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A class of discrete time GI/D/k systems is considered for which the interarrival times have finite
support and customers are served in first-in first-out (FIFO) order. The system is formulated as a
single server queue with new general independent interarrival times and constant service duration
by assuming cyclic assignment of customers to the identical servers. Then the queue length is set
up as a quasi-birth-death (QBD) type Markov chain. It is shown that this transformed GI/D/1
system has special structures which make the computation of the matrix R simple and efficient,
thereby reducing the number of multiplications in each iteration significantly. As a result we were
able to keep the computation time very low. Moreover, use of the resulting structural properties
makes the computation of the distribution of queue length of the transformed system efficient. The
computation of the distribution of waiting time is also shown to be simple by exploiting the special
structures.
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1. Introduction

In most communication systems studied in discrete time, the interarrival times of packets
usually follow independent general distribution. Hence, this arrival of packets in an ATM
switch can be represented as independent general distribution. On the other hand, multiple
packets (53 byte cells) are transmitted simultaneously through identical transmission lines in
an ATM switch. Therefore, an ATM switch can be considered as a multiserver system with
deterministic service time as the packets are of same size. Hence, the performance of an ATM
switch can be analyzed by studying a GI/D/k system with finite support on interarrival
times.

To the best of our knowledge GI/D/k systems in discrete time have never been
analyzed with focus on computational efficiency in the literature. In this paper, matrix-
geometric method is used to analyze a class of GI/D/k systems in discrete time with focus
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on computational efficiency. The class of GI/D/k systems considered in this paper has
finite support for the interarrival times and the service is first-in first-out (FIFO) order. The
idea used here to analyze the waiting time distribution of this multiserver system is due
to Crommelin [1]. This idea is also used in analyzing the distribution of waiting time of
multiserver systems with constant service time duration for both continuous and discrete
times such as [2–20]. The idea is that the assignment of customers to servers in cyclic order
does not change the distribution of waiting time in a multiserver system where customers
are served in FIFO order in the identical servers with same constant service time. In this
case, only an arbitrary server can be studied to compute the waiting time distribution.
Crommelin [1] analyzed the waiting time distribution of an M/D/c system by converting
the system to an Ec/D/1 system. The work of Crommelin [1] is followed by some studies on
deterministic service time multiserver systems in both continuous time and discrete time.
Iversen [15] decomposed an M/D/rk queue with FIFO into Ek/D/r queues with FIFO
for analyzing waiting time distribution. Franx [8] developed expression for the waiting
time distribution of the M/D/c queue by a full probabilistic analysis requiring neither
generating functions nor Laplace transforms. Wittevrongel and Bruneel [19] used transform-
basedmethod to analyzemultiserver systemwith constant service time and correlated arrival
process. Nishimura [17] studied a MAP/D/N system in continuous time using spectral
technique. Takine [18] analyzed a MAP/D/s system and computed the distribution of queue
length by first characterizing the sojourn time distribution. Kim and Chaudhry [21] also
computed the distribution of queue length of a discrete time GI/D/c queue after computing
the distribution of waiting time by using distributional Little’s law and transform-based
method. Exact elapsed time from the time of last arrival is approximated with time average
in [21]. Chaudhry et al. [7] analyzed the distribution of waiting time of a MAP/D/k system
in discrete time. Later Alfa [3] gave a simple and more efficient computational scheme for
the MAP/D/k system in discrete time. Alfa [2] also carried out algorithmic analysis for a
discrete time BMAP/D/k system by exploiting its structural properties. Chaudhry et al. [7]
and Alfa [2, 3] used matrix geometric method [22] for analysis. There is some work on the
GI/D/c queues such as Wuyts and Bruneel [4] and Gao et al. [10–14]which used transform-
based method. There are other algorithms for multiserver queues with constant service times
such as GI/D/1 and GI/D/c queues by Chaudhry [23], GIX/D/c queue by Chaudhry and
Kim [5], MX/D/c queue by Chaudhry et al. [6] and Franx [9], Ph/D/c queues by van Hoorn
[16], and an Ek/D/r queue by Xerocostas and Demertzes [20].

In this paper, the cyclic assignment of customers to servers is used to model a class
of GI/D/k systems in discrete time as a single server system with the assumption of first-in
first-out (FIFO) service order. The modeling as single server system sets up the distribution
of queue length as a quasi-birth-death (QBD)which has some structural properties. Analysis
of the GI/D/k system is carried out efficiently by exploiting these structural properties in
this paper. This paper has three contributions—reductions in the computational complexities
of (i) the matrix R, (ii) the distribution of queue length of the transformed system, and
(iii) the distribution of waiting time. The first contribution is that the time complexity of
the computation of the matrix R is reduced by decreasing the number of multiplications in
each iteration from O(n3k3d3) to O(n3kd2) while requiring the same number of iteration as
the natural iteration. Here, n is the support of general interarrival times, k is the number
of servers, and d is the duration of service. The second contribution is that the distribution
of queue length of the transformed system is computed efficiently by exploiting the special
structures of the system. The third and most important contribution is that the computation
of the distribution of waiting time is simplified. Chaudhry et al. [7] and Alfa [2, 3] computed
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the distribution of waiting time using the technique for phase type service time distribution.
However, it is shown in this paper that the computation of the distribution of waiting time for
deterministic service time distribution in discrete time does not need the complicated steps
of phase type service time distribution.

The rest of the paper is organized as follows. Section 2 introduces the GI/D/k system
and explains the modeling of this multiserver system into a single server system. Section 3
discusses the special structures of the matrices of our model and exploitation of those
structures for efficient computation of the matrix R. The computation of the distributions of
queue length and waiting time is explained in Sections 4 and 5, respectively. Some numerical
examples are provided in Section 6 to show the suitability of our proposed method to
compute the matrix R. Section 7 concludes the paper.

2. The GI/D/k System

The class of GI/D/k system in discrete time considered here has finite support for interarrival
time which is of general distribution. Moreover, the customers are served in FIFO service
order in the identical servers which have constant service time.

The interarrival times, A, of this multiserver system are general, independent, and
identically distributed (iid) with distribution av = Pr {A = v}, v = 1, 2, . . . .

We let λ = 1/E[A] be the mean arrival rate of customers to the system with 0 < λ ≤
1. The interarrival times can be represented as a Markov chain where each state represents
the elapsed time using the approach followed in the analysis of discrete time GI/G/1 and
GIX/G/1 systems by Alfa [24]. General independent interarrival times can be represented

as an absorbing Markov chain with a transition matrix PA =
[ T t

01,n 1

]
where T is a square

matrix of order n, t is a column vector of order n, t = 1n − T1n, 0i,j is an i × j matrix of zeros,
and 1i is a column vector of ones of order i. The case of infinite interarrival times can be
captured for n = ∞. However, the interarrival times are finite if data is collected from practical
systems. Therefore, general independent interarrival times with finite support (n < ∞) are
considered in this paper. The probabilities of interarrival times can be represented by a vector
a = [a1, a2, . . . , an]. Here, a1n = 1 and a0 = 0. This general arrival process can be defined by
phase type distribution (α,T) of dimension n in elapsed time representation. The parameters
α, T, and t are given as α = [1, 0, 0 . . . , 0], Ti,j = (1 −∑i

j=0 aj)/(1 −
∑i−1

v=0 av) = ãi, for 1 ≤ i < n,

j = i + 1, Ti,j = 0, for all j /= i + 1 and t = [˜̃a1 ˜̃a2 · · · ˜̃an−1 1]′ where ˜̃ai = 1 − ãi for 1 ≤ i ≤ n − 1
and W′ is the transpose of matrix W.

The general independent arrival process can be represented by two square matrices
D0 and D1 of order n where (Dl)ij (l = 0, 1 and 1 ≤ i, j ≤ n) represents a transition from
phase i to phase j with l arrivals. Now, D0 and D1 can be represented in terms of phase type
distribution (α,T). Here, D0 = T and D1 = tα = [t 0n,n−1]. The first column of D1 is nonzero
and this column is the vector t. The matrices D0 and D1 are similar to the matrices of zero or
one arrival for MAP distributed interarrival times. However, they are special cases because
the matrices D0 and D1 only capture general and independently distributed interarrival
times.

A discrete time Markov chain {(N(t), J(t)); t = 0, 1, 2, . . . ;N(t) ∈ {0, 1, 2, . . .}; J(t) ∈
{1, 2, 3, . . . , n}} can be considered to represent this general arrival process where N(t) is the
number of arrivals up to and including time t and J(t) is the phase of the next arrival at
time t.
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The matrixD = D0 +D1 is stochastic. If π̃ = [π̃1, π̃2, . . . , π̃n] is the invariant probability
vector for arrival in n different phases then π̃ = π̃D and π̃1n = 1. The arrival rate is given by
λ = π̃D11n = π̃t.

There are k identical servers in a GI/D/k system. The service times are of constant
duration d units (d ≥ 1). Service time can be represented as phase type distribution in
elapsed time form with representation (β,S) of dimension d where β = [1, 0, 0, . . . , 0] and
S =

[
0d−1,1 Id−1
0 01,d−1

]
, Ij is an identity matrix of order j. Another column vector s = 1d − S1d can be

defined for this phase type distribution (β,S).
The condition that ensures the stability of GI/D/k system is ρ < 1 where ρ = λd/k.

We assume that the system is stable (i.e., ρ < 1).

2.1. The Model of Arrivals to an Arbitrary Server

Let us assume that customers are served in first-in first-out (FIFO) order in this GI/D/k
system. It can also be assumed that the servers are assignedwith customers in a cyclic manner
particularly during the idle times. This assignment of customers to servers does not affect
the waiting times experienced by the customers as the servers are identical. Using the same
approach of Alfa [2, 3]we can consider the case of the jth (1 ≤ j ≤ k) server. In this approach
if the first customer is assigned to the first server then the jth server will be assigned with
j, j + k, j + 2k, . . .th customers. In this case we only need to study one server, an arbitrary
server j (1 ≤ j ≤ k). This arbitrary server sees the arrival of customers to be according to
another independent general process which we call kGI. This kGI arrival process is a k-fold
convolution of original arrival process to the multiserver system. kGI can be defined by two
square matrices C0 and C1 of order nk. The element (Cv)ij (v = 0, 1 and 1 ≤ i, j ≤ nk)
represents transition from phase i to phase j with v arrivals. BothC0 andC1 can be considered
to comprise of k2 square block matrices of order n. In this representation (C0)i,j = D0 for
i = j, 1 ≤ i ≤ k, (C0)i,j = D1 for j = i + 1, 1 ≤ i < k and (C0)i,j = 0n,n for 1 ≤ i ≤ k and
i /= j or j /= i + 1. Similarly (C1)i,j = D1 for i = k, j = 1 and (C1)i,j = 0n,n in all other cases for
1 ≤ i, j ≤ k. The first column and the last row of C0 are zero as the first column and last row
of D0 are zero. Only the last n rows of C1 are nonzero and only the first element of each of
these n rows is nonzero.

The matrices C0 and C1 exhibit behavior similar to the matrices D0 and D1 except
that Cv (v = 0, 1) is a new matrix representing the arrival of v supercustomers where a
supercustomer is the last customer to form a group of k customers or the arrival of v regular
customers to an arbitrary server. On the other hand, Dv (v = 0, 1) represents arrival of v
regular customers to the GI/D/k system. Now, this new arrival process kGI to an arbitrary
server can be represented by a discrete time Markov chain {(N̂(t), Ĵ(t)); t = 0, 1, 2, . . . ; N̂(t) ∈
{0, 1, 2, . . .}; Ĵ(t) ∈ {1, 2, . . . , nk}} where N̂(t) is the number of supercustomers that have
arrived by time t and Ĵ(t) is the phase of the next arrival at time t.

