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Mechanisms to extract the characteristics of network traffic play a significant role in traffic
monitoring, offering helpful information for network management and control. In this paper,
a method based on Random Matrix Theory (RMT) and Principal Components Analysis (PCA)
is proposed for monitoring and analyzing large-scale traffic patterns in the Internet. Besides
the analysis of the largest eigenvalue in RMT, useful information is also extracted from small
eigenvalues by a method based on PCA. And then an appropriate approach is put forward to
select some observation points on the base of the eigen analysis. Finally, some experiments about
peer-to-peer traffic pattern recognition and backbone aggregate flow estimation are constructed.
The simulation results show that using about 10% of nodes as observation points, our method can
monitor and extract key information about Internet traffic patterns.

1. Introduction

Accurate and timely detection and recognition about entire network traffic patterns are of
great significance for network operations. However, the present monitoring technologies
make it impossible for a clear understanding of the network-wide traffic characteristics,
especially in a large-scale network. To address this issue, taking a network-wide view of
traffic has been proposed as one of the most important principles in the future network [1].
Recently, there are several active areas in traffic measurement research, including high-rate
flow detection [2], traffic engineering [3], anomalies detection [4], and network management
[1] and so forth.

Traffic measurement over an entire network is faced with many challenges because of
the rapid growth of network size. High-speed links, concurrent flows, and mixed services
make it too expensive for routers to trace every traffic flow. Even if this can be achieved, it is
impossible to handle such a mass of information.
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A sampled traffic flow could be denoted as time series, and the correlation between
traffic flows could reveal important information about network traffic pattern. This property
is well utilized in Random Matrix Theory (RMT). In the method, a random correlation
matrix, which is constructed from mutually uncorrelated time series, is compared against
a correlation matrix of measured data, and the results of the related research [5, 6] reveal
that almost 98% of the eigenvalues of cross-correlation matrix of measured data agree with
RMT predictions, suggesting a considerable degree of randomness in the measured cross
correlations, while the deviations between the two matrices convey information about the
characteristics of real world. Results from RMT have been used as an analysis tool in some
selected areas [6, 7].

Recently the RMT-based method has been used in a network study. In [8], the Renater
study firstly uses RMT to analyze cross-correlation among network flows. They find that the
largest eigenvalue of the flow cross correlation matrix is approximately 100 times larger than
predicted for uncorrelated time series, and the eigenvector component distribution of the
largest eigenvalue deviates significantly from the Gaussion distribution predicted by RMT.
Further, the Renater study reveals that all components of the eigenvector corresponding
to the largest eigenvalue imply their collective contribution to the strong correlation in
congestion over the whole network. Since all network flows contribute to the eigenvector,
the eigenvector can be viewed as an indicator of spatial-temporal correlation in network
congestion.

Differing from the Renater study which is performed in a small-scale network with
only 30 routers, we find that RMT is more applicable to large-scale network traffic monitoring
and analysis. In [9], an RMT-based approach is proposed to study the pattern shift in
Internet traffic caused by distributed denial-of-service attacks with only a few observation
points. In our previous work [10], we measured large-scale client-server and peer-to-peer
traffic patterns with a few subnets nodes which have the large degree. However, we select
the observation points only through several repeated experiments without strong evidence.
In this paper, we extend the application scenarios to monitor the traffic patterns of the
links and subnets, and analyze the selection of the monitors through Principal Components
Analysis (PCA) which is a mathematical tool in common use to analyze multivariate data
and dimensionality reduction.

As stated above, we propose a method in the paper, based on the combination
of RMT and PCA, to capture the main traffic patterns of large-scale networks with only
a few observation points. With complete explanation in the paper, we put forward an
effective approach to monitor the large-scale traffic patterns exactly with only about 10% of
subnets routers as observation points which is selected by analysis. The rest of this paper is
structured as four sections. In Section 2, we give a large-scale network model as a prototype of
Internet, which is the basis of our experiment in the following parts. In Section 3, the hidden
information is extracted from the covariance matrix of the flow data by the RMT analysis. In
Section 4, the meanings of the largest eigenvalues and the small eigenvalues are explained
by PCA theory, and guiding principles are proposed and analyzed to select observation
points. In Section 5, some experiments are constructed and the simulation results subjected
to detailed analysis. Then, we conclude our paper in Section 6.

