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We study the mean earnings of a lottery winner as a function of the number n of participants in
the lottery and of the success probability p. We show, in particular, that, for fixed p, there exists an
optimal value of n where the mean earnings are maximized. We also establish a relation with the
inverse moments of a binomial distribution and suggest new formulas (exact and approximate)
for them.

1. Introduction

The game of lottery is both popular and simple. Focusing on the essentials, and leaving
aside additional features of secondary importance, which vary across different lottery
implementations, the rules of the game are as follows: each player submits to the lottery
organizers a ticket consisting of M integers (selected by the player, without repetitions,
selection order being unimportant) from the range 1, . . . ,N; within the prespecified time
period the game is set to last; upon the expiry of this period no more ticket submissions
are accepted, and an M-tuple of distinct integers (the “winning set”) is selected uniformly at
random by the lottery organizers; each submitted ticket gets compared against the winning
set, and, if they match, the corresponding player “wins.” This is known as an M/N lottery
system, and the winning probability is clearly p = 1/

(
N

M

)
. The money the winners earn

depends on the number n of submitted tickets: each submitted M-tuple incurs a certain fee
(which we assume, without loss of generality, to be equal to 1), and some fixed ratio of the
total sum collected (which we assume, again without loss of generality, to be 100%, namely,
the entire sum) is returned as prize money back to the winners and equally split among them.
As long as no winner is found, earnings of earlier games accumulate until winners are found,
who then split equally the entire sum. This is an important feature in the implementation of
lottery systems in practice, known as rollover.
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For a given success probability p, what is the effect of the total number of participants
n on a winner’s mean earnings? This is the object of study of this article. Clearly, more
participants lead not only to more prize money, but also to more potential winners.
Intuitively, and by the elementary properties of the binomial distribution, we expect that
the area of the (n, p)-plane where np ≈ 1 is an important borderline: as long as np � 1,
existence of winners is highly improbable, so most likely the mean earnings will trivially
be 0, while, as long as np � 1, the law of large numbers applies and suggests that there
will be approximately np winners; each of when will receive an amount of money equal to
n/(np) = 1/p. We first analyze the independent draws scenario (without rollover), and then
use this result to deduce the corresponding result with rollover.

An additional complication rollover presents that it is not only that the number of
participants in the various draws can vary, but also that this variation can potentially exhibit
strong correlation, specifically be strictly increasing: as a rule, larger money prizes motivate
more extensive participation [1, 2]. A reliable model for this variation can only be obtained
through detailed statistical analysis and the psychology of gambling, which both lie beyond
the scope of the present article (see, e.g., [1–4] for an analysis of the playing style of lottery
participants). Perhaps surprisingly, though, some analysis we performed on Greek lottery
data [5] did not invariably lead to the conclusion that the number of participants in the
various games during a rollover round shows a clear upward trend (a similar phenomenon
is observed in [3]). On many occasions, these fluctuations appear indeed to be random
and, more importantly, the order of magnitude of the number of participants does not vary.
Accordingly, we will derive the general formula for an arbitrary fluctuation of the number
of participants during lottery games in a single rollover round, but we will then focus on the
special case where this number is constant, as it is not only interesting but also mathematically
tractable.

Needless to say, actual lottery implementations are actually more complicated,
incorporating a plethora of secondary features. For example, lower winning levels may be
introduced, corresponding to partial matches between the tickets and the winning set, and
the prize money they win may either be smaller fractions of the total sum or simply a fixed
sum. Alternatively, an extra “bonus number” may be introduced, acting, in a sense, like a
“second chance”: players are allowed to submit a guess for this number, in addition to their
guess for the winning set, while the selection of the winning set is followed by the (also
uniformly random amongst the remaining integers) bonus number. If a player’s choice has
an overlap of M − 1 integers with the winning set, but the player also guessed correctly the
bonus number, a lesser prize is offered to the player. This may, of course, be combined with
all lower winning levels, whereby an overlap of K − 1 integers (K ≤M) plus correct guess of
the bonus number leads to a smaller prize compared to an overlap of K integers.

