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We present a new method, based on the method of maximum entropy in the mean, which builds
upon the standard method of maximum entropy, to improve the parametric estimation of a decay
rate when the measurements are corrupted by large level of noise and, more importantly, when the
number of measurements is small. The method is developed in the context on a concrete example:
that of estimation of the parameter in an exponential distribution. We show how to obtain an
estimator with the noise filtered out, and using simulated data, we compare the performance of
our method with the Bayesian and maximum likelihood approaches.
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1. Introduction

Suppose that you want to measure the half-life of a decaying nucleus or the life-time of some
elementary particle, or some other random variable modeled by an exponential distribution
describing, say a decay time or the life time of a process. Assume as well that the noise in
the measurement process can be modeled by a centered Gaussian random variable whose
variance may be of the same order of magnitude as that of the decay rate to be measured. We
assume that the variance δ of noise is known. To make things worse, assume that you can
only collect very few measurements.

We want to emphasize, that the method developed is tailored to this one important
model in applications, and on the other hand, to the fact that the samples have to be small
and contaminated by observational noise (on top of their inherent randomness). And what
the method provides in general, is a technique for filtering noise out.

Thus, if xi denotes a realized value of the variable, one can only measure yi = xi+ ei, for
i = 1, 2, . . . , n, where n is a small number, say 2 or 3, and e1 denotes the additive measurement
noise. When one knows that the distribution of X is exponential, the parameter should be
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estimated by (1/n)
∑
yi = (1/n)

∑
xi + (1/n)

∑
ei. In other words, assume that you know

that the sample comes from a specific parametric distribution but is contaminated by additive
noise, then your estimator of the relevant parameters is contaminated by the measurement
noise. What to do? One possible approach is to apply to the small sample the standard
statistical estimation procedures like maximum likelihood. But these work well when the
sample size is larger than what concerns us here. In our particular example, the MLE is
(1/n)

∑
yi in which the noise may be important (unless n is large.) Thus apart from the

issues arising from the smallness of the sample, we have the issue of the presence of the
observational noise. We should direct the reader to the work of Rousseeuw and Verboven
[1], in which issues relating to estimation in small samples are discussed.

Still another possibility, the one we want to explore here, is to apply a maxentropic
filtering method, to estimate both the unknown variable and the noise level. For this we
recast the problem as a typical inverse problem consisting of solving for x in

y = Ax + e, x ∈ K, (1.1)

where K is a convex set in R
d, y ∈ R

k and for some d and k, and A is an k × d-matrix which
depends on how we rephrase the our problem. We could, for example, consider the following
problem. Find x̂ ∈ [0,∞) such that

ŷ = x̂ + ê. (1.2)

In our case K = [0,∞), and we set ŷ = (1/n)Σj yj . Or we could consider a collection
of n such problems, one for every measurement, and then proceed to carry on the estimation.
Once we have solved the generic problem (1.1), the variations on the theme are easy to write
down. What is important to keep in mind here, is that the output of the method is a filtered
estimator x̂ ∗ of x̂, which itself is an estimator of the unknown parameter. The novelty then is
to filter out the noise in (1.2).

The method of maximum entropy in the mean (MEM) is rather well suited for solving
problems like (1.1). See Navaza’s [2] for an early development and Dacunha-Castelle and
Gamboa [3] for full mathematical treatment. We shall briefly review what the method is about
and then apply it to obtain an estimator x̂ from (1.2). In Section 3 we obtain the maxentropic
estimator, and in Section 4 we examine some of its properties, in particular we examine what
the results would be if either the noise level were small or the number of measurements
were large. We devote Section 4 to some simulations in which the method is compared with
a Bayesian and a maximum likelihood approaches.

2. The Basics of MEM

MEM is a technique for transforming a possibly ill-posed, linear problem with convex
constraints into a simpler (usually unconstrained) but non-linear minimization problem. The
number of variables in the auxiliary problem is equal to the number of equations in the
original problem, k in the case of example 1. To carry out the transformation one thinks of
the x there as the expected value of a random variable X with respect to some measure P to be
determined. The basic datum is a sample space (Ωs,Fs) on which X is to be defined. In our
setup the natural choice is to take Ωs = K, Fs = B(K), the Borel subsets of K, and X = idK the
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identity map. Similarly, we think of e as the expected value of a random variable V taking
values in R

k. The natural choice of sample space here is Ωn = R
k and Fn = B(Rk) the Borel

subsets.
To continue we need to select a prior measures dQs(ξ) and dQn(v) on (Ωs,Fs) and