2. The Model of Networks

In order to verify our ideas, many experiments are constructed to monitor the network behav-
ior. Here, we use a four-tier model as illustrated in Figure 1, including 11 backbone routers



Journal of Probability and Statistics 3

A

B

C

D

E

F

G

H

I

J

K
A
1

A
2

A
3

B1

B2
B3

B4

C
1

C
2

D
1

D
2

D
3

D
4

D
5

E1
E2

E3

F1

F2
F3

F4

G
1

G
2

H
1

H
2

H
3

H
4I1

I2

I3 J1

J2
J3

J4

J5

K
1

K
2

K
3

K
4

K
5

A
1a

A
1b

A
1c

A
2a

A
2b

A
2c

A
3aA

3b

B
1a

B
1b B

2a

B
2b

B
3a

B
3b

B
3c

B
4a

B
4b

B
4c

B
4d

B
4e

D
1a

D
1b

D
2a

D
2b

D
2cD

3a
D

3b

D
4a

D
4b

D
4c

D
4d

D
5a

D
5b

D
5c

D
5d

D
5e

E
1a

E
1b

E
2a

E
2b

E
3a

E
3b

F1
a

F1
b

F2
a

F2
b

F3
a

F3
c

F4
a

F4
b

F4
c

F4
d

G
1a

G
1b

G
1c

G
2a

G
2b

H
1a

H
1b

H
1c

H
2a

H
2b

H
2c

H
2dH

3a
H

3b

H
4a

H
4b

I1
a

I1
b

I1
c

I1
d

I2
a

I2
b

I2
c

I3
a

I3
b

J1
a

J1
b J2

a
J2

b
J3

a
J3

b

J4
a

J4
b

J4
c

J5
a

J5
b

J5
c

J5
d

J5
e

K
1a

K
1b

K
5a

K
5b

K
4a

K
4b

K
3a

K
3b

K
3c

K
3d

K
2a

K
2b

K
2c

K
2d

K
2e

C
1a

C
1b

C
2a

C
2b

Figure 1: The simulation model with 11 backbone routers, 40 subnet routers, 110 leaf routers, and 22000
hosts.
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(A,B, . . . ,K), 40 subnet routers (A1,A2, . . . ,K4,K5), 110 leaf routers (A1a,A1b, . . . ,K5c,K5d),
and 22000 hosts.

TCP protocol is applied in our model. As known, modern TCP implementations
contain four intertwined algorithms: slow start, congestion avoidance, fast retransmit, and
fast recovery. In order to shorten the simulation time, the model works adopting likely
Reno TCP, except reducing the congestion window to half of the current window size after
receiving one, instead of three, duplicate ACKs.

2.1. Background Traffic

The background traffic is constructed by the traffic between normal hosts.
Our model includes 22,000 sources, each of which represents a client. Each source

generates traffic as an ON/OFF process which can provide a convenient model of user
behavior. At the beginning of each ON period, a destination receiver is chosen randomly
from any leaf router.

To store and forward packets, all routers maintain a queue of limited length, where
arriving packets are stored until they can be processed: first in, first out. While small queue
lengths lead to many losses during TCP slow start and large queues produce excessive delays,
to achieve a reasonable balance, TCP simulations [11, 12] often set lengths of router queue in
a range of 10 to 200 packets. We assume that setting maximum queue length (160 packets, in
our simulation) within this range would not influence our qualitative findings.

Empirical measurements on the Internet observe a heavy-tailed distribution of
file sizes [13]. Here, the Pareto distribution is therefore used to model heavy-tailed
characteristics. The Pareto distribution function has the following form:

P[X ≤ x] = 1 −
(
k

x

)α

(k ≤ x), (2.1)

where 0 ≤ α ≤ 2 is the shape parameter. For our experiment, we select the same
shape parameter, α = 1.5, for both ON and OFF process; however, different means are
choosen. Here, λon = 50 (packets) is selected to represent the preference for small files,
as is typically the case with Web page downloads. Empirical observations of OFF periods
change dramatically between observations made at night or in the day. Let λoff = 5000
(milliseconds) represent the average thinking time before a user requests another file. Aiming
to the detection of traffic pattern, we need to simulate background traffic, that is, neither too
sparse nor too congested. Because when the network is too lightly loaded, the traffic pattern
cannot be observed for the weak correlations among flows. On the other hand, when the
network hardly overloaded, the likely-congested phenomenon we expect to observe will be
submerged by congestion everywhere.

2.2. P2P Traffic

In this case, a dynamic P2P overlay network is considered as follows. Let t0 < t1 < t2, in which
the three parameters represent different time. At the beginning, a group of peers distributed
under A1, D2, J5, K2, and K3 communicate with each other at the time t0. Then the peers of
D2 leave the sharing-file system at t1, while the ones under H2 join in at t2. The experiment
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Table 1: Table of delays.

AB AC BC BD CE DF EF EG FH GH GI HJ IK JK
10 12 12 4 8 20 10 7 9 7 4 7 5 3
BA CA CB DB EC FD FE GE HF HG IG JH KI KJ
10 12 12 4 8 20 10 7 9 7 4 7 5 3

Table 2: Table of Routes.

