎭ξKw0

= −ξ
(

B′V−1B
n

)−1

Kw0 + ξ2

(
B′V−1B
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(
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Kw0.

(A.10)
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We can also observe that the weighted least-square estimates w̃ have a normal distribution.
Hence

w̃ −w0 = Op

(
n−1/2

)
. (A.11)

If ξ = O(nη) and η < −1/2, then A1, A2, and A3 become

A1 =

(
B′V−1B

n

)−1
B′V−1

n
ε +O(ξ) +O

(
ξ2
)
,

A2 = (w0 − w̃) +O(ξ) ×Op(w0 − w̃) +O
(
ξ2
)
×Op(w0 − w̃) = Op

(
n−1/2

)
,

(A.12)

and A3 = O(ξ) +O(ξ2) +O(ξ3) = O(ξ). Therefore, (A.7) can be written as

ŵ −w0 =

(
B′V−1B

n

)−1
B′V−1

n
ε +Op

(
n−1/2

)
. (A.13)

By the law of large numbers and the central limit theorem,

√
n(ŵ −w0) →

D
N
(

0,Σ−1
2

)
. (A.14)

Next we deal with the estimators β̂. These minimize the function L(β,w), which yields

∂L(β,w)
∂β

= I ′1(β) + I
′
2(β,w) = −X̃′V−1ε + X̃′V−1X̃

(
β − β0

)
+ X̃′V−1B(w − w̃). (A.15)

The minimization of this quadratic function is given by

β̂ = β0 +
(
X̃′V−1X̃

)−1{
X̃′V−1ε + X̃′V−1B(w − w̃)

}

= β0 +
(
X̃′V−1X̃

)−1
X̃′V−1{ε + B(w − w̃)}.

(A.16)

If we substitute w for its estimator ŵ0, from (A.14) and (A.11), we have

β̂ = β0 +
(
X̃′V−1X̃

)−1{
X̃′V−1ε + X̃′V−1B(ŵ0 − w̃)

}

= β0 +
(
X̃′V−1X̃

)−1
X̃′V−1ε +Op

(
n−1/2

)
.

(A.17)

Similarly, by the law of large numbers and the central limit theorem,

√
n
(
β̂ − β0

)
→
D
N
(

0,Σ−1
1

)
. (A.18)

This completes the proof of the lemma.
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Proof of Theorem 2.1. Let the estimator âτ,n = (â1,n, . . . âτ,n)
′ be the ordinary least-square

estimate applied to model (2.18). For the ease of notation, we set âj,n = aj,n = 0 for j > τ
and â0,n = a0,n = 1. Then we write

êi,n = ei − Si,n + Ri,n +Qi,n, (A.19)

where

Si,n =
∞∑

j=0

aj

{(
β̂ − β

)′
xi−j + (ŵ −w)′φi−j

}
,

Ri,n =
τ∑

j=0

(
âj,n − aj,n

)(
yi−j − β̂

′
xi−j − ŵ′φi−j

)
,

Qi,n =
∞∑

j=0

(
aj,n − aj

)(
yi−j − β̂

′
xi−j − ŵ′φi−j

)
.

(A.20)

From assumptions (A.1), (A.2), and Lemma .1 we can see that under the assumptions about
τ and by the Caucy-Schwarz inequality

|Si,n| ≤
∞∑

j=0

∣∣aj
∣∣
∣∣∣∣
(
β̂ − β

)′
xi−j + (ŵ −w)′φi−j

∣∣∣∣

≤
∥∥∥β̂ − β

∥∥∥
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j=0

ajxi−j
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+ ‖ŵ −w‖
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∞∑

j=0

ajφi−j
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= Op

(
n−1/2

)
.