The matrix C = C0 + C1 is stochastic. If δ, a 1 × nk matrix, is the invariant probability
vector for arrival in different nk phases then δ = δC and δ1nk = 1. δ can also be represented
as δ = [δ1, δ2, δ3, . . . , δk] where δi (1 ≤ i ≤ k) is of size 1 × n. The supercustomer arrival rate
is given by λ∗ = λ/k = δC11nk = δkt.

2.2. The New Model kGI/D/1 System

A model can be developed for a single server queue with arrival kGI and deterministic
service time of d units following the techniques of Alfa [3]. This single server queue is called
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kGI/D/1 system and the resultingmodel is of QBD process type for which standardmethods
can be used [22]. Let us assume that Lt, Jt, and St represent the number of supercustomers,
the arrival phase of the next supercustomer, and the elapsed time of the supercustomer
in service, respectively, at time t in this QBD model. The state space can be represented
by {Lt, Jt, St} for Lt ≥ 1 and the state space is {0, Jt} for Lt = 0. The total state space is
{(0, j) ∪ (i, j, l) : i ≥ 1, 1 ≤ j ≤ nk, 1 ≤ l ≤ d}. The transition matrix for this kGI/D/1
system is

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0 B1

E A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.1)

where B0 = C0, B1 = C1 ⊗β, E = C0 ⊗ s,A2 = C0 ⊗ (sβ),A1 = C0 ⊗S+C1 ⊗ (sβ), andA0 = C1 ⊗S.
Let x = [x0, x1, x2, . . .] be the stationary distribution of P where x = xP, x01nk +∑∞

i=1 xi1nkd = 1 and xj (j ≥ 0) is the probability vector representing j supercustomers in the
kGI/D/1 system. During the computation of the stationary distribution of queue length x, a
matrix R is computed first which is followed by the computations of x0 and x1. Then xi(i ≥ 2)
is computed using the matrix-geometric result xi = xi−1R = x1Ri−1. Here, the matrix R is of
order nkd × nkd which is the minimal nonnegative solution of R = A0 + RA1 + R2A2. The
entry Ru,v (1 ≤ u, v ≤ nkd) of R represents the expected number of visits into (m + 1, v),
starting from (m,u), before the first return to level m (m ≥ 1). Here, m is the number of
supercustomers in the system and u and v are any of the nkd phases of the system.

3. Structures of the Matrices

This section explains the structures of the block-matrices B0, B1, E, A2, A1, and A0 and how
their structures are exploited for efficient computation of the matrixR. The structures of these
matrices are also fully exploited in computing the stationary distribution of the queue length
in Section 4.

Here, B0 and B1 are matrices of order nk × nk and nk × nkd, respectively. The first
column and the last row of the matrix B0 are zero. On the other hand, only the last n rows
of the matrix B1 are nonzero and among these last n rows only the first column is nonzero

which is t. The matrix B1 can be represented as B1 =
[
0n(k−1),nd 0n(k−1),nd(k−1)

L̂ 0n,nd(k−1)

]
where L̂ = [t 0n,nd−1].

The matrix E is of order nkd × nk which can be represented as

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L̃ M̃

L̃ M̃

. . . . . .

L̃ M̃

L̃

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.1)
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where

L̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

ã1s

ã2s

. . .

ãn−1s

⎤
⎥⎥⎥⎥⎥⎥⎦
, M̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˜̃a1s

˜̃a2s

...

˜̃an−1s

s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.2)

L̃ = D0 ⊗ s is a matrix of order nd × n. Moreover, L̃ has (n − 1) nonzero columns and
each column contains only one nonzero element. L̃ has (n−1) nonzero elements in (jd, j+1)th
(1 ≤ j ≤ n− 1) positions. M̃ = D1 ⊗ s is also a matrix of order nd×nmatrix. Furthermore, only
the first column of M̃ is nonzero which contains n nonzero elements. M̃ has nonzero elements
in (jd, 1)th (1 ≤ j ≤ n) positions.

The matrices A2, A1, and A0 are of size nkd × nkd. The matrix A2 can be represented
as

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L̃1 M̃1

L̃1 M̃1

. . . . . .

L̃1 M̃1

L̃1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.3)

where L̃1 and M̃1 are both matrices of order nd × nd, L̃1 = D0 ⊗ (sβ) and M̃1 = D1 ⊗ (sβ).
Hence,

L̃1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

ã1
(
sβ
)

ã2
(
sβ
)

. . .

ãn−1
(
sβ
)

⎤
⎥⎥⎥⎥⎥⎥⎦
, M̃1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˜̃a1
(
sβ
)

˜̃a2
(
sβ
)

...

˜̃an−1
(
sβ
)

(
sβ
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.4)

There are (n − 1) nonzero columns in L̃1 and each column contains only one nonzero
element. L̃1 has these nonzero elements in (jd, jd + 1)th (1 ≤ j ≤ n − 1) positions. Only the
first column of M̃1 is nonzero with n nonzero elements in (jd, 1)th (1 ≤ j ≤ n) positions.
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The matrix A1 can be represented as

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L̃2 M̃2

L̃2 M̃2

. . . . . .

L̃2 M̃2

M̃1 L̃2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.5)

where

L̃2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

ã1S

ã2S

. . .

ãn−1S

⎤
⎥⎥⎥⎥⎥⎥⎦
, M̃2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˜̃a1S

˜̃a2S

...

˜̃an−1S

S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.6)

Here, L̃2 and M̃2 are both matrices of order nd×nd. L̃2 = D0⊗S and M̃2 = D1⊗S. There
are (n − 1)(d − 1) nonzero columns, (n − 1)(d − 1) nonzero rows, and (n − 1)(d − 1) nonzero
elements in L̃2. Moreover, each nonzero row or each nonzero column of L̃2 contains only one
nonzero element. On the other hand, there are (d − 1) nonzero columns in M̃2 from column 2
to d each having n nonzero elements.

The matrix A0 can be represented as A0 =
[
M̃2

]
. A0 has only n(d − 1) nonzero rows

which are in its last nd rows and (d − 1) nonzero columns from column 2 to column d.