To the best of our knowledge, the issue of winners’ mean earnings has not been
considered in the lottery literature before. It is a problem of mathematical interest, relating
lottery to the study of inverse moments of the positive binomial distribution (as will be seen
below), and, for this reason, this article can be considered falling into the same group of
publications by the present author [6–8], as well as other authors (e.g., [4, 9]), whose objective
is to consider nontrivial probability issues related to the lottery. We should perhaps state that
the purpose of this article is not to consider winning strategies or to advise a prospective
player about the investive value of the lottery. For readers interested in these aspects of the
lottery, we recommend the study in [1], a recent and mathematically sophisticated analysis
of the lottery’s viability as an investment, and also those in [10, 11].



Journal of Probability and Statistics 3

One final point that needs to be addressed is our choice to assume throughout this
article that players choose their numbers independently of each other, namely, that the
probability distribution describing the choice of an M-tuple of integers by any player is
uniform over all possible M-tuples, and to actually do so despite the fact that this has been
extensively investigated and found, perhaps surprisingly, not to hold in practice [1, 2, 10–
13]! Indeed, humans seem to favor some classes of M-tuples more than others (for several
reasons), and the net effect of this is that the probability distribution of the number of winners
depends on the winning set. Lottery organizers seem to encourage this phenomenon, as
it leads to more frequent rollovers, which has been documented, at least, in some lotteries
(e.g., US and UK), to increase participation [1, 2]. This already suggests a playing strategy:
assuming that players have information on which M-tuples are “unpopular” and that a
player should choose one of those. Indeed, the probability distribution of the winning set is
uniform (assuming that the lottery organizers are honest), and, if the chosen “unpopular”M-
tuple wins, the likelihood of other winners existing will be minimal. In this article, however,
we choose to ignore this complication, as mentioned above, on account of three reasons: (a)
there appears to be no universal and conclusive statistical evidence to support the position
that the skewness present in the players’ choices is strong enough to unquestionably reject
the validity of the uniform players’ choices model, at least as an approximation; (b) as
lottery players become more mature and aware, this skewness may progressively disappear
(there is already evidence that, in some lotteries, more than 70% of the choices entered are
picked randomly by computers [1]); and (c) as mentioned earlier, this article focuses on the
principles of the lottery rather than its actual implementations.

2. Results without Rollover

Consider the lottery game as described in the Introduction: the probability distribution for
the number of winners is the binomial B(n, p). Assuming that m > 0 winners exist, each one’s
earnings will be n/m, while, for m = 0, there is no winner to earn something, so earnings are
conventionally taken to be 0. It follows that the mean earnings G(n, p) are

G
(
n, p
)
=

n∑
m=1

(
n

m

)
pm
(
1 − p)n−m n

m
= n
(
1 − p)n

n∑
m=1

(
n

m

)
1
m

(
p

1 − p
)m

. (2.1)

This expression is essentially the inverse first moment of the positive binomial
distribution B+(n, p). Assuming that X ∼ B(n, p) and setting q = 1 − p,

X+ ∼ B+
(
n, p
)⇐⇒ P[X+ = m] = P[X = m | X > 0]

=
P[X = m]
P[X > 0]

=
1

1 − qn
(
n

m

)
pmqn−m, m = 1, . . . , n,

(2.2)

and the inverse kth moment is defined as

μ−k = E

[
X−k

+

]
=

1
1 − qn

n∑
m=1

1
mk

(
n

m

)
pmqn−m =

qn

1 − qn
n∑

m=1

1
mk

(
n

m

)(
p

q

)m
, k ∈ N

∗. (2.3)
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Clearly, (2.1) and (2.3) (for k = 1) consist of the same sum (with different multiplicative
factors):

