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For a sequence of dependent square-integrable random variables and a sequence of positive
constants {bn, n ≥ 1}, conditions are provided under which the series

∑n
i=1(Xi−EXi)/bi converges

almost surely as n → ∞. These conditions are weaker than those provided by Hu et al. (2008).
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1. Introduction and Results

Let {Xn, n ≥ 1} be a sequence of square-integrable random variables defined on a probability
space (Ω,F, P) and let {bn, n ≥ 1} be a sequence of positive constants. The random variables
{Xn, n ≥ 1} are not assumed to be independent. Past research has focussed on conditions
that ensure the strong convergence of two distinct but related series:

n∑

i=1

Xi − EXi

bi
, b−1n

n∑

i=1

(Xi − EXi). (1.1)

If the second sequence converges to 0 almost surely, then {Xn, n ≥ 1} is said to obey the
strong law of large numbers (SLLN).

Assume that there exists a sequence of constants {ρk, k ≥ 1} such that

sup
n≥1

|Cov(Xn,Xn+k)| ≤ ρk, k ≥ 1. (1.2)
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Our interest is in conditions on the growth rates of {VarXn, n ≥ 1}, {bn, n ≥ 1}, and {ρk, k ≥
1}which imply strong convergence of the above series.

There is an extensive literature on strong laws for independent random variables.
Strong laws have been derived for various dependence structures such as negative
association (e.g., Kuczmaszewska [1]), quasi-stationarity (e.g., Móricz [2], Chobanyan et al.
[3]), and orthogonality (e.g., Stout [4]).

Hu et al. [5] focus on the strong convergence of the series without imposing strong
conditions on the nature of the variances and covariances. Our aim is to weaken their
condition on the covariances and establish the following theorem.

Theorem 1.1. Let {Xn, n ≥ 1} be a sequence of square-integrable random variables and suppose that
there exists a sequence of constants {ρk, k ≥ 1} such that (1.2) holds. Let {bn, n ≥ 1} be a sequence
of positive constants. Assume that there exists a constant K such that, for all n ≥ 1,

n

bn
≤ K. (1.3)

Suppose that

∞∑

n=1

(VarXn)
(
logn

)2

b2n
< ∞, (1.4)

∞∑

k=1

ρk
k

(
log k

)2
< ∞. (1.5)

Then

n∑

i=1

Xi − EXi

bi
converges a.s. as n −→ ∞. (1.6)

To motivate the general nature of our result consider the following example. Let {Xn}
be a sequence of zero mean random variables where

Xn = ξn + νn, (1.7)

where {ξn} is a stationary time series with autocovariance function {γk} and {νn} is a sequence
of independent, zeromean random variables distributed independently of {ξn}. Let Var(νn) =
σ2
n. Thus what we observe is an underlying stationary series disturbed by a noise process with

variance that can depend on n.
We have Var(Xn) = γ0 + σ2

n and Cov(Xn,Xn+k) = γk(= ρk), k ≥ 1. Condition (3.1) in
Theorem 1 of Hu et al. [5], which is the same as (1.4), is a constraint on the σ2

n values whereas
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their condition (3.2)

∞∑

k=1

ρk
kq

< ∞, for some q ∈ [0, 1) (1.8)

is a constraint on γk. In Chapter 2 of Stout [4] the condition on the variances is shown to be
close to optimal for sequences of orthogonal random variables. Lyons [6] provides an SLLN
for random variables with bounded variances under the condition

∑∞
k=1 ρk/k < ∞.Onemight

conjecture that the condition (1.8) could be relaxed to
∑

ρk/k < ∞. The above theorem, whilst
allowing for far more general models than (1.7), moves us closer to this constraint on the ρk
values.

For long range dependent stationary processes we have ρk = O(k−dL(k)), where 0 <
d < 1 and L(·) is a slowly varying function. Theorem 1.1 enables the strong convergence
result to be extended to processes where the correlation decays at a slower rate than O(k−d)
for d > 0.

Applying Kronecker’s lemma the strong law of large numbers result is an immediate
consequence of the above theorem.