3.1. Computation of the Matrix R

The matrix R can be computed using any of the three linearly convergent formulae from
Neuts [22]—R(i + 1) := A0 + R(i)A1 + R2(i)A2, R(i + 1) := (A0 + R2(i)A2)(Inkd − A1)

−1, and
R(i + 1) := A0(Inkd − A1 − R(i)A2)

−1 which are known as natural, traditional, and U-based
iterations, respectively. Here, R(i) is the ith iteration value of R, R(0) := 0nkd,nkd, U is a
square matrix of the same order as the matrix R and U = A1 + RA2. The matrix U is the
minimal nonnegative solution of U = A1 + A0(I − U)−1A2. The entry Uu,v (1 ≤ u, v ≤ nkd)
represents the taboo probability of starting from (m,u) for m ≥ 1 the eventual visit of the
Markov chain to level m by visiting (m,v) under the taboo of level (m − 1). Any of these
three methods terminate in the ith (i ≥ 1) iteration for ‖R(i) − R(i − 1)‖∞ < εwhere ε is a very
small positive constant. In each step, natural itearation requires two matrix multiplications
whereas traditional iteration requires three matrix multiplications and one matrix inversion.
On the other hand, U-based iteration requires two matrix multiplications and one matrix
inversion in each step. Traditional iteration requires less number of iterations than natural
iteration does while the number of iterations required for U-based iteration is less than the
numbers of iterations for other two methods. Alfa and Xue [25] developed efficient inversion
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technique for U-based iteration for the matrix R in analyzing the queue length of a GI/G/1
system in discrete time.

There are several efficient methods for computing the matrix R for a QBD such
as logarithmic reduction algorithm of Latouche and Ramaswami [26], cyclic reduction
technique of Bini and Meini [27], and invariant subspace approach of Akar and Sohraby
[28]. These quadratically convergent algorithms compute a matrix G which is the minimal
nonnegative solution to G = A2 + A1G + A0G2. Here, G is an m × m matrix for m × m
matrices A2, A1, and A0 where Gi,j (1 ≤ i, j ≤ m) represents the probability that starting
from state (N + 1, i) the Markov chain eventually visits the level N (N ≥ 1) and does so
by visiting the state (N, j). The matrices R, U, and G are related and these relations can be
found in [26]. Similar to the computation of the matrix R, the matrix G can be computed
using three different iterations—natural, traditional, and U-based. Generally a zero matrix
is used for the initial value for iterations of the matrix G (i.e., G = 0m,m). Latouche and
Ramaswami [26] showed that if SG(ε) iterative steps are needed to converge for a very
small positive constant ε such that ‖G(SG(ε)) −G(SG(ε) − 1)‖∞ < ε for the (l + 1)-st natural
iteration G(l + 1) = A2 + A1G(l) + A0G2(l), then logarithmic reduction requires not more
than log2SG(ε) iterations and overall complexity of their algorithm is O(m3log2SG(ε)). They
also developed logarithmic reduction technique for the matrix R. However, the quadratic
convergent algorithms [26–28] are not considered here for computing the matrix R as these
algorithms involve inversion of matrices which cannot exploit the special structures of the
matrices A2, A1, and A0.

The complexity of computing thematrixR can be reduced by using the structure ofA0.
The first nd(k−1) rows are zero inA0. Therefore, the first nd(k−1) rows are zero inR. Among
the last nd rows of A0, n rows are zero which are rows nd(k − 1) + d, nd(k − 1) + 2d, nd(k −
1) + 3d, . . . , nkd. The corresponding rows are zero for R. The matrix R can be represented as
follows:

R =

[

R1 R2 R3 · · · Rk

]
. (3.7)

Here, Rj (1 ≤ j ≤ k) is a matrix of order nd × nd which contains d, 2d, 3d, . . . , ndth rows as
zero rows.

The computations of R(i)A2 and R(i)A1 require (2k − 1) and 2k block-matrix
multiplications, respectively, where each block matrix is of order nd × nd. Similarly, the
computation of R2(i)A2 requires multiplication of R(i) and R(i)A2 which involves k block-
matrix multiplications. Inversions of both the matrices (Inkd − A1) and (Inkd − A1 − R(i)A2)
generate k2 block matrices each of order nd × nd. Inversion of the matrix (Inkd − A1)
needs to be computed only once for traditional iteration whereas inversion of the matrix
(Inkd−A1−R(i)A2) needs to be computed in each iteration forU-based iteration. On the other
hand, the multiplication of (A0 + R2(i)A2) and (Inkd − A1)

−1 in traditional iteration and the
multiplication of A0 and (Inkd − A1 − R(i)A2)

−1 in U-based iteration involve k2 and k block-
matrixmultiplications, respectively, where each blockmatrix is of order nd×nd. Each iteration
of natural method requires substantially less multiplications than each step of traditional and
U-based methods do. Therefore, we use natural iteration for developing our algorithm for
computing the matrix R in this paper.
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The matrix Rj (1 ≤ j ≤ k) of (3.7) can be computed using the natural iteration with the
following equation:

Rj(i + 1) :=

⎧
⎪⎨
⎪⎩

M̃2 + R1(i)L̃2 + Rk(i)M̃1 + Rk(i)R1(i)L̃1, j = 1,

Rj−1(i)M̃2 + Rj(i)L̃2 + Rk(i)Rj−1(i)M̃1 + Rk(i)Rj(i)L̃1, 1 < j ≤ k,

(3.8)

where Rj(i) (i ≥ 0, 1 ≤ j ≤ k) is the ith iteration value of Rj with the initial value Rj(0) :=
0nd,nd(1 ≤ j ≤ k). The terminating condition for this iteration is same as the terminating
condition for natural, traditional, and U-based methods but needs to consider only n(d − 1)
nonzero rows of (R(i) − R(i − 1)).