(A.21)

Next we evaluate Ri,n. In An et al. [31, proof of Theorem 5]: it is shown that, under the
assumptions about τ(n),

τ∑

j=0

(
âj,n − aj,n

)2 = o

((
log(n)
n

)1/2
)
. (A.22)

Thus, by the Cauchy-Schwarz inequality

|Ri,n| ≤

⎛

⎝
τ∑

j=0

(
âj,n − aj,n

)2

⎞

⎠
1/2⎛

⎝
τ∑

j=0

(
yi−j − β̂

′
xi−j − ŵ′φi−j

)2

⎞

⎠
1/2

, (A.23)

which yields Ri,n = o((log(n)/n)1/4))Op(τ1/2) = op(1). Finally, we evaluate Qi,n. By the
extended Baxter inequality from Bühlmann [32, proof of Theorem 3.1], we have

∞∑

j=0

∣∣aj,n − aj
∣∣ ≤ C

∞∑

j=τ+1

∣∣aj
∣∣. (A.24)
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Notice that yi−j − β̂
′
xi−j − ŵ′φi−j = ei,n. Since ei,n is a stationary and invertible process whose

linear process coefficients satisfy the given summability assumptions, we have for some
M > 0,

|Qi,n| ≤M
∞∑

j=0

∣∣aj,n − aj
∣∣ ≤M

∞∑

j=τ+1

∣∣aj
∣∣ = op(1). (A.25)

From the above decomposition and evaluation, we can see that

y − Xβ − Bw = yτ̂ − Xτ̂ β̂ − Bτ̂ŵ + op(1). (A.26)

Therefore, in order to prove the second equation in Theorem 2.1 we just need to show

1
n

(
X̃′V̂−1

τ X̃ − X̃′V−1
τ X̃
)
= Op

((
τ

n

)1/2
)
,

1
n

(
B′V̂−1

τ B − B′V−1
τ B
)
= Op

((
τ

n

)1/2
)
,

1√
n
X̃′
(
V̂−1
τ −V−1

τ

)
ε = Op

((
τ

n

)1/2
)
,

1√
n
B′
(
V̂−1
τ −V−1

τ

)
ε = Op

((
τ

n

)1/2
)
.

(A.27)

To see the above results are true, let yτ,i be the ith element yτ of model (2.20). We have for T̂τ,i
(the ith row of T̂τ), X̃τ,i (the ith column of X̃τ), and Bτ,i (the ith column of Bτ)

êi = T̂τ,iε = ei +
τ∑

j=1

(
âj − aj

)
εi−j ,

X̃τ̂ ,ij = T̂τ,j · X̃τ,·i = X̃τ,ij +
τ∑

j=1

ajX̃i−j,i +
τ∑

j=1

(
âj − aj

)
X̃i−j,i

≡ X̃τ,ij +
τ∑

j=1

(
âj − aj

)
X̃i−j,i,

B̂τ̂ ,ij = T̂τ,j · Bτ,·i = Bτ,ij +
τ∑

j=1

ajBi−j,i +
τ∑

j=1

(
âj − aj

)
Bi−j,i

≡ Bτ,ij +
τ∑

j=1

(
âj − aj

)
Bi−j,i

(A.28)
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for i = τ + 1, τ + 2, . . . , n, with similar expressions holding for i = 1, 2, . . . , τ . By (A.26) and the
fact that ‖âτ − a‖ = Op((τ/n)

1/2) (see Xiao et al. [22]), it follows that

1√
n

n∑

i=1

êiX̃τ̂ ,ij =
1√
n

n∑

i=1

eiX̃τ,ij +Op

((
τ

n

)1/2
)
,

1
n

n∑
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X̃τ̂,ij X̃τ̂ ,ik =
1
n

n∑

i=1

X̃τ,ij X̃τ,ik +Op

((
τ

n

)1/2
)
,

1√
n

n∑

i=1

êiB̂τ,ij =
1√
n

n∑

i=1

eiBτ,ij +Op

((
τ

n

)1/2
)
,

1
n

n∑

i=1

B̂τ,ij B̂τ,ik =
1
n

n∑

i=1

Bτ,ijBτ,ik +Op

((
τ

n

)1/2
)
.