Corollary 1.2. Under the conditions of Theorem 1.1, if bn is monotone increasing, the strong law of
large numbers holds, that is,

lim
n→∞

∑n
i=1(Xi − EXi)

bn
= 0 a.s. (1.9)

There are strong law results under weaker conditions than (1.5) but with stronger
conditions on the variance (see, e.g., Lyons [6], Chobanyan et al. [3]). Both papers show that
if the summands have bounded variance, then (1.5) can be weakened to

∑∞
k=1 ρk/k < ∞.

Our approach focusses on the convergence of the series in (1.6) and relies on Kronecker’s
Lemma to obtain the strong law. If the aim is purely to obtain the SLLN, then alternative
conditions might be possible as it is possible to construct sequences {xn} and {bn} such that
b−1n (x1 + · · ·xn) → 0 but

∑n
i=1 b

−1
k xk diverges. For example, take bn = n and xn = (logn)−1.

Thus we can have the strong law holding but the series in (1.6) diverging.

2. Proofs

Throughout this paper, the symbol C denotes a generic constant (0 < C < ∞) which is not
necessarily the same at each appearance. We first prove a number of lemmas that enable us
to obtain tighter bounds for key expressions in the proof of Theorem 1 of Hu et al. [5].

Lemma 2.1. Let {Xn, n ≥ 1} be a sequence of square-integrable random variables and suppose that
there exists a sequence of constants {ρk, k ≥ 1} such that (1.2) holds and a sequence {bn} satisfying
(1.3). Then for all n ≥ 0, m ≥ n + 2,

E

(
m∑

i=n+1

Xi − EXi

bi

)2

≤
m∑

i=n+1

VarXi

b2i
+

m−n−1∑

k=1

ρk
k

log
(

1 +
k

n

)

. (2.1)
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Proof. For all n ≥ 0, m ≥ n + 2,

E

(
m∑

i=n+1

Xi − EXi

bi

)2

=
m∑

i=n+1

Var(Xi)
b2i

+ 2
m−1∑

i=n+1

m∑

j=i+1

Cov
(
Xi,Xj

)

bibj

≤
m∑

i=n+1

VarXi

b2i
+ C

m−1∑

i=n+1

m∑

j=i+1

ρj−i
ij

=
m∑

i=n+1

VarXi

b2i
+ C

m−1∑

i=n+1

m−n−1∑

k=1

ρk
k

(
1
i
− 1
i + k

)

=
m∑

i=n+1

VarXi

b2i
+ C

m−n−1∑

k=1

ρk
k

(
m−1∑

i=n+1

1
i
−

m−1+k∑

i=n+k+1

1
i

)

≤
m∑

i=n+1

VarXi

b2i
+ C

m−n−1∑

k=1

ρk
k

(
log(n + k) − log(n)

)

≤
m∑

i=n+1

VarXi

b2i
+ C

m−n−1∑

k=1

ρk
k

log
(

1 +
k

n

)

.

(2.2)

Lemma 2.2. For 0 < e2 ≤ k ≤ n,

log
(

1 +
k

n

)

≤
(
log k
logn

)2

. (2.3)

Proof. Note that x/(logx)2 is an increasing function for x ≥ e2 > 0. Thus, for x ≥ k > e2,

x
(
logx

)2 ≥ k
(
log k

)2 . (2.4)

Hence for n ≥ k > e2,

log
(

1 +
k

n

)

≤ k

n
≤
(
log k
logn

)2

. (2.5)

Lemma 2.3. For a > 0, define

Si(a) =
∞∑

n=a

ni

2n
, i = 0, 1, . . . . (2.6)
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Then S0(a) = 2−(a−1), S1(a) = (a + 1)2−(a−1) and, in general,

Sj(a) =
aj

2a−1
+

j−1∑

i=0

(
j

i

)

Si(a). (2.7)

Proof. The result for S0(a) is the sum of a standard geometric progression. The general result
follows by noting

2Sj(a) =
∞∑

n=a

nj

2n−1

=
aj

2a−1
+

∞∑

n=a

(n + 1)j

2n

=
aj

2a−1
+

∞∑

n=a

nj

2n
+

j−1∑

i=0

∞∑

n=a

(
j

i

)
ni

2n
.