G
(
n, p
)
= n
(
1 − qn)μ−1. (2.4)

The problem of the inverse moments of the positive binomial distribution was first
considered by Stephan in 1946 [14], and has received a fair share of attention in the literature
ever since. For example, Grab and Savage [15] provided a recursive formula in n for k =
1, which was later generalized by Govindarajulu [16], while Chao and Strawderman [17]
considered E[1/(X + c)], where c ∈ R such that P[X + c > 0] = 1. Recently, Wuyungaowa and
Wang provided asymptotic expansions of μ−k, k ∈ N

∗.
We now proceed to derive a more convenient formula for (2.1), hence, in view of (2.4),

for μ−1 as well. To the best of our knowledge, this formula has not appeared in the literature
before.

Theorem 2.1. G(n, p) = n
∑n

m=1((q
n−m − qn)/m). Furthermore, setting F(x) = e−x

∫x
0 ((e

u −
1)/u)du,

∣∣G(n, p) − nF(−n ln
(
q
))∣∣ ≤ n ln2(q)

24√q + 2
ln
(
q
)

√
q

+O
(
n−1
)
. (2.5)

For p � 1, in particular, −n ln(q) ≈ np, ln2(q)/√q ≈ p2, and 2(ln(q)/√q) ≈ −2p.

Proof. We can transform (2.1) using integration:

G
(
n, p
)
= n
(
1 − p)n

∫p/(1−p)
0

n∑
m=1

(
n

m

)
um−1du

= n
(
1 − p)n

∫p/(1−p)
0

(1 + u)n − 1
u

du.

(2.6)

We now use the identity xn − 1 = (x − 1)(xn−1 + · · · + 1) to get

G
(
n, p
)
= n
(
1 − p)n

∫p/(1−p)
0

n−1∑
m=0

(1 + u)mdu

= n
(
1 − p)n

n∑
m=1

(
1 + p/

(
1 − p))m − 1
m

= n
n∑

m=1

(
1 − p)n−m − (1 − p)n

m

= n
n∑

m=1

qn−m − qn
m

,

(2.7)

which proves our first claim.
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We now approximate the sum in (2.7) by an integral (considering it to be a Riemann
sum, or, even better, through the Euler-McLaurin formula [18]):

G
(
n, p
)
= n

n∑
m=1

qn−m − qn
m

= nqn
n∑

m=1

q−m − 1
m

= nqn
n∑

m=1

(
qn
)−m/n − 1
m/n

1
n

−→ nqn
∫1

0

q−nx − 1
x

dx = nqn
∫n

0

q−x − 1
x

dx = nr−n
∫n

0

rx − 1
x

dx

= ne−n ln(r)
∫n ln(r)

0

ex − 1
x

dx = nF(n ln(r)),

(2.8)

where

r =
1
q
, F(x) = e−x

∫x
0

eu − 1
u

du. (2.9)

But this can be further simplified as

ln(r) = − ln
(
q
)
= − ln

(
1 − p) ≈ p for 0 < p � 1, (2.10)

implying that

G
(
n, p
)

n
≈ F(n ln(r)) ≈ F(pn) = e−pn

∫pn
0

ex − 1
x

dx. (2.11)

The error of this approximation is readily given by the lowest-order Newton-Cotes
numerical integration formula known as the midpoint rule [19], which, applied in the
function at hand, yields

∣∣∣∣∣
n∑

m=1

qn−m − qn
m

− qn
∫1

0

q−nx − 1
x

dx

∣∣∣∣∣

≤ E(n, p) :=
M2

24n2
+

∣∣∣∣∣q
n

∫1/(2n)

0

q−nx − 1
x

dx

∣∣∣∣∣ +
∣∣∣∣∣q

n

∫1+1/(2n)

1

q−nx − 1
x

dx

∣∣∣∣∣,
(2.12)

where

M2 = max
x∈[1/(2n),1+1/(2n)]

