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Spatial modelling has its applications in many fields like geology, agriculture, meteorology,
geography, and so forth. In time series a class of models known as Generalised Autoregressive
(GAR) has been introduced by Peiris (2003) that includes an index parameter δ. It has been shown
that the inclusion of this additional parameter aids in modelling and forecasting many real data
sets. This paper studies the properties of a new class of spatial autoregressive process of order 1
with an index. We will call this a Generalised Separable Spatial Autoregressive (GENSSAR) Model.
The spectral density function (SDF), the autocovariance function (ACVF), and the autocorrelation
function (ACF) are derived. The theoretical ACF and SDF plots are presented as three-dimensional
figures.
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1. Introduction

Spatial modelling has its applications in many fields like geology, agriculture, meteorology,
geography, and so forth. Spatial data can be classified as geostatistical data, lattice data, or
point patterns. These differences are due to whether the spatial data has been observed on a
continuous domain or at discrete locations. In point pattern analysis the domain is random
and interest focuses on the location of events.

In this paper we concentrate on lattice data observed on a regular grid. Many models
have been suggested in modelling spatial dependence like the Simultaneous Autoregression
(SAR) [1], Conditional Autoregression (CAR) [2, 3], Moving Average (MA) [4], and
Unilateral models [5].

For a two-dimensional stationary process we have the following definitions. Let
{Yij , i, j = 0,±1,±2, . . .} be a sequence of spatial observations on a two-dimensional regular
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lattice. The mean function is E[Yij] = μ (a constant). The autocovariance function is γh,k =
Cov[Yi+h,j+k, Yi,j] and the autocorrelation function is given as ρh,k = γh,k/γ0,0.

Now, there exists a class of models that are known as separable models which have the
property of a reflection symmetric correlation structure (i.e., ρh,k = ρ−h,−k = ρh,−k = ρ−h,k).
The linear by linear process X is defined as a stationary process where the autocovariance
generating function of X is defined as proportional to the product of two one-dimensional
processes, Y and Z (see [6]) and the relationship may be represented as X = Y ∗ Z. As
a consequence, its correlation structure can be expressed as a product of correlations (i.e.,
ρx,h,k = ρy,hρz,k). Basawa et al. [7] have considered separable models on a k-dimensional
lattice and have shown that the correlation structure is ρ(h) =

∏k
i ρi(hi), where h is the lag

vector (h1, h2, . . . , hk)
′.

On the other hand, in the area of time series a class of models known as generalised
autoregressive (GAR) models has been introduced by Peiris [8] by including an additional
index parameter, δ. This is a natural extension of the standard AR model. It has been shown
in Peiris [8] and Peiris et al. [9] that the additional index parameter plays an important
role in modelling and forecasting real data sets. Shitan and Peiris [10] have also studied the
estimation problem of the GAR(1) model with a simulation study.

In this paper we will consider a special type of spatial model called a Generalised
Separable Spatial Autoregressive (GENSSAR) Model. Some of its properties are discussed in
Section 2. Finally in Section 3, some conclusions are drawn.

The GENSSAR Model

Let {Yij} be a sequence of spatial observations on a two-dimensional regular lattice that
satisfies

(1 − φ10B1 − φ01B2 + φ10φ01B1B2)
δYij = Zij , (1.1)

where B1 is the usual backward shift operator acting in the ith direction, B2 is the backward
shift operator acting in the jth direction, and {Zi,j} is a two-dimensional white noise process
with mean zero and variance.

The term (1 − φ10B1 − φ01B2 + φ10φ01B1B2) can be factored out as (1 − φ10B1)(1 − φ01B2)
and hence (1.1) can be written as

(
1 − φ10B1

)δ(1 − φ01B2)
δYij = Zij . (1.2)

The inclusion of the extra index parameter δ generalises the standard separable spatial
model. Hence, we call the model defined in (1.1) as the Generalised Separable Spatial
Autoregressive model or GENSSAR(1,1) model.