(A.29)

Therefore, using the expansion (A+ aB)−1 = A−1 − aA−1BA−1 +O(a2) and from (A.17), (A.13)
and (A.27), we have

√
n
(
β̂SGLSE − β0

)
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(
X̃′V̂−1X̃

n
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1√
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+Op
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τ
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))−1
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ε +Op
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τ
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+Op
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n
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+Op
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τ

n
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)
,
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B′V̂−1B
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(
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+Op
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(
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(
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+Op

((
τ

n
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)
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(A.30)

This completes the proof of Theorem 2.1.
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Proof of Theorem 2.2. We write αn = n−1/2 + an. It is sufficient to show that, for any given ζ > 0,
there exist large constants C such that

P

{
inf
‖u‖=C

S(θ0 + αnu) ≥ S(θ0)
}
≤ 1 − ζ. (A.31)

This implies, with probability at least 1 − ζ, that there exists a local minimizer in the balls
{θ0 + αnu : ‖u‖ ≤ C}. Define

Dn(u) = S(θ0 + αnu) − S(θ0). (A.32)

Note that pλjn(0) = 0 and that pλjn(|θj |) is nonnegative, so

Dn(u) ≥ n−1{l(θ0 + αnu) − l(θ0)}

+
d+m∑

j=1

{
pλjn
(∣∣θj0 + αnuj

∣∣) − pλjn
(∣∣θj0

∣∣)
}

+ ξ(θ0 + αnu)′K̃(θ0 + αnu) − ξθ
′

0K̃θ0,

(A.33)

where l(θ) is the first term of (2.7) and K̃ is defined in (2.47). Now

1
2
n−1{l(θ0 + αnu) − l(θ)}

=
α2

1n

2
u
′

1

{
B′VB
n

+ op(1)
}
u1 − α1nu

′

1

{
B′V
n

ε + op
(
n−1/2

)}

+
α2

2n

2
u
′

2

{
X̃′V−1X̃

n
+ op(1)

}
u2 − α2nu

′

2

{
X̃′V−1

n
ε + op

(
n−1/2

)}
.

(A.34)

Note that B′V̂−1B/n → Σ1, B′V̂−1ε/n → ξ1, X̃′V̂−1X̃/n → Σ2, and X̃′V̂−1ε/n → ξ2 are
finite positive definite matrices in probability. So the first term in the right side of (A.34) is
of order Op(C2

1α
2
1n), and the second term is of order Op(C1n

−1/2α1n) = Op(Cα2
1n). Similarly,

the third term of (A.34) is of order Op(C2
2α

2
2n) and the fourth term is order Op(C2n

−1/2α2
2n).

Furthermore,

m∑

j=1

{
pλj1n
(∣∣wj0 + α1nuj

∣∣) − pλj1n
(∣∣wj0

∣∣)
}
, (A.35)

d∑

j=1

{
pλj2n
(∣∣βj0 + α2nuj

∣∣) − pλj2n
(∣∣βj0

∣∣)
}
, (A.36)
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are bounded by

√
mα1na1n‖u‖ + α2

1nb1n‖u‖2 = Cα2
n

(√
m + b1nC

)
,

√
dα2na2n‖u‖ + α2

nb2n‖u‖2 = Cα2
2n

(√
d + b2nC

) (A.37)

by the Taylor expansion and the Cauchy-Schwarz inequality. As bn → 0, the first term on the
right side of (A.34) will dominate (A.35) and (A.36) as well as the second term on the right
side of (A.34), by taking C sufficiently large. Hence (A.31) holds for sufficiently large C. This
completes the proof of the theorem.

Lemma .2. Under the conditions of Theorem 2.3, with probability tending 1, for any given β and w,
satisfying ‖β1 − β10‖ = ‖w1 −w10‖ = Op(n−1/2) and any constant C,

S
{(

β
′

1, 0
′
)′
,
(
w
′

1, 0
′
)}

= min
‖β2‖≤C1n−1/2,‖w2‖≤C2n−1/2,

S
{(

β
′

1,β
′

2

)′
,
(
w
′

1,w
′

2

)′}
. (A.38)

Proof. We show that with probability tending to 1, as n → ∞, for any β1 and w1 satisfying
‖β1 − β10‖ = ‖w1 − w10‖ = Op(n−1/2), ‖β2‖ ≤ C1n

−1/2, and ‖w2‖ ≤ C2n
−1/2, ∂l(β,w)/∂βj and

βj have the same signs for βj ∈ (−C1n
−1/2, C1n

−1/2), for j = S1 + 1, . . . , d. Also ∂l(β,w)/∂wj

and wj have the same signs for wj ∈ (−C2n
−1/2, C2n

−1/2), for j = S2 + 1, . . . , m. Thus the
minimization is attained at β2 = w2 = 0.