(2.8)

Thus

Sj(a) =
aj

2a−1
+

j−1∑

i=0

(
j

i

)

Si(a). (2.9)

Proof of Theorem 1.1. Wewill follow themethod of proof in Theorem 1 inHu et al. [5]. To prove
(1.6) we first show that {∑n

i=1((Xi − EXi)/bi), n ≥ 1} is a Cauchy sequence for convergence
in L2 which will imply convergence in probability. Using Lemmas 2.1 and 2.2,

sup
m>n

E

(
m∑

i=1

Xi − EXi

bi
−

n∑

i=1

Xi − EXi

bi

)2

= sup
m>n

E

(
m∑

i=n+1

Xi − EXi

bi

)2

≤ sup
m>n

(
m∑

i=n+1

VarXi

b2i
+ C

m−n−1∑

k=1

ρk
k

log
(

1 +
k

n

))

, by Lemma 2.1,

≤
∞∑

i=n+1

VarXi

b2i
+ C

8∑

i=1

ρk
k

log
(

1 +
k

n

)

+ C
n∑

k=9

ρk
k

(
log k
logn

)2

+
∞∑

k=n+1

ρk
k

log(k)

−→ 0 as n −→ ∞.

(2.10)
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Therefore there exists a random variable S ∈ L2 such that

Sn =
n∑

i=1

Xi − EXi

bi

p−→ S. (2.11)

Next we will show that S2n → S a.s. Let ε > 0 be arbitrary. Note

∞∑

n=1

P

{∣
∣
∣
∣
∣

2n∑

i=1

Xi − EXi

bi
− S

∣
∣
∣
∣
∣
> ε

}

≤ 1
ε2

∞∑

n=1

( ∞∑

i=2n+1

VarXi

b2i
+ C

∞∑

k=1

ρk
k

log
(

1 +
k

2n

))

, by Lemma 2.1,

= C
∞∑

i=3

[log2i]∑

n=1

VarXi

b2i
+ C

∞∑

n=1

(
2n∑

k=1

ρk
k

log
(

1 +
k

2n

)

+
∞∑

k=2n+1

ρk
k

log
(

1 +
k

2n

))

≤ C
∞∑

i=2

[log2i]∑

n=1

VarXi

b2i
+ C

∞∑

k=1

⎛

⎝
∞∑

n=[log2k]

ρk
k

(
log k

)2

(
log 2n

)2 +
[log2k]∑

n=1

ρk
k

(
1 + log k

)
⎞

⎠, by Lemma 2.2,

≤ C
∞∑

i=2

[log2i]∑

n=1

VarXi

b2i
+ C

∞∑

k=1

ρk
k

log k + C
∞∑

k=1

ρk
k

(
log k

)2

< ∞,

(2.12)

where the last line follows by using (1.4) and (1.5). Thus by the Borel Cantelli lemma S2n → S
almost surely. To finish the proof we utilize the generalization of the Rademacher-Menchoff
maximal inequality given by Serfling [7] and argue as in Hu et al. [5]. It is sufficient to show
that, for any ε > 0,

∞∑

n=1

P

{

max
2n−1<k≤2n

|Sk − S2n−1 | > ε

}

< ∞. (2.13)
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Using Serfling’s inequality and (3.8) from Hu et al. [5]

∞∑

n=1

P

{

max
2n−1<k≤2n

|Sk − S2n−1 | > ε

}

≤ 1 + C
∞∑

n=2

2n∑

i=2n−1+1

(VarXi)
(
log i

)2

b2i
+ C

∞∑

n=2

n2
2n−1−1∑

k=1

ρk
k

log
(

1 +
k

2n

)

≤ 1 + C
∞∑

i=1

(VarXi)
(
log i

)2

b2i
+ C

∞∑

k=1

∞∑

n=1+[log k]

n2
(
ρk
k

k

2n

)

≤ 1 + C
∞∑

i=1

(VarXi)
(
log i

)2

b2i
+ C

∞∑

k=1

∞∑

n=1+[log k]

(
n2

2n

)

ρk

≤ 1 + C
∞∑

i=1

(VarXi)
(
log i

)2

b2i
+ C

∞∑

k=1

ρk
k

(
log k

)2
, by Lemma 2.3,

< ∞.

(2.14)
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