The following section reports some of its properties in detail.

2. Some Properties of GENSSAR(1,1)

The solution of this process in (1.1) is given in Proposition 1.
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Proposition 1. For a process defined in (1.1), the solution is

Yij =
∞∑

k=0

∞∑

l=0

Γ(k + δ)Γ(l + δ)
Γ(k + 1)Γ(δ)Γ(l + 1)Γ(δ)

φk
10φ

l
01Zi−k,j−l, (2.1)

where Γ(·) is the gamma function.

Proof. From (1.2), we have Yij = (1 − φ10B1)
−δ(1 − φ01B2)

−δZij . Using binomial expansion, it
follows that

Yij =

[
∞∑

k=0

(−1)k
(
−δ
k

)

(−φ10B1)
k

][
∞∑

l=0

(−1)l
(
−δ
l

)

(−φ01B2)
l

]

Zij . (2.2)

Note that

(
−δ
k

)

=
(−δ)(−δ − 1) · · · (−δ − k + 1)

k!

=
(−1)k(δ)(δ + 1) · · · (δ + k − 1)

k!

=
(−1)kΓ(k + δ)
Γ(k + 1)Γ(δ)

.

(2.3)

Similarly

(
−d
l

)

=
(−1)lΓ(l + d)
Γ(l + 1)Γ(d)

. (2.4)

Substituting (2.3) and (2.4) into (2.2) and upon simplification completes the proof.

Proposition 2. For a process defined in (1.1), the spectral density is given as

f(λ1, λ2) =
σ2

4π2
(
1 − 2φ10 cosλ1 + φ2

10

)δ(1 − 2φ01 cosλ2 + φ2
01)

δ
. (2.5)

Proof. The proof is established by simplifying the following expression:

f(λ1, λ2) =
σ2

4π2
× 1
∣
∣(1 − φ10e−iλ1)(1 − φ01e−iλ2)

∣
∣2δ

. (2.6)
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Figure 1: ACF plot for standard separable model (φ10 = 0.9, φ01 = 0.9, δ = 1.0).
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Figure 2: ACF plot for GENSSAR (φ10 = 0.9, φ01 = 0.9, δ = 1.8).

The following proposition provides an expression for the autocovariance function of
the GENSSAR(1,1) process.

Proposition 3. For a process defined in (1.1) the autocovariance γ(k1, k2) of the process γ(k1, k2) is
given as

γ(k1, k2) = σ2 φ
k1
10Γ(k1 + δ)F

(
δ, k1 + δ; k1 + 1;φ2

10

)
φk2

01Γ(k2 + δ)F
(
δ, k2 + δ; k2 + 1;φ2

01

)

Γ2(δ)Γ(k1 + 1)Γ(k2 + 1)
,

(2.7)

where F(·, ·; ·; ·) is the hypergeometric function.
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Figure 3: ACF plot for GENSSAR (φ10 = 0.9, φ01 = 0.9, δ = 0.2).
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Figure 4: ACF plot for GENSSAR (φ10 = 0.4, φ01 = 0.7, δ = 1.8).

Proof. We establish the previous proposition by integrating the spectral density as given in
Proposition 2

γ(k1, k2) =
∫∫π

−π
ek1λ1+k2λ2f(λ1, λ2)dλ1dλ2

=
σ2

4π2

∫∫π

−π

ek1λ1+k2λ2dλ1dλ2
(
1 − 2φ10 cosλ1 + φ2

10

)δ(1 − 2φ01 cosλ2 + φ2
01)

δ

=
σ2

4π2

∫π

−π

ek1λ1dλ1

(1 − 2φ10 cosλ1 + φ2
10)

δ

∫π

−π

ek2λ2dλ2

(1 − 2φ01 cosλ2 + φ2
01)

δ

=
σ2

π2

∫π

0

cos k1λ1dλ1

(1 − 2φ10 cosλ1 + φ2
10)

δ

∫π

0

cos k2λ2dλ2

(1 − 2φ01 cosλ2 + φ2
01)

δ
.