(
qn(1−x) − qn

x

)′′

=
n2ln2(q)

(1 + 1/2n)√q +
2n ln

(
q
)

(1 + 1/2n)2√q
+

2
(
1/√q − qn)

(1 + 1/2n)3
,

(2.13)
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as the second derivative is monotonically increasing, and, therefore, the maximum
corresponds to the right endpoint of the interval, namely, x = 1 + 1/(2n). For large n, the
contribution of the two integral error terms becomes insignificant, while, asymptotically,

M2 = n2 ln2(q)
√
q

+ 2n
ln
(
q
)

√
q

+
2√
q
+O
(
n−1
)
. (2.14)

Assuming further that p � 1, we find that ln2(q)/√q = ln2(1 − p)/
√

1 − p ≈ p2, and
2 ln(q)/√q = 2 ln(1 − p)(1 − p)−1/2 ≈ −2p − p2; hence the total error is approximately bounded
above by

E
(
n, p
)
=
p2

24
− p

12n
+O
(
n−2
)
. (2.15)

This completes the proof.

The approximation (2.11) proved in the theorem above is compared in Figure 1
against the exact (2.6), or, equivalently, (2.7). Our experiments show that for p < 0.01 the
approximation is almost exact, while for larger values of p, where (2.15) does not yet hold,
there is noticeable deviation between the two curves.

Figure 1 suggests that, for fixed p, G(n, p) attains a global maximum for some n. We
now prove this to be the case.

Theorem 2.2. For fixed p ∈ (0, 1), G(n, p) attains a global maximum for some n.

Proof. To begin with, note that G(1, p) = p by (2.1). Furthermore, we obtain from (2.7) that

G
(
n, p
)
= n

n−1∑
m=0

qm

n −m − nqnH(n)

=
n−1∑
m=0

qm +
n−1∑
m=0

m

n −mqm − nqnH(n)

=
1 − qn
1 − q +

n−1∑
m=0

m

n −mqm − nqnH(n)

=
1
p
− qn
(

1
p
+ nH(n)

)
+

n−1∑
m=0

m

n −mqm

=
1
p
− qn
(

1
p
+ nH(n)

)
+

1
n

n−1∑
m=1

mqm +
1
n

n−1∑
m=1

m2

n −mqm,

(2.16)
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Figure 1: Comparison of G(n, p)/n as given by (2.6) versus F (in blue and red, resp.) for p = 0.1 (a) and
p = 0.01 (b). For p ≤ 0.01 the two curves are indistinguishable.

where H(n) =
∑n

k=1(1/k) denotes the nth harmonic number. We further break the last sum
into two sums:

1
n

n−1∑
m=1

m2

n −mqm =
1
n

N1∑
m=1

m2

n −mqm +
1
n

n−1∑
m=N1+1

m2

n −mqm

≤ 1
n

N1∑
m=1

m2

n −mqm +
1
n

n−1∑
m=N1+1

m2qm,

(2.17)

where N1 < n is a positive integer to be specified later. Since
∑∞

m=0 m
2qm := C < ∞ for q < 1,

for any ε1 > 0 there exists a suitable N1 such that

n−1∑
m=N1+1

m2qm <
∞∑

m=N1+1

m2qm < ε1. (2.18)
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On the other hand, for this specific N1, and for any ε2 > 0, there exists N2 > N1 such that, for
any n > N2,

N1∑
m=1

m2

n −mqm <
1

n −N1

N1∑
m=1

m2qm <
C

n −N1
< ε2. (2.19)

Putting (2.17), (2.18), and (2.19) together, we obtain that, for any ε1, ε2 > 0, there exist
N1 > 0 and N2 > N1 such that, for any n > N2,

1
n

n−1∑
m=1

m2

n −mqm =
1
n

N1∑
m=1

m2

n −mqm +
1
n

n−1∑
m=N1+1

m2

n −mqm <
ε1 + ε2

n
. (2.20)