The number of multiplications required to compute Rj(i)L̃2 (1 ≤ j ≤ k) is n(n −
1)(d − 1)2. Similarly, the number of multiplications required to compute both Rj(i)L̃1 and
Rj(i)M̃1 for 1 ≤ j ≤ k is n(n − 1)(d − 1). In the same way, the number of multiplications
required to compute Rj−1(i)M̃2(1 < j ≤ k) is n(n − 1)(d − 1)2. On the other hand, the
numbers of multiplications required to compute Rk(i)Rj−1(i)M̃1(1 < j ≤ k) by block-matrix
multiplication ofRk(i) andRj−1(i)M̃1 (1 < j ≤ k) andRk(i)Rj(i)L̃1(1 ≤ j ≤ k) by block-matrix
multiplication ofRk(i) andRj(i)L̃1 (1 ≤ j ≤ k) are n2(d−1)2 and n2(n−1)(d−1)2, respectively.
Hence, the numbers of multiplications required for computing R1(i + 1) from R1(i) and
Rj(i + 1) (2 ≤ j ≤ k) from Rj(i) in one iteration are n(n − 1)(d − 1)(d + 1) + n2(n − 1)(d − 1)2

and n3(d − 1)2 + 2nd(n− 1)(d − 1), respectively. Therefore, the total number of multiplications
required to compute all k block matrices Rj(i + 1)’s (1 ≤ j ≤ k) of the matrix R(i + 1) in one
iteration is n2(n − 1)(d − 1)2 + n(n − 1)(d − 1)(d + 1) + (k − 1)(n3(d − 1)2 + 2nd(n − 1)(d − 1)) =
O(n3kd2). By exploiting the special structures of the matrices the computational complexity
is decreased in each iteration from O(n3k3d3) to O(n3kd2) which is substantial reduction in
computations. Moreover, the memory requirement for our method is also less than that of
natural, traditional, U-based methods and quadratic convergent algorithms.

4. Stationary Distribution of P for kGI/D/1 System

Two methods for computing stationary distribution x for the Markov chain represented by
the matrix P are briefly presented here which are followed by Section 4.1. Section 4.1 explains
how the second method can be made efficient by utilizing the special structures of the
matrices.

In the first method an invariant probability vector z = [z0, z1] needs to be computed

for a stochastic matrix P̃ =
[ B0 B1

E A1+RA2

]
. The row vector z is computed from zP̃ = z and z01nk +

z11nkd = 1. Then x0 and x1 can be expressed as x0 = v−1z0 and x1 = v−1z1 where v = z01nk +
z1(Inkd − R)−11nkd.

In the second method, we need to compute h̃, the invariant probability vector of a
stochastic matrix H defined as H = A1 + RA2 + E(Ink − B0)

−1B1. Next a positive real number
h is computed as follows h = h̃(E(Ink − B0)

−11nk + (Inkd − R)−11nkd). On the other hand, h̃ is
computed using the relations h̃ = h̃H and h̃1nkd = 1. x0 and x1 can be computed as x1 = h−1h̃,
x0 = x1E(Ink − B0)

−1.
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4.1. Exploiting Structures for Stationary Distribution

The stationary distribution of x can be computed by first computing the probability vector
x1 which can be made efficient by exploiting the special structures of the matrices H, E(Ink −
B0)

−11nk and (Inkd−R)−11nkd. The special structures of thematrices (Inkd−R)−1, (Inkd−R)−11nkd,
(Ink − B0)

−1, E(Ink − B0)
−1, E(Ink − B0)

−11nk, E(Ink − B0)
−1B1, and H are due to the special

structures of the matrices B0, B1, E, and R. Here, how the computations of these matrices can
be carried out efficiently is explained.

Computing (Inkd − R)−1 =
[ Ind(k−1) 0nd(k−1),nd

Φ Υ

]
requires O(n3kd3) multiplications by using

block-matrix inversion [29] where Υ = R̃−1
k , Φ = ΥΨ, Ψ = [R1,R2,R3, . . . ,Rk−1], and R̃k =

Ind − Rk. Φ can be expressed as Φ = [Φ1,Φ2,Φ3, . . . ,Φk−1]where Φj = ΥRj (1 ≤ j ≤ k − 1).
(Ink − B0)

−1 can be represented as

(Ink − B0)−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1 V2 · · · Vk−1 Vk

V1 · · · Vk−2 Vk−1

. . .
...

...

V1 V2

V1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.1)

where V1 = D̃−1
0 , Vi = (D̃−1

0 D1)
i−1D̃−1

0 (1 < i ≤ k), and D̃0 = In − D0. The computation of
(Ink − B0)

−1 requires O(n2k + nk2) instead of O(n3k3) multiplications by utilizing the special
structure of (Ink − B0).

The matrices E(Ink − B0)
−1 and E(Ink − B0)

−1B1 can be represented as

E(Ink − B0)−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ṽ1 Ṽ2 . . . Ṽk−1 Ṽk

Ṽ1 . . . Ṽk−2 Ṽk−1

. . .
...

...

Ṽ1 Ṽ2

Ṽ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, E(Ink − B0)−1B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˜̃V1

˜̃V2

...

˜̃Vk−1
˜̃Vk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.2)

where Ṽ1 = L̃V1, Ṽi = L̃Vi + M̃Vi−1, for 1 < i ≤ k, and ˜̃Vi = Ṽk−i+1L̂ (1 ≤ i ≤ k). Here, Ṽi and
˜̃Vi for 1 ≤ i ≤ k are matrices of order nd × n and nd × nd, respectively. Here, multiplying E
by (Ink − B0)

−1 and E(Ink − B0)
−1 by B1 both require O(n2k) multiplications due to utilizing

special structures of matrices. If there were no special structures of E, (Ink − B0)
−1 and B1

then the multiplying E by (Ink − B0)
−1 and E(Ink − B0)

−1 by B1 would require O(n3k3d) and
O(n3k2d3)multiplications, respectively.
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The matrix H of can be represented in the following form:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1,1 H1,2

H2,1 H2,2 H2,3

H3,1 H3,3 H3,4

...
. . . . . .

Hk−1,1 Hk−1,k−1 Hk−1,k

Hk,1 Hk,2 Hk,3 · · · Hk,k−1 Hk,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.3)

where Hi,j (1 ≤ i, j ≤ k) is a matrix of order nd × nd. Here,

Hi,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L̃2 +
˜̃V1, i = j = 1,

M̃2, 1 ≤ i ≤ k − 1, j = i + 1,

L̃2, 1 < i = j < k,

˜̃Vi, 1 < i < k, j = 1,

R1L̃1 +
˜̃Vk, i = k, j = 1,

Ri−1M̃1 + RiL̃1, i = k, 1 < j < k,

Rk−1M̃1 + RkL̃1 + L̃2, i = j = k.

(4.4)

We can recursively define Uk = Ũk = Hk−1,k(I −Hk,k)
−1, Ui = Hi−1,i(I −Hi,i − Ũi+1Hk,i)

−1

for 2 ≤ i ≤ k − 1, Ũi = UiŨi+1 for 2 ≤ i ≤ k − 1, ˜̃U2 = U2,
˜̃Ui =

˜̃Ui−1Ui for 3 ≤ i ≤ k, and
U1 = H1,1 +

∑k
i=2

˜̃UiHi,1.
Let us define another invariant probability vector ũ = [ũ1, ũ2, ũ3, . . . , ũk] of the

stochastic matrixHwhere ũi (1 ≤ i ≤ k) is a row vector having nd scalar elements. Here, ũ is
computed from ũ1U1 = ũ1, ũ11nd = 1 and ũi = ũi−1Ui for 2 ≤ i ≤ k. Next a positive real number
u is computed as u = ũ(η + ζ)where η = E(Ink − B0)

−11nk and ζ = (Inkd −R)−11nkd. η and ζ are
both of size nkd×1. The column vectors η and ζ can be expressed as η = [η1, η2, η3, . . . , ηk−1, ηk]
and ζ = [ζ1, ζ2, ζ3, . . . , ζk−1, ζk], respectively. Both ηi and ζi(1 ≤ i ≤ k) are of size nd × 1.
ηk = Ṽ11n and ηj = ηj+1 + Ṽk−j+11n for (1 ≤ j ≤ k − 1). There are only (n − 1) nonzero elements
in ηk and n nonzero elements in ηj for 1 ≤ j ≤ k−1. On the other hand, ζi = 1nd for 1 ≤ i ≤ k−1
and ζk = (

∑k−1
j=1 Φj + Υ)1nd.

x1 can be computed as x1 = u−1ũ using O(n3kd3) multiplications instead of O(n3k3d3)
multiplications using the special structure of H. Let us partition x0 and x1 as x0 =
[κ1, κ2, κ3, . . . , κk] and x1 = [ν1, ν2, ν3, . . . , νk], respectively, for efficient computation of x0.
Here, κi and νi for 1 ≤ i ≤ k are of size 1 × n and 1 × nd, respectively. κi (1 ≤ i ≤ k) is
computed as κi =

∑i
j=1 νi−j+1Ṽj and these vector-matrix multiplications can be made efficient

by considering only nonzero rows of Ṽj(1 ≤ j ≤ k).
xi (i ≥ 2) can be computed as xi = xi−1R for (i ≥ 2) using n(d − 1) × nkd = n2kd(d − 1)

multiplications instead of n2k2d2 multiplications as R has only n(d − 1) nonzero rows.
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5. Waiting-Time Distribution of kGI/D/1 System

The waiting time distribution of an arbitrary customer in kGI/D/1 system is the same as
the waiting time distribution of a customer in GI/D/k system. Let w(r) be the probability
that a customer (i.e., the kth customer of a supercustomer group) has to wait r units of
time. w(r) is computed after obtaining the probability vectors yi’s where yi(i ≥ 0) is the
stationary probability vector that a supercustomer sees i supercustomers ahead of him. y0
can be expressed as y0 = [y0,1,y0,2, . . . ,y0,nk]. Similarly, yi (i ≥ 1) can be expressed as
yi = [yi,1,yi,2, . . . ,yi,nk] and yi,v can be expressed as yi,v = [yi,v,1,yi,v,2, . . . ,yi,v,d].

Two approaches for computing the distribution of waiting time are presented in
Sections 5.1 and 5.2, respectively. The first method uses the approach for phase type service
time distribution and this approach is used in the analysis of Alfa [3] and Chaudhry et al. [7].
In the second method we develop a computationally simpler approach. This is a simplified
version of Method 1. It simplifies the computations of the probability vectors yi’s for i ≥ 0
and w(r), the probability mass function of the distribution of waiting time.

5.1. Method 1

The expressions for the stationary distribution of an entering supercustomer to find different
number of supercustomers ahead of him in the system can be written as

yi =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
λ∗

[x0C1 + x1(C1 ⊗ s)], i = 0,

1
λ∗

[
xi(C1 ⊗ S) + xi+1

(
C1 ⊗

(
sβ
))]

, i ≥ 1.

(5.1)

In this method, the probability that the waiting time is r units of time is computed
as

w(r) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

y01nk, r = 0,

r∑
i=1

yi(1nk ⊗ Id)Ω(i)(r)1d, r ≥ 1,
(5.2)

where Ω(i)(r) is a square matrix of order d that represents the probability distribution of r
unit of work in system at the arrival of a supercustomer who finds that i supercustomers
are ahead of him. For example, the element (Ω(i)(r))u,v represents the probability that the
service of the arbitrary supercustomer, who arrives to find i supercustomers in the system
with remaining workload of r units begins in phase v (1 ≤ v ≤ d), given that service of the
supercustomer who was in service at the arrival of the arbitrary supercustomer was in phase
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u (1 ≤ u ≤ d). The matrix Ω(i)(r) is computed in the following way:

Ω(i)(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Id, i = r = 0,
(
sβ
)r
, 1 ≤ i = r,

0d,d, i = 0, r ≥ 1,

0d,d, i ≥ 1, r = 0,

(S)r−1
(
sβ
)
, i = 1, r ≥ 1,

(
sβ
)
Ω(i−1)(r − 1) + SΩ(i)(r − 1), 2 ≤ i ≤ r.

(5.3)

5.2. Method 2

This method simplifies the computation of y0 and yi (i ≥ 1). Moreover, this method does
not need to compute the matrix Ω(i)(r) (i, r ≥ 0) which simplifies the computation of the
probability mass function of the distribution of waiting time.

The special structures of C1, s, S, and β can be exploited to reduce the number of
operations to compute y0 and yi (i ≥ 1). Only the first columns of the matrices C1 and C1 ⊗ s
are nonzero. Therefore, the first element of y0 is nonzero and the remaining (nk − 1) elements
of y0 are equal to zero. This phenomenon is quite intuitive as the arriving supercustomer does
not find anybody ahead of him, he can start his service in phase 1 instantly and the arrival
process for next supercustomer starts at phase 1 of the nk phases. The first element y0,1 of y0
is computed as

y0,1 =
1
λ∗

n∑
j=1

(
x0,(k−1)n+jtj + x1,(k−1)n+j,dtj

)
. (5.4)

(d − 1) columns of (C1 ⊗ S) are nonzero which are column 2 to column d. On the other
hand, only the first column of (C1⊗(sβ)) is nonzero. Therefore, the first d elements of yi(i ≥ 1)
are nonzero. It is quite intuitive that the first d elements of yi (i ≥ 1) are nonzero (i.e., yi,1 is
nonzero and yi,v = 01,d (2 ≤ v ≤ nk)) as the arriving supercustomer finds i supercustomers
ahead of him, the arrival process of next supercustomer starts at phase 1 of nk phases and
the ongoing service is in the start of phase j (1 ≤ j ≤ d). The d nonzero elements yi,1,j ’s
(i ≥ 1, 1 ≤ j ≤ d) of the vector yi can be computed using

yi,1,j =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
λ∗

n∑
l=1

xi+1,(k−1)n+l,dtl, j = 1,

1
λ∗

n∑
l=1

xi,(k−1)n+l,j−1tl, 2 ≤ j ≤ d.

(5.5)

The special structures of 1nk ⊗ Id and yi for i ≥ 1 result in

yi(1nk ⊗ Id) = yi,1. (5.6)
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If a supercustomer sees i supercustomers ahead of him then he has to wait or id+1, id+
2, . . . , id + d amount of time for d > 1 (or i units of time for d = 1) before getting service.

First we consider the case of d = 1. In this case, S = [0], s = [1], and β = [1]. For d = 1,
(5.3) can be written as

Ω(i)(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, i = r = 0,

1, 1 ≤ i = r,

0, i = 0, r ≥ 1,

0, i = 1, r ≥ 1,

Ω(i−1)(r − 1), 2 ≤ i ≤ r.

(5.7)

For i < r we can assume i + i1 = r and i1 > 0. In this case, Ω(i)(r) = Ω(i−1)(r − 1) = · · · =
Ω(0)(i1) = 0.

For i = r, we have Ω(i)(r) = 1 from (5.7).
For i > r we can assume i = r + i1 and i1 > 0. In this case, Ω(i)(r) = Ω(i−1)(r − 1) = · · · =

Ω(i1)(0) = 0. Therefore, we can express for d = 1,

Ω(i)(r)1d =

⎧
⎨
⎩
1, i = r,

0, otherwise.
(5.8)

Now, we consider the case d ≥ 2. Let us define ej (1 ≤ j ≤ d) as the jth column of an
identity matrix of order d. It is found that for i ≥ 1 and d ≥ 2

Ω(i)((i − 1)d − j
)
= 0d,d for j = 0, 1, 2, . . . , (i − 1)d,

Ω(i)((i − 1)d + j
)
= Sj−1(sβ) =

[
ed−j+1 0d,d−1

]
for j = 1, 2, . . . , d,

Ω(i)(id + j
)
= 0d,d for j ≥ 1,

(5.9)

which are proved by induction in [30]. If thematrixΩ(i)(r) is nonzero then it contains nonzero
elements in the first column. The nonzero first column in nonzero Ω(i)(r) is due to elapsed
time representation of service time where service starts at phase 1.

Now, [ed−j+1 0d,d−1]1d = [ed−j+1]. Therefore, we can express for d ≥ 2,

Ω(i)(r)1d =

⎧
⎨
⎩

[
ed−(r mod d)

]
, i =

⌈ r
d

⌉
,

0d,1, otherwise.
(5.10)

Alfa [2, 3] pointed out that (Ω(i)(r))u,v = 0 for i ≥ 1, 2 ≤ v ≤ d. However, he did
not provide any explicit expression for Ω(i)(r)1d and his method needs to compute the first
column of the matrix Ω(i)(r) (i ≥ 1) recursively as our method does not need to compute.
Use of (5.10) to compute Ω(i)(r)1d can significantly reduce the complexity of computing
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Table 1: Number of iterations required for different methods for interarrival times having probability
vector a = [0.1 0.2 0.2 0.5].

Natural Traditional U-based Natural Traditional U-based LR LR Structure
ε R R R G G G R G R
10−6 157 35 5 194 40 5 3 2 157
10−7 186 41 6 222 46 5 3 2 186
10−8 214 47 6 250 52 5 3 2 214
10−9 243 53 6 279 58 6 3 2 243

the distribution of waiting time for any multiserver queueing system in discrete time with
deterministic service time such as BMAP/D/k system of Alfa [2] and MAP/D/k systems of
Alfa [3] and Chaudhry et al. [7]. Equation (5.10) reduces the usage of memory as there is no
need to compute and store the matrix Ω(i)(r) for different values of i and r.

Now, if an arriving customer has to wait r units of time (r ≥ 0) then there are �r/d�
supercustomers ahead of him and the customer, who is in service in the server, is in phase
(d − (r mod d)) of service time. Therefore, the probability of a customer waiting r (r ≥ 0)
units of time can be expressed by using value of Ω(i)(r)1d of (5.8) and (5.10) in (5.2)

w(r) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

y0,1, r = 0,

yr,1,1, r ≥ 1, d = 1,

y�r/d�,1,d−(r mod d), r ≥ 1, d ≥ 2.