For βj /= 0 and j = S1 + 1, . . . , d,

∂S(β)
∂βj

= l′j
(
β
)
+ npλj2n

(∣∣βj
∣∣)sgn

(
βj
)
, (A.39)

where l′j(β) = ∂l(β)/∂βj . By the proof of Theorem 2.1,

l′j(β) = −n
{
ξ̂2j −

(
β − β0

)′Σ1j +Op

(
n−1/2

)}
, (A.40)

where ξ2j is the jth component of ξ2n and Σ̂1j is the jth column of Σ̂1. From ‖β − β0‖ =
Op(n−1/2), n−1l′j(β) is of order Op(n−1/2). Therefore,

∂S(β)
∂βj

= nλj2n
{
λj1np

′
λj1n

(∣∣βj
∣∣)sgn

(
βj
)
+Op

(
n−1/2/λ1n

)}
. (A.41)

Because lim infn→∞lim infβj → 0+λ
−1
j1np

′
λj1n

(|βj |) > 0 and n−1/2λj1n → 0, the sign of the derivative
is completely determined by that of βj .

For wj /= 0 and j = S1 + 1, . . . , m,

∂S(w)
∂wj

= l′j(w) + npλj1n
(∣∣wj

∣∣)sgn
(
wj

)
+ 2nξKw, (A.42)
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where l′j(w) = ∂l(w)/∂wj . By the proof of Theorem 2.1,

l′j(w) = −n
{
ξ̂1j − (w −w0)′Σ2j +Op

(
n−1/2

)}
, (A.43)

where ξ1j is the jth component of ξ1n and Σ̂2j is the jth column of Σ̂2. From ‖w − w0‖ =
Op(n−1/2), n−1l′j(w) is of order Op(n−1/2). Therefore,

∂S(w)
∂wj

= nλj2n
{
λj2np

′
λj2n

(∣∣wj

∣∣)sgn
(
wj

)
+Op

(
n−1/2/λ2n

)}
. (A.44)

Because lim infn→∞lim infwj → 0+λ
−1
j2np

′
λj2n

(|wj |) > 0 and n−1/2λj2n → 0, n−1/2λj2n → 0, the sign
of the derivative is completely determined by that of wj . This completes the proof.

Proof of Theorem 2.3. Part (a) follows directly from follows by Lemma .2. Now we prove part
(b). Using an argument similar to the proof of Theorem 2.1, it can be shown that there exist
a ŵ1 and β̂1 in Theorem 2.3 that are a root-n consistent local minimizer of S{(w′

1, 0
′)
′} and

S{(β
′

1, 0
′)
′
}, satisfying the penalized least-square equations:
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(A.45)

Following the proof of Theorem 2.1, we have
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(A.46)

where ξ̂1(1) and ξ̂2(1) consist of the first Sj , j = 1, 2, . . . , S1 and j = 1, 2, . . . , S2 components of ξ̂1

and ξ̂2 respectively. Also Σ̂1(1) and Σ̂2(1) consist of the first Sj , j = 1, 2, . . . , S1 and j = 1, 2, . . . , S2

rows and columns of Σ̂1 and Σ̂2, respectively.
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Therefore, similar to the proof of Theorem 2.1 and by Slutsky’s theorem, it follows that

√
n(IS1 + Σλ1(β))

(
β̂1 − β10 + (IS1 + Σλ1(β))

−1bβ
)
−→NS1

(
0,Σ−1

1(1)

)
,

√
n(IS2 + Σλ2(w))

(
ŵ1 −w10 + (IS2 + Σλ2(w) + ξK)−1bw

)
−→NS2

(
0,Σ−1

2(1)

) (A.47)

This completes the proof of Theorem 2.3.
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