Furthermore,

n−1∑
m=1

mqm −→
∞∑
m=1

mqm =
q

p2
, (2.21)

so that, for any ε3 > 0, ∃N3 > 0 such that, for any n > N3,

0 <
q

p2
−

n−1∑
m=1

mqm < ε3. (2.22)

Finally, for any n > 1/p,

nqn
(

1
p
+ nH(n)

)
< nqn

(
n + n2

)
< 2n3qn, (2.23)

and we know that this decays to 0 much faster than any power: in particular, for any ε4 > 0,
there exists N4 > 0 such that, for any n > N4,

nqn
(

1
p
+ nH(n)

)
<
ε4

n2
. (2.24)

From (2.16), then, using (2.22) and (2.24), we obtain

G
(
n, p
) − 1

p
= −qn

(
1
p
+ nH(n)

)
+

1
n

n−1∑
m=1

mqm +
1
n

n−1∑
m=1

m2

n −mqm

>
q/p2 − ε3

n
− ε4

n2
,

(2.25)
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for n > N = max{N2,N3,N4}, whence, if we ensure that q/p2 > ε3 + ε4, it follows that

G
(
n, p
) − 1

p
> 0 for n > N. (2.26)

On the other hand,

∣∣∣∣G
(
n, p
) − 1

p

∣∣∣∣ <
q/p2 + ε1 + ε2

n
+
ε4

n2
, n > max{N2,N4} =⇒ limG

(
n, p
)
=

1
p
. (2.27)

To recapitulate, we have shown thatG(1, p) = p < 1/p, whereas, as n → ∞,G(n, p) converges
to 1/p from above: more specifically, we have shown that, for all n sufficiently large,

0 < G
(
n, p
)
=

1
p
+

q

p2n
+ o
(
n−1
)
. (2.28)

Hence, G(n, p) exhibits a global maximum for some value of n, for fixed p, and this concludes
the proof.

Alternatively, the eventual positivity ofG(n, p)−1/p also follows immediately from the
more general asymptotic formulas presented in [20]. Having now demonstrated that G(n, p)
has a global maximum, the next step is to locate and calculate its value. To do this, we do
not work on G(n, p) directly, but rather on the approximation Ga(n, p) = nF(np), derived in
Theorem 2.1.

Theorem 2.3. For fixed p, Ga(n, p) is maximized for nopt ≈ 4.168485/p, and Ga(nopt, p) ≈
0.310724nopt ≈ 1.295248/p. Furthermore, Ga(n, p)/n is maximized for nopt,r ≈ 1.502861/p, and
Ga(nopt,r, p)/nopt,r ≈ 0.517351.

In particular, the maximal mean earnings possible are about 29.5% above the
asymptotic value, and about 31% of the total prize money.

Proof. Considering n to be a continuous quantity, we determine the global maximum of Ga

from the condition ∂Ga(n, p)/∂n = 0:

∂Ga

(
n, p
)

∂n
=
(
1 − np)e−np

∫np
0

ex − 1
x

dx + ne−npp
enp − 1
np

= 0

⇐⇒
∫s

0

ex − 1
x

dx =
es − 1
s − 1

,

(2.29)

where s = np. This equation can be solved numerically to yield s ≈ 4.168485. It follows that
the optimal n is asymptotically given by the formula

nopt ≈ s

p
≈ 4.168485

p
. (2.30)
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The value of the maximum, consequently, is

Ga

(
nopt, p

) ≈ s

p
e−s
∫ s

0

ex − 1
x

dx =
s

p

1 − e−s
s − 1

≈ 1.295248
p

⇐⇒ G
(
nopt, p

)

nopt
≈ 0.310724. (2.31)

What about maximizing the relative mean earnings Ga(n, p)/n = F(np)? Going back
to (2.11), we need to determine the roots of the derivative of F:

0 = F ′(s) = −e−s
∫s

0

ex − 1
x

dx + e−s
es − 1
s

⇐⇒
∫ s

0

ex − 1
x

dx =
es − 1
s

. (2.32)

Solving numerically we obtain s = nopt,rp ≈ 1.502861, whence

F(s) = e−s
es − 1
s

≈ 0.517351. (2.33)

This completes the proof.