(2.8)
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Figure 5: Spectral density plot of standard separable model (φ10 = 0.9, φ01 = 0.9, δ = 1.0).
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Figure 6: Spectral density plot of GENSSAR model (φ10 = 0.9, φ01 = 0.9, δ = 1.8).

Now by making use of the identity (see [8]),

∫π

0

cos kx dx

(1 − 2α cosx + α2)δ
=

παkΓ(k + δ)F
(
δ, k + δ; k + 1;α2)

Γ(δ)Γ(k + 1)
, (2.9)

we obtain

γ(k1, k2)=σ2 φ
k1
10Γ(k1+ δ)F

(
δ, k1 + δ; k1+ 1;φ2

10

)
φk2

01Γ(k2 + δ)F
(
δ, k2 + δ; k2 + 1;φ2

01

)

Γ2(δ)Γ(k1 + 1)Γ(k2 + 1)
, (2.10)

which completes the proof.

Corollary 4. For a process defined in (1.1) the variance of the process γ(0, 0) is given as

γ(0, 0) = σ2F
(
δ, δ; 1;φ2

10

)
F
(
δ, δ; 1;φ2

01

)
. (2.11)

Proof. This result is directly from Proposition 3 by letting k1 = k2 = 0.
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Figure 7: Spectral density plot of GENSSAR model (φ10 = 0.9, φ01 = 0.9, δ = 0.2).
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Figure 8: Spectral density plot of standard separable model (φ10 = −0.9, φ01 = 0.9, δ = 1.0).

The autocorrelation function (ACF) of the model in (1.1) is given as

ρ(k1, k2) =
γ(k1, k2)
γ(0, 0)

=
φk1

10Γ(k1 + δ)F
(
δ, k1 + δ; k1 + 1;φ2

10

)
φk2

01Γ(k2 + δ)F
(
δ, k2 + δ; k2 + 1;φ2

01

)

Γ2(δ)Γ(k1 + 1)Γ(k2 + 1)F
(
δ, δ; 1;φ2

10

)
F
(
δ, δ; 1;φ2

01

) .

(2.12)

Remark 5. Note when δ = 1, we have the standard separable spatial model. Substituting δ = 1
in Proposition 3, we obtain

γ(k1, k2) = σ2 φ
k1
10Γ(k1 + 1)F

(
1, k1 + 1; k1 + 1;φ2

10

)
φk2

01Γ(k2 + 1)F
(
1, k2 + 1; k2 + 1;φ2

01

)

Γ2(1)Γ(k1 + 1)Γ(k2 + 1)

= σ2φk1
10F

(
1, k1 + 1; k1 + 1;φ2

10

)
φk2

01F
(

1, k2 + 1; k2 + 1;φ2
01

)
.

(2.13)



8 Journal of Probability and Statistics

2

2

0

0

0

50

100

−2

−2

Figure 9: Spectral density plot of GENSSAR model (φ10 = −0.9, φ01 = 0.9, δ = 1.8).
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Figure 10: Spectral density plot of GENSSAR model (φ10 = −0.9, φ01 = 0.9, δ = 0.2).

Using the following identity (see Abramowitz and Stegun [11, Page 556, Identity No.
15.1.8]):

F(a, b, b, z) =
1

(1 − z)a
, (2.14)

(2.13) reduces to

γ(k1, k2) =
σ2φk1

10φ
k2
01

(
1 − φ2

10

)(
1 − φ2

01

) . (2.15)

Hence, Proposition 3 reduces to the autocovariance function of the standard separable spatial
model when δ = 1.

In Table 1, we have tabulated (to three decimal places) the ACF, ρ(k1, k2) computed by
using (2.12) with φ10 = 0.9, φ01 = 0.9, δ = 1.0. This is the standard separable model. Clearly,
we can see that the numerical values computed by using (2.12) agree with the ACF of the
standard separable model which is ρ(k1, k2) = φk1

10φ
k2
01. Hence, this verifies (2.12).
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Figure 11: Spectral density plot of GENSSAR model (φ10 = 0.4, φ01 = 0.7, δ = 1.8).

Table 1: ACF, ρ(k1, k2) computed by using (2.12), (φ10 = 0.9, φ01 = 0.9, δ = 1.0, i.e., standard separable
model).

k1 : k2 0 1 2 3 4 5 6 7 8 9 10

0 1.000 0.900 0.810 0.729 0.656 0.590 0.531 0.478 0.430 0.387 0.349
1 0.900 0.810 0.729 0.656 0.590 0.531 0.478 0.430 0.387 0.349 0.314
2 0.810 0.729 0.656 0.590 0.531 0.478 0.430 0.387 0.349 0.314 0.282
3 0.729 0.656 0.590 0.531 0.478 0.430 0.387 0.349 0.314 0.282 0.254
4 0.656 0.590 0.531 0.478 0.430 0.387 0.349 0.314 0.282 0.254 0.229
5 0.590 0.531 0.478 0.430 0.387 0.349 0.314 0.282 0.254 0.229 0.206
6 0.531 0.478 0.430 0.387 0.349 0.314 0.282 0.254 0.229 0.206 0.185
7 0.478 0.430 0.387 0.349 0.314 0.282 0.254 0.229 0.206 0.185 0.167
8 0.430 0.387 0.349 0.314 0.282 0.254 0.229 0.206 0.185 0.167 0.150
9 0.387 0.349 0.314 0.282 0.254 0.229 0.206 0.185 0.167 0.150 0.135
10 0.349 0.314 0.282 0.254 0.229 0.206 0.185 0.167 0.150 0.135 0.122

In Table 2, we have tabulated (to three decimal places) the ACF, ρ(k1, k2) of the
GENSSAR model (δ = 1.8) computed by using (2.12) with φ10 = 0.9, φ01 = 0.9, δ = 1.8.
While Table 3 shows the ACF values of the GENSSAR model (δ = 0.2) computed by (2.12)
with φ10 = 0.9, φ01 = 0.9, δ = 0.2.

Figures 1, 2, and 3 show the ACF for the three models considered in this paper.
From the tables and figures we can clearly see that the behaviour of ACF depends

on the index parameter δ. When δ > 1.0, the ACF decays slower than that of the standard
separable model. On the other hand, when δ < 1.0 the ACF decays faster than the standard
model. Hence, the GENSSAR model can be used to model many types of autocorrelation
structure.

We also considered a further illustrative example when φ10 and φ01 were not equal to
each other. That is, we chose the parameter values to be φ10 = 0.4, φ01 = 0.7, δ = 1.8. In Table 4,
we have tabulated (to three decimal places) the ACF, ρ(k1, k2) of the GENSSAR model (δ =
1.8) computed by using (2.12) with φ10 = 0.4, φ01 = 0.7, δ = 1.8, and Figure 4 shows a plot of
the ACF. Clearly we can see that the decay in the autocorrelation is more rapid along the k1

axis as compared to the k2 axis. Hence, we can model data whose autocorrelations decay at
different rates in different directions.

For the models considered in this paper, the two-dimensional spectral densities for
various parameter values are shown in Figures 5, 6, 7, 8, 9, 10, and 11.
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Table 2: ACF, ρ(k1, k2) computed for GENSSAR model by using (2.12), (φ10 = 0.9, φ01 = 0.9, δ = 1.8).

k1 : k2 0 1 2 3 4 5 6 7 8 9 10

0 1.000 0.992 0.972 0.945 0.916 0.874 0.835 0.794 0.752 0.710 0.668

1 0.992 0.983 0.964 0.937 0.904 0.867 0.828 0.787 0.745 0.704 0.662

2 0.972 0.964 0.945 0.918 0.886 0.850 0.812 0.771 0.731 0.690 0.650

3 0.945 0.937 0.918 0.892 0.861 0.826 0.789 0.750 0.710 0.671 0.631

4 0.912 0.904 0.886 0.861 0.831 0.797 0.761 0.723 0.685 0.647 0.609

5 0.874 0.867 0.850 0.826 0.797 0.765 0.730 0.694 0.657 0.621 0.584

6 0.835 0.828 0.812 0.789 0.761 0.730 0.697 0.662 0.627 0.592 0.558

7 0.794 0.787 0.771 0.750 0.723 0.694 0.662 0.630 0.596 0.563 0.530

8 0.752 0.745 0.731 0.710 0.685 0.657 0.627 0.596 0.565 0.533 0.502

9 0.710 0.704 0.690 0.671 0.647 0.621 0.592 0.563 0.533 0.504 0.474

10 0.668 0.663 0.650 0.631 0.609 0.584 0.558 0.530 0.502 0.474 0.447

Table 3: ACF, ρ(k1, k2) computed for GENSSAR model by using (2.12), (φ10 = 0.9, φ01 = 0.9, δ = 0.2).

k1 : k2 0 1 2 3 4 5 6 7 8 9 10

0 1.000 0.201 0.113 0.077 0.056 0.043 0.034 0.027 0.022 0.018 0.015

1 0.201 0.040 0.028 0.015 0.011 0.009 0.007 0.005 0.004 0.004 0.003

2 0.113 0.023 0.013 0.009 0.006 0.005 0.004 0.003 0.002 0.002 0.002

3 0.077 0.015 0.008 0.006 0.004 0.003 0.003 0.002 0.002 0.001 0.001

4 0.056 0.011 0.006 0.004 0.003 0.002 0.002 0.002 0.001 0.001 0.001

5 0.043 0.009 0.005 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.001

6 0.034 0.007 0.004 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001

7 0.027 0.005 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.000 0.000

8 0.022 0.004 0.002 0.002 0.001 0.001 0.001 0.001 0.000 0.000 0.000

9 0.018 0.004 0.002 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000

10 0.015 0.003 0.002 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000

Table 4: ACF, ρ(k1, k2) computed for GENSSAR model by using (2.12), (φ10 = 0.4, φ01 = 0.7, δ = 1.8).

k1 : k2 0 1 2 3 4 5 6 7 8 9 10

0 1.000 0.920 0.787 0.646 0.517 0.405 0.313 0.240 0.182 0.137 0.102

1 0.645 0.593 0.507 0.417 0.333 0.261 0.202 0.154 0.117 0.088 0.066

2 0.347 0.319 0.273 0.224 0.179 0.141 0.109 0.083 0.063 0.047 0.035

3 0.172 0.158 0.135 0.111 0.089 0.070 0.054 0.041 0.031 0.024 0.018

4 0.082 0.075 0.064 0.053 0.042 0.033 0.026 0.020 0.015 0.011 0.008

5 0.038 0.035 0.030 0.024 0.019 0.015 0.012 0.009 0.007 0.005 0.004

6 0.017 0.016 0.013 0.011 0.009 0.007 0.005 0.004 0.003 0.002 0.002

7 0.007 0.007 0.006 0.005 0.004 0.003 0.002 0.002 0.001 0.001 0.001

8 0.003 0.003 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.000 0.000

9 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000

10 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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3. Conclusion

The objective of this research is to introduce a new class of models called GENSSAR models
by including an additional index parameter δ and to establish some of its properties. We have
established the autocovariance function. The GENSSAR(1,1) model is a more general model
than the standard separable spatial AR(1,1) process. Due to the generality of this model, it is
a useful model.

The authors are working on the other aspects of this model with applications and will
be reported in a future paper.
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