(5.11)

6. Numerical Examples

This section compares our proposed method of computing the matrix R with natural,
traditional, and U-based methods and Logarithmic Reduction technique [26] for the matrices
R and G. Three different matrices R, G, and U are computed in each of these methods. The
values of the convergence constant ε used are 10−6, 10−7, 10−8, and 10−9. Three identical servers
(i.e., k = 3) are considered with duration of service as eight time units (i.e., d = 8) and the
support for interarrival times is assumed to be four (i.e., n = 4). Three different probability
vectors [0.1, 0.2, 0.2, 0.5], [0.1, 0.2, 0.3, 0.4], and [0.1, 0.3, 0.4, 0.2] are used for interarrival times
for numerical examples. A program is written in C programming language for different
methods to compute the matrices R, G, and U. The program was executed in SunOS 5.10
[31] on an i386 processor which operates at 2660MHz and has an i387 compatible floating
point processor. The number of iterations and time in seconds is recorded in Tables 1–6 for
eachmethod from the execution of the program. “LR” is used to denote logarithmic reduction
technique in those tables.

Tables 1 and 2 show the number of iterations and time required to compute the
matrices R, G, and U for the interarrival times having probability vector [0.1, 0.2, 0.2, 0.5].
Themeans of interarrival time and arrival rate for this probability vector are 3.1 time slots and
0.3226/time slot, respectively, and ρ = 0.8602. Tables 3 and 4 show the number of iterations
and time required for the interarrival times having probability vector [0.1, 0.2, 0.3, 0.4]. The
means of interarrival time and arrival rate for the probability vector [0.1, 0.2, 0.3, 0.4] are 3.0
time slots and 0.3333/time slot, respectively, and ρ = 0.8889. Our methods of computing the
matrix R are found to require least time for these two examples among the methods used
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Table 2: Time in seconds required for different methods to execute for interarrival times having probability
vector a = [0.1 0.2 0.2 0.5].

Natural Traditional U-based Natural Traditional U-based LR LR Structure
ε R R R G G G R G R
10−6 3.1825 1.1115 0.2081 3.8766 1.2642 0.2075 0.3497 0.2579 0.0724
10−7 3.8069 1.3013 0.2451 4.4946 1.4159 0.2070 0.3530 0.2751 0.0776
10−8 4.3452 1.4641 0.2454 5.0430 1.6042 0.2070 0.3654 0.2590 0.0844
10−9 4.9589 1.6619 0.2633 5.6928 1.7840 0.2460 0.3510 0.2591 0.0895

Table 3: Number of iterations required for different methods for interarrival times having probability
vector a = [0.1, 0.2, 0.3, 0.4].

Natural Traditional U-based Natural Traditional U-based LR LR Structure
ε R R R G G G R G R
10−6 207 48 6 253 54 5 3 2 207
10−7 245 56 6 291 62 5 3 2 245
10−8 283 64 7 328 70 6 3 2 283
10−9 322 72 7 366 79 6 3 2 322

Table 4: Time in seconds required for different methods to execute for interarrival times having probability
vector a = [0.1, 0.2, 0.3, 0.4].

Natural Traditional U-based Natural Traditional U-based LR LR Structure
ε R R R G G G R G R
10−6 4.2406 1.4866 0.2500 5.1100 1.6555 0.2065 0.3534 0.2591 0.0831
10−7 5.0294 1.7283 0.2455 6.1509 1.9375 0.2199 0.3534 0.2586 0.0904
10−8 5.7546 1.9552 0.2809 6.5859 2.1162 0.2428 0.3548 0.2564 0.1003
10−9 6.5022 2.1919 0.2791 7.3162 2.3785 0.2478 0.3533 0.2586 0.1077

Table 5: Number of iterations required for different methods for interarrival times having probability
vector a = [0.1, 0.3, 0.4, 0.2].

Natural Traditional U-based Natural Traditional U-based LR LR Structure
ε R R R G G G R G R
10−6 1864 545 25 2272 614 22 5 4 1864
10−7 2286 656 28 2661 721 26 5 4 2285
10−8 2707 766 32 3051 828 29 6 4 2706
10−9 3128 876 36 3441 934 33 6 5 3127

here though logarithmic reduction technique and U-based methods require less number of
iterations. Tables 5 and 6 show the number of iterations and time required for the interarrival
times having probability vector [0.1, 0.3, 0.4, 0.2]. The means of interarrival time and arrival
rate for this probability vector [0.1, 0.3, 0.4, 0.2] of interarrival times are 2.7 time slots and
0.3704/time slot, respectively, and ρ = 0.9877. Table 6 shows that for the interarrival times
probability vector [0.1, 0.3, 0.4, 0.2], Logarithmic Reduction techniques for the matricesG and
R require less time to converge than our method of exploiting the structure of the matricesA2,
A1, and A0. The relative advantage of our method of exploiting the structures to Logarithmic
Reduction techniques decreases with respect to time with increasing value of ρ.
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Table 6: Time in seconds required for different methods to execute for interarrival times having probability
vector a = [0.1, 0.3, 0.4, 0.2].

Natural Traditional U-based Natural Traditional U-based LR LR Structure
ε R R R G G G R G R
10−6 37.5583 16.2450 0.9116 45.2144 18.2392 0.7928 0.5395 0.4461 0.4579
10−7 46.3076 19.6171 1.0278 53.3722 21.4709 0.9453 0.5457 0.4585 0.5526
10−8 54.5964 22.9092 1.1562 61.0474 24.5655 1.0368 0.6334 0.4479 0.6488
10−9 63.9370 26.9160 1.3035 70.1627 28.3890 1.2020 0.6346 0.5453 0.7593

7. Conclusion

In this paper, a class of GI/D/k systems in discrete time is analyzed by converting it
to a single server queue problem with a convoluted arrival process. Then the stationary
distribution of the length of the queue of the transformed system is analyzed using QBD
approach. The special structures of the matrices make the computation of the matrix R and
the distribution of queue length of the transformed system efficient. Numerical examples
show that our proposed method for computing the matrix R can be as efficient as quadratic
convergent algorithms such as logarithmic reduction technique. It is also shown that for
deterministic service time the waiting time distribution does not need any cumbersome
computation like phase type service time distribution.
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