As a brief numerical example, consider the Greek lottery, a 6/49 lottery system,
for which p = 1/

(
49

6

)
= 1/13983816. Theorem 2.3 shows that Ga(n, p) is maximized for

nopt ≈ 4.168485/p ≈ 58.3 million, while Ga(n, p)/n is maximized for nopt ≈ 1.502861/p ≈
21.0 million. The actual number of tickets normally played, however, is significantly lower,
ranging from 1 to 8 million [5], so, for the given level of participation, a 6/49 system is not
optimal.

Before we conclude this section, let us investigate the variance of a winner’s earnings.
Our goal is to obtain a similar formula as the one presented in Theorem 2.1, and then to
generalize it into a formula for any μ−k, k ∈ N

∗. We begin by calculating the mean square
earnings

G(2)(n, p) =
n∑

m=1

(
n

m

)
pmqn−m

(
n

m

)2

= n2qn
n∑

m=1

(
n

m

)
1
m2

(
p

q

)m

= n2qn
n∑

m=1

(
n

m

)
1
m

∫p/q
0

um−1du = n2qn
∫p/q

0

du

u

n∑
m=1

(
n

m

)∫u
0
dv vm−1

= n2qn
∫p/q

0

du

u

∫u
0

dv

v

n∑
m=1

(
n

m

)
vm = n2qn

∫p/q
0

du

u

∫u
0

dv

v

[
(1 + v)m − 1

]

= n2qn
∫p/q

0

du

u

∫u
0
dv

n−1∑
m=0

(1 + v)m = n2qn
∫p/q

0

du

u

n∑
m=1

(1 + u)m − 1
m

= n2qn
∫p/q

0
du

n∑
m=1

1
m

m−1∑
l=0

(1 + u)l = n2qn
n∑

m=1

1
m

m∑
l=1

1
l

[(
1 +

p

q

)l
− 1

]

= n2
n∑

m=1

1
m

m∑
l=1

1
l

[
qn−l − qn

]
.

(2.34)
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It follows that the variance is

V
(
n, p
)
= G(2)(n, p) −G2(n, p)

= n2

⎡
⎣

n∑
m=1

1
m

m∑
l=1

1
l

[
qn−l − qn

]
−
(

n∑
m=1

1
m

[
qn−m − qn]

)2
⎤
⎦.

(2.35)

Asymptotics can be found as in Theorem 2.1:

G(2)(n, p) = n2qn
n∑

m=1

1
n

1
m/n

m∑
l=1

1
n

1
l/n

[
e−(l/n)n ln(q) − 1

]

−→ n2en ln(q)
∫1

0

du

u

∫u
0

dv

v

[
e−nv ln(q) − 1

]

= n2en ln(q)
∫−n ln(q)

0

du

u

∫u
0

dv

v
[ev − 1].

(2.36)

The generalization is clear. For any k ∈ N
∗,

G(k)(n, p) =
n∑

m=1

(
n

m

)
pmqn−m

(
n

m

)k

= nk
n∑

m1=1

1
m1

m1∑
m2=1

1
m2

· · ·
mk−1∑
mk=1

1
mk

(
qn−mk − qn),

(2.37)

while the asymptotic expression as n → ∞ becomes

G
(k)
a

(
n, p
)
= nkF(k)(−n ln

(
q
))
, where exF(k)(x) =

∫x
0
euF(k−1)(u)du, F(0)(x) =

1 − e−x
x

.

(2.38)

The relation to the inverse moments follows from the generalization of (2.4)

G(k)(n, p) = nk(1 − qn)μ−k, k ∈ N
∗. (2.39)

3. Results with Rollover

When rollover is introduced, a sequence of lottery draws is played till a winner is found, at
which point the total prize money (consisting of the prize money of the current draw plus
the jackpot, namely, the accumulated prize money over the previous draws) is equally split
among the winners. We assume that the (infinite) sequence n ∈ (N∗)∞ of the number of
participants in the various draws is known and fixed, and we denote by G(k, n, p) the mean
earnings in the kth lottery draw, assuming that no winner was found in the first k − 1 draws
and that a winner was found in the kth draw. It is clear that this quantity depends not on
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the full n but only on its starting subsequence (n1, . . . , nk); hence, for example, G(n, p) of the
previous section equals G(1, n′, p) for any n′ ∈ (N∗)∞ with n′1 = n.

We denote the mean earnings under rollover by Gr(n, p). Letting K(n) be the random
variable denoting, for a fixed n, the number of draws played till a winner is found, then

Gr

(
n, p
)
=

∞∑
k=1

P[K(n) = k]G
(
k, n, p

)
. (3.1)

It is, in fact, possible to determine the probability distribution of K(n): K(n) = k if and
only if no winner is found in the first k−1 draws and a winner is found in the kth draw. Taking
into account that the probability that no winner is found in the ith draw is (1− p)ni ≈ e−nip for
p � 1, we immediately find

P[K(n) = k] = e−p
∑k−1

i=1 ni
(
1 − e−nkp). (3.2)

Furthermore, revisiting (2.11) in Theorem 2.1, we see that the first factor of n in the equation
denotes the prize money; whereas every other occurrence of n is within the expression np and
denotes the number of tickets played; whence, in the present case, the asymptotic expression
Ga(k, n, p) for G(k, n, p) is given by

Ga

(
k, n, p

)
∑k

i=1 ni
= e−pnk

∫pnk
0

ex − 1
x

dx = F
(
pnk
)
. (3.3)

To sum up, the asymptotic expression Gr,a(n, p) for Gr(n, p) is given by

Gr,a

(
n, p
)
=

∞∑
k=1

(
k∑
i=1

ni

)
e−p

∑k−1
i=1 ni
(
1 − e−nkp)e−pnk

∫pnk
0

ex − 1
x

dx. (3.4)

It would be, of course, far more interesting to enrich the model by allowing n to be
random, following some infinite-dimensional discrete probability distribution P[N = n], in
which case the averaged Gr,a would be

Gr,a,avg
(
p
)
=
∑

n∈(N∗)∞
P[N = n]Gr,a

(
n, p
)
. (3.5)

In general, (3.4) cannot be simplified further in a meaningful way. This, however, is
possible in the special case, where, for some n ∈ N

∗, ni = n for all i ∈ N
∗, in which case we

may substitute the vector n ∈ (N∗)∞ appearing in the preceding expressions by the value
n ∈ N of its first coordinate (since all coordinates are equal) and prove the following theorem,
corresponding to Theorem 2.3.
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Theorem 3.1. Assuming that the number of tickets submitted remains constant throughout rollover
draws, the asymptotic expression for Gr(n, p) as n → ∞ and p � 1 is

Gr,a

(
n, p
)
=

ne−np

1 − e−np
∫np

0

ex − 1
x

dx =
1

1 − e−np Ga

(
n, p
)
. (3.6)

This function is maximized at n′opt = 3.750147/p and Gr,a(n′opt, p) = 1.320264/p = 0.352057n′opt.

In particular, the maximal mean earnings possible are about 32% above the asymptotic
value, and about 35% of the (first draw) total prize money.

Proof. Under the stated assumptions, (3.4) becomes

Gr,a

(
n, p
)
=

∞∑
k=1

P(K = k)Ga

(
k, n, p

)

=
∞∑
k=1

e−np(k−1)(1 − e−np)kne−np
∫np

0

ex − 1
x

dx

= n
(
1 − e−np)

∫np
0

ex − 1
x

dx
∞∑
k=1

ke−npk

=
ne−np

1 − e−np
∫np

0

ex − 1
x

dx

⇐⇒ Gr,a

(
n, p
)

n
=

F
(
np
)

1 − e−np = Fr
(
np
)
=

e−np

1 − e−np
∫np

0

ex − 1
x

dx,

(3.7)

and this proves our first claim.
We now note that the asymptotic behavior of Ga and Gr,a is identical as n → ∞,

while limn→ 0Gr,a(n, p) = 0 (n is treated here as a continuous quantity). As in Theorem 2.2,
it follows that Gr,a has a global maximum, which, as before, we locate through the condition
∂Gr,a(n, p)/∂n = 0:

0 =

(
1 − np)e−np(1 − e−np) − npe−2np

(1 − e−np)2

∫np
0

ex − 1
x

dx +
ne−np

1 − e−np p
enp − 1
np

= 1 +
e−np
(
1 − np − e−np)

(1 − e−np)2

∫np
0

ex − 1
x

dx

⇐⇒
∫s

0

ex − 1
x

dx =
(1 − e−s)2

e−s(s + e−s − 1)
.

(3.8)

This equation can be solved numerically to yield s ≈ 3.750147, whence

n′opt ≈
s

p
≈ 3.750147

p
. (3.9)
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Figure 2: (a) Ga (in red) and Gr,a (in blue) for p = 0.01, as given by (2.11) and (3.7), respectively. (b) Fr (in
blue) and F (in red) for p = 0.01.

The value of the maximum, consequently, is

Gr,a

(
n′opt, p

)
≈ s

p

e−s

1 − e−s
∫ s

0

ex − 1
x

dx

=
s

p

e−s

1 − e−s
(1 − e−s)2

e−s(s + e−s − 1)

=
s

p

(1 − e−s)
s + e−s − 1

≈ 1.320264
p

⇐⇒
Gr,a

(
n′opt, p

)

n′opt
≈ 0.352057.

(3.10)

This completes the proof.
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Continuing the numerical example for the Greek lottery given right below
Theorem 2.3, Gr,a(n, p) is maximized for n′opt ≈ 3.750147/p ≈ 52.4 million, which is also
significantly higher than the actual number of tickets normally played.

We may attempt, as in Theorem 2.3, to maximize the relative (to the prize money
accumulated in the first draw) mean earnings. To do this, we refer back to (3.7) and ask
for the roots of the derivative of Fr :

0 = F ′
r(s) = − es

(es − 1)2

∫ s
0

ex − 1
x

dx +
1

es − 1
es − 1
s

⇐⇒
∫ s

0

ex − 1
x

dx =
(es − 1)2

ses
. (3.11)

This equation, however, has no root! It turns out that Fr is strictly decreasing. A more
appropriate quantity to consider is the mean earnings relative to the mean accumulated prize
money

gr =
∞∑
k=1

kne−np(k−1)(1 − e−pn) = n

1 − e−pn , (3.12)

whence it follows that Gr,a/gr = F.
Figure 2 plots Ga, Gr,a, Fr , and F for p = 0.01.

4. Conclusion

We investigated the mean earnings of a lottery winner as a function of the number n of
players participating in a lottery with success probability p, under the assumption that the
total amount of money offered as a prize to the winners is equal (or, in general, linearly
proportional) to n. We considered two versions of the lottery game, namely, with and
without rollover. We concluded that both with and without rollover, both the absolute mean
earnings and the fraction of the mean earnings over the total accumulated sum for an
individual winner are maximized when np equals a certain constant (different, in general,
for the four different stated cases), which we determined numerically. In the course of our
investigation, we linked the mean earnings formula to the classical problem of determining
the inverse moments of a binomial distribution, offering for them novel formulas, both exact
and approximate.
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