(Ωn,Fn). The only restriction that we impose on them is that the closure of the convex hull of
both supp(Qs) (resp., of supp(Qn)) is K (resp., R

k). These prior measures embody knowledge
that we may have about x and e but are not priors in the Bayesian sense. Actually, the model
for the noise component describes the characteristics of the measurement device or process,
and it is a datum. The two pieces are put together setting Ω = Ωs × Ωn; F = Fs ⊗ Fn, and
dQ(ξ, v) = dQs(ξ)dQn(v). And to get going we define the class

P = {P | P � Q; AEP [X] + EP [V] = y}. (2.1)

Note that for any P ∈ P having a strictly positive density ρ = dP/dQ, then EP [X] ∈
int(K). For this standard result in analysis check in Rudin’s book [4]. The procedure to
explicitly produce such P ’s is known as the maximum entropy method. The first step of
which is to assume that P/= ∅, which amounts to say that our inverse problem (1.1) has a
solution, and we define

SQ : P −→ [−∞,∞) (2.2)

by the rule

SQ(P) = −
∫

Ω
ln
(
dP

dQ

)

dP (2.3)

whenever the function ln(dP/dQ) is P -integrable and SQ(P) = −∞ otherwise. This entropy
functional is concave on the convex set P. To guess the form of the density of the measure P ∗

that maximizes SQ is to consider the class of exponential measures on Ω defined by

dPλ =
e−〈λ,Aξ〉−〈λ,v〉

Z(λ)
dQ, (2.4)

where the normalization factor is

Z(λ) = EQ
[
e−〈λ,Aξ〉−〈λ,v〉

]
. (2.5)

Here λ ∈ R
k, if we define the dual entropy function

Σ(λ) : D(Q) −→ (−∞,∞] (2.6)
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by the rule

Σ(λ) = lnZ(λ) + 〈λ,y〉 (2.7)

or Σ(λ) = ∞ whenever λ/∈D(Q) ≡ {μ ∈ R
k | Z(μ) <∞}.

It is easy to prove that, Σ(λ) ≥ SQ(P) for any λ ∈ D(Q), and any P ∈ P. Thus if we
were able to find a λ∗ ∈ D(Q) such that Pλ∗ ∈ P, we are done. To find such a λ∗ it suffices
to minimize (the convex function) Σ(λ) over (the convex set) D(Q). We leave for the reader
to verify that if the minimum is reached in the interior of D(Q), then Pλ∗ ∈ P. We direct the
reader to [4, 5] for all about this, and much more. For a review of the use of maximum entropy
on the mean for solving linear inverse problems, the reader might want to look at [6].

3. Entropic Estimators

Let us now turn our attention to (1.2). Since our estimator is a sample mean of an exponential
(of unknown parameter), it is natural to assume, for the method described in Section 2, that
the prior Qs for X is a Γ(n, α/n), where α > 0 is our best (or prior) guess of the unknown
parameter. Here in after we propose a criterion for the best choice of α. Similarly, we shall
chose Qn to be the distribution of a N(0, δ2/n) random variable as prior for the noise
component. Things are rather easy under these assumptions. To begin with, note that

Z(λ) =
eλ

2δ2/2n

(λ/nα + 1)n
, (3.1)

and the typical member dPλ(ξ, v) of the exponential family is now

dPλ(ξ, v) = (λ + nα)n
ξn−1

Γ(n)
e−(λ+nα)ξ

e−(v+δ
2λ/n)2(n/2δ2)

(2πδ2/n)1/2
dξ dv. (3.2)

It is also easy to verify that the dual entropy function Σ(λ) is given by

Σ(λ) =
λ2δ2

2n
− n ln
(
λ

nα
+ 1
)

+ λŷ, (3.3)

the minimum value of which is reached at λ∗ satisfying

λ∗δ2

n
− 1/α
λ∗/nα + 1

+ ŷ = 0, (3.4)

and, discarding one of the solutions (because it leads to a negative estimator of a positive
quantity), we are left with

λ∗

nα
=

1
2

⎛

⎝−
(

1 +
ŷ

αδ2

)

+

((

1 − ŷ

αδ2

)2

+
4

α2δ2

)1/2
⎞

⎠, (3.5)
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from which we obtain that

λ∗

nα
+ 1 =

1
2

⎛

⎝
(

1 − ŷ

αδ2

)

+

((

1 − ŷ

αδ2

)2

+
4

α2δ2

)1/2
⎞

⎠ (3.6)

as well as

x̂ ∗ = EP(λ∗)[X] =
n

(λ∗ + nα)
=

⎡

⎢
⎣
α

2

⎛

⎝
(

1 − ŷ

αδ

)

+

√
(

1 − ŷ

αδ

)2

+
4

α2δ2

⎞

⎠

1/2
⎤

⎥
⎦

−1

,

ê∗ = EP(λ∗)[V] = −δ
2λ∗

n
.

(3.7)

Comment 1. Clearly, from (3.4) it follows that ŷ = x̂ ∗ + ê∗. Thus it makes sense to think of x̂ ∗

as the estimator with the noise filtered out, and to think of ê∗ as the residual noise.

4. Properties of x̂ ∗

Let us now spell out some of the notation underlying the probabilistic model behind (1.1). We
shall assume that the xi and the ei in the first section are values of random variables Xi and
εi defined on a sample space (W,W). For each θ > 0, we assume to be given a probability law
P(θ) on (W,W), with respect to which the sequences {Xk | k = 1, 2, . . .} and {εk | k = 1, 2, . . .}
are both i.i.d. and independent of each other, and with respect to P(θ), Xk ∼ exp(θ) and
εk ∼ N(0, δ2). That is, we consider the underlying model for the noise as our prior model for
it. Minimal consistency is all right. From (3.6) and (3.7) , the following basic results are easy
to obtain.

Lemma 4.1. If we take α = 1/ŷ, then λ∗ = 0, x̂∗ = ŷ, and ê ∗ = 0.

Comment 2. Actually it is easy to verify that the solution to x̂ ∗(α) = 1/α is α = 1/ŷ.

To examine the case in which large data sets were available, let us add a superscript
n and write ŷ(n) to emphasize the size of the sample. If x̂(n) denotes the arithmetic mean of
an i.i.d. sequence of random variables having exp(θ) as common law, it will follow from the
LLN the following.

Lemma 4.2. As n → ∞ then

(
x̂(n)
)∗ −→ x̃(α) ≡

⎡

⎣
α

2

⎛

⎝
(

1 − θ

αδ2

)

+

((

1 − θ

αδ2

)2

+
4

α2δ2

)1/2
⎞

⎠

⎤

⎦

(−1)

. (4.1)

Proof. Start from (3.7), invoke the LLN to conclude that ŷ(n) tends to θ and obtain (4.1).
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Corollary 4.3. The true parameter is the solution of x̃(α) − 1/α = 0.

Proof. Just look at the right hand-side of (4.1) to conclude that x̃(1/θ) = θ.

Comment 3. What this asserts is that when the number of measurements is large, to find the
right value of the parameter it suffices to solve x̃(α)− 1/α = 0. And when the noise level goes
to zero, we have the following.

Lemma 4.4. With the notations introduced above, x̂∗ → ŷ as δ → 0.

Proof. When δ → 0, the dQn(v) → ε0(dv), the Dirac point mass at 0. In this case, we just set
δ = 0 in (3.4) and the conclusion follows.

When we choose α = 1/ŷ, the estimator x̂ ∗ happens to be unbiased.

Lemma 4.5. Let θ denote the true but unknown parameter of the exponential, and Pθ(dy) have
density

fθ
(
y
)
=
∫y

−∞
θn(y − s)n−1 e

−θ(y−s)e−s
2/2δ2

Γ(n)
√

2πδ
ds (4.2)

for y > 0 and 0 otherwise. With the notations introduced above, one has EP(θ)[(x̂(n))
∗
] = 1/θ

whenever the prior α for the maxent is the sample mean ŷ.

Proof. It drops out easily from Lemma 4.1, from (1.2), and the fact that the joint density fθ of
ŷ is a convolution.

But the right choice of the parameter α is still a pending issue. To settle it we consider
once more the identity |ŷ − x̂ ∗| = |ê∗|. In our particular case we shall see that α = 0 minimizes
the right-hand side of the previous identity. Thus, we propose to choose α to minimize the
residual or reconstruction error.

Lemma 4.6. With the same notations as above, ê∗ happens to be a monotone function of α and ê∗(α =

0) = (1/2)(ŷ−
√
ŷ2 + 4δ2) and ê∗(α → ∞) = ŷ. In the first case x̂∗(α = 0) = (1/2)(ŷ+

√
ŷ2 + 4δ2),

whereas in the second x̂∗(α → ∞) = 0.

Proof. Recall from the first lemma that when αŷ = 1, then ê∗ = 0. A simple algebraic
manipulation shows that when αŷ > 1 then ê∗ > 0, and that when αŷ < 1 then ê∗ < 0. To
compute the limit of ê∗ as α → ∞, note that for large α we can neglect the term 4/δ2 under
the square root sign, and then the result drops out. It is also easy to check the positivity of the
derivative of ê∗ with respect to α. Also clearly |ê∗(0)| < |ê∗(∞)|.

To sum up, with the choice α = 0, the entropic estimator and residual error are

x̂ ∗(0) =
1
2

(

ŷ +
√
ŷ2 + 4δ2

)

, ê∗(0) =
1
2

(

ŷ −
√
ŷ2 + 4δ2

)

. (4.3)
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Figure 1: The simple MLE for different n.

5. Simulation and Comparison with the Bayesian and
Maximum Likelihood Approaches

In this section we compare the proposed maximum entropy in the mean procedure with the
Bayesian and maximum likelihood estimation procedures. We do that by simulating data
and carrying out the three procedures and plotting the histograms of the corresponding
estimators. First, we generate histograms that describe the statistical nature of x̂ ∗ as a function
of the parameter α. For that we generate a data set of 5000 samples of 1, 3, 5, and 10
measurements, and for each of them we obtain x̂ ∗ from (4.3). Also, for each data point we
apply both a Bayesian estimation method, a simple-minded maximum likelihood estimation
and a maximum likelihood method and plot the resulting histograms.

5.1. The Simple-Minded MLE

This consists of an application of the MLE method as if there was no measurement noise.
We carried out this for the sake of comparison, to verify that when the sample size becomes
larger, the effect of the measurement noise is washed away on the average. The plot of the
results for n = 1 is too scattered, and we do not display it. The result of the simulations is
displayed in Figure 1.
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Figure 2: Histogram for E(x) with MEM for different n.

5.2. The Maxentropic Estimator

The simulated data process goes as follows. For n = 3 the data points y1, y2, y3 are obtained
in the following way.

(i) Simulate a value for xi from an exponential distribution with parameter θ(= 1).

(ii) Simulate a value for ei from a normal distribution N(0, δ2 = 0.25).

(iii) Sum xi with ei to get yi, if yi < 0, repeat first two steps until yi > 0.

(iv) Do this for i = 1, 2, 3.

(v) Compute the maximum entropy estimator given by (4.3).

We then display the resulting histogram in Figure 2.

5.3. The Bayesian Estimator

In this section we derive the algorithm for a Bayesian inference of the model given by yi = x+
ei, for i = 1, 2, . . . , n. The classical likelihood estimator of x is given by ŷ = (1/n)

∑n
i=1 yi. As we

know that the unknown mean x has an exponential probability distribution with parameter
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Figure 3: Histogram for E(x) with Bayes Method for different n.

θ(x ∼ E(θ)), therefore the joint density of the yi and x is proportional to

n∏

i=1

1√
2πδ2

exp

{

− (yi − x)
2

2δ2

}

θ exp(−θx)π(θ), (5.1)

where θ exp(−θx) is the density of the unknown mean x and where π(θ) ∝ θ−1 is the Jeffrey’s
noninformative prior distribution for the parameter θ [5].

In order to derive the Bayesian estimator, we need to get the posterior probability
distribution for θ, which we do with the following Gibbs sampling scheme [7].

(i) Draw x ∼N(ŷ − θδ2/n, δ2/n)1x>0.

(ii) Draw θ ∼ E(x).

Repeat this algorithm many times in order to obtain a large sample from the posterior
distribution of θ in order to obtain the posterior distribution of E(x) = 1/θ. For our
application, we simulate data with θ = 1, which gives an expected value for x equal to
E(x) = 1.

We get the histogram displayed in Figure 3 for the estimations of E(x) after 5000
iterations when simulating data for θ = 1.
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5.4. The Maximum Likelihood Estimator

The problem of obtaining a ML estimator is complicated in this setup because data points are
distributed like

fθ(t) =
∫ t

−∞

θe−θ(t−s)e−s
2/2δ2

ds
√
(2πδ2)

,

fθ(t) = θe−θt+(θδ)
2/2

P(S < t),

(5.2)

where S ∼N(θδ2, δ2). Therefore, after observing t1, t2, and t3, we get the following likelihood
that we maximize numerically:

θ3e−θ
∑3

i=1 ti+3(θδ)2/2
3∏

i=1

P(S < ti). (5.3)

If we attempted to obtain the ML estimator analytically, we would need to solve

n

θ
−

n∑

j=1

∫ tj
−∞θe

−θ(tj−s)e−s
2/2δ2

ds/
√
(2πδ2)

∫ tj
−∞θe

−θ(tj−s)e−s2/2δ2ds/
√
(2πδ2)

= 0. (5.4)

Notice that as δ → 0 this equation tends to (n/θ) −∑n
j=1 tj = 0 as expected. We can

move forward a bit, and integrate by parts each numerator, and after some calculations we
arrive to

n

θ
−

n∑

j=1

tj + nδ2θ −
n∑

j=1

δe−t
2
j /2δ2

∫ tj
−∞θe

−θ(tj−s)e−s2/2δ2ds/
√
(2πδ2)

= 0. (5.5)

Trying to solve this equation in θ is rather hopeless. That is the reason why we carried
on a numerical maximization procedure on (5.3). To understand what happens when the
noise is small, we drop the last term in the last equation and we are left with

n

θ
−

n∑

j=1

tj + nδ2θ (5.6)

the solution of which is

1
θ

∗
=

1
2

(

ŷ +
√
ŷ2 − 4δ2

)

(5.7)

or θ∗ = 2(ŷ +
√
ŷ2 − 4δ2)

−1
, and we see that the effect of noise is to increase the ML estimator.

In Figure 4 we plot the histogram of (1/θ)∗ obtained by numerically maximizing (5.3) for
each simulated data point.
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Figure 4: Histogram for E(x) with the MLE for different n.

Table 1: Means and standard deviations for different methods when n = 3.

Method Mean Standard deviation
Maximum entropy 1.3112 0.5193
Bayesian 1.0271 0.5701
Maximum likelihood 1.8085 2.4630
Sample average 1.0928 0.5904

Table 2: Means and standard deviations for different methods when n = 5.

Method Mean Standard deviation
Maximum entropy 1.3090 0.4034
Bayesian 1.0532 0.4561
Maximum likelihood 0.5817 0.2016
Sample average 1.1009 0.4596

The results are summarized in Tables 1, 2, and 3.
When simulating data for θ = 1, the MEM, Maximum likelihood and Bayesian

histograms are all skewed to the right and yield a mean under the three simulated histograms
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Table 3: Means and standard deviations for different methods when n = 10.

Method Mean Standard deviation
Maximum entropy 1.3093 0.2825
Bayesian 1.0846 0.3239
Maximum likelihood 0.2614 0.0627
Sample average 1.1097 0.3230

close to 1. As shown in the table, compiled for n = 3, the MEM method yields a sample
mean of 1.3112 with a sample standard deviation of 0.5193, the Bayesian yields a sample
mean equal to 1.0271 and sample standard deviation of 0.5701, and the Maximum Likelihood
method yields a sample mean of 1.808 with a sample standard deviation of 2.463. All the
three methods produce right skewed histograms for E(x). The MEM and Bayesian method
provide better and similar results and more accurate than the Maximum Likelihood method,
but keep in mind that we carried out an approximate calculation.

Note as well that for ln ∼ 10 the variability in the (approximate) MLE decreases, but
it is far away from the true value. This could be due to the numerical approximation that
we used, whereas for n ∼ 25 the estimator improves considerably. We owe this observation
to one of our referee’s, who pointed out that for very small samples, the MEM estimator
outperforms the MLE estimator because it is biased, and that this advantage disappears as n
becomes large.

6. Concluding Remarks

We exhibited the usefulness of the method of maximum entropy of the mean for dealing
with estimation problems in which the samples are small and contaminated by noise,
thus adding and extra source of randomness which has to be filtered out. The problem
we chose, while being real, it is a problem in which the Lagrange multiplier λ could
be estimated analytically and the properties of the resulting estimators could be studied
analytically as well. This possibility appears as well when the observed signal is Gaussian.
In general, to obtain the filtered estimator, one has to determine the Lagrange multipliers
numerically.

On one hand, MEM backs up the intuitive belief, according to which, if the yi are all the
data that you have, it is all right to compute your estimator of the mean for α = 0. The MEM
and Bayesian methods yield closer results to the true parameter value than the maximum
likelihood estimator for small number of measurements.

On the other hand, and this depends on your choice of priors, MEM provides us with
a way of modifying those priors, and obtain representations like ŷ = x̂ ∗ + ê∗; where of course
x̂ ∗ = x̂ ∗(ŷ). What we saw above, is that there is a choice of prior distributions such that x̂ ∗ = ŷ
and ê∗ = 0.

The important thing is that this is actually true regardless of what the “true”
probability describing the xi is.
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