AB AC ABD ACE ACEF ACEG ACEGH ACEGI ACEGHJ ACEGIK
BC BD BCE BDF BCEG BDFH BCEGI BDFHJ BCEGIK

CBD CE CEF CEG CEGH CEGI CEGHJ CEGIK
DBCE DF DBCEG DFH DBCEGI DFHJ DFHJK

EF EG EGH EGI EGHJ EGIK
FHG FH FHGI FHJ FHJK

GH GI GHJ GIK
HGI HJ HJK

IKJ IK
JK

is designed to simulate a process of P2P sharing-file systems with dynamic peers. The exact
time of each joining and leaving peers will be described in Section 5.

2.3. Routes

The parameters of routers are configured so that leaf routers forward at 5000 packets
per second (pps), subnet routers forward at 20,000 pps, and backbone routers forward at
160,000 pps, similar to the real Internet routing pace.

The shortest path is selected for each packet, which means the routing is static. The
delay between the leaf routers and the corresponding subnet routers is ignored. And the
delay between subnet routers is shown in Table 1. As a result, the packets on a connection
will take the same route, and no reordering occurs. The path between each leaf routers is
given in Table 2.

3. Random Matrix Theory

3.1. Related Works

In the theory of random matrix one is concerned with the following question. Consider a
large matrix whose elements are random variables with given probability laws. Then what
can one say about the probabilities of a few of its eigenvalues or a few of its eigenvectors? This
question is originally of pertinence for the understanding of the statistical behavior of slow
neutron resonances [14] in nuclear physics where it was proposed in 1950s and intensively
studied by the physicists. Later Random matrix theory (RMT) was developed by Wigner et
al. [15, 16]. Then it gained importance in other areas [17].

Data of Internet traffic is time correlated likes financial data [6]. A number of empirical
studies have convincingly shown that the temporal dynamics of Internet traffic exhibits long-
range dependence [18], which implies existence of nontrivial correlation structure at large
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timescales. It can be explained that the TCP congestion-control algorithm exhibits a self-
organizing property: when a large number of connections share the Internet, underlying
interactions among the connections avoid router congestion simultaneously over varying
spatial extent. The flow rate in a network is just like different stocks in financial market
while the underlying interactions among the connections seems to be the varying levels
of volatility of different stocks. As the eigenvalue deviation from RMT has a significant
interpretation, there is no difference for Internet traffic. In 2002, a study of correlations
among data flows in Renater [8], based on RMT method, has detected that the largest
eigenvalue is approximately 100 times larger than predicted for uncorrelated time series, and
the eigenvector component distribution of the largest eigenvalue deviates significantly from
the Gaussian distribution predicted by RMT. Furthermore, the Renater study reveals that all
components of the eigenvector corresponding to the largest eigenvalue are positive, which
implies their collective contribution to the strong correlation in congestion over the whole
network. Since all network flows contribute to the eigenvector, the eigenvector can be viewed
as an indicator of spatial-temporal correlation in network congestion. This review reveals
that congestion emerges from underlying interactions among flows crossing a network in
various directions. According to this theory, we [9] successfully monitored stealthy DDoS
attacks.

3.2. The Analysis by RMT

Our approach is based on the application of the deviations from RMT. Statistical properties
of random matrices such as XK×M are specified in [19]. The results promoted that, in the limit
K → ∞, M → ∞, Q ≡ K/M (> 1) is fixed. It was shown analytically that the probability
density function Prm(λ) of eigencalues λ of the random correlation matrix of XK×M is given
by

Prm(λ) =
Q
2π

√
(λ+ − λ)(λ− − λ)

λ
, (3.1)

for λ within the bounds λ− ≤ λ ≤ λ+, where λ− and λ+ are the minimum and maximum
eigenvalue of XK×M, respectively, given by λ± = 1 + 1/Q ± 1/

√
Q. As RMT method stated

above, information related to correlation among time series can be extracted from the
eigenvalue out of the range of λ− ≤ λ ≤ λ+.

In the subnet layer of simulation model, there are almost 1600 connections. Each
connection is sampled 500 times. As a result, the size of the data matrix is 1600 ∗ 500.
According to (3.1), if K = 1600, and M = 500, then Q = 3.2 and λ+ = 2.43. In the experiment,
the flow matrix is very different which predicts a finite range of eigenvalues depending on
the ratio Q. In the simulation model, λ+ is of order 100 with many experiments. It suggests
that the largest eigenvalues are associated with strong correlation among the network. The
result is consistent with the result in Renater [8].

4. The Analysis by PCA

Previously [9, 10], the traffic patterns are monitored by the RMT analysis. In this paper,
it provides a extension of the previous work which is described in 3 parts. Fristly, PCA is
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introduced in brief. Secondly, the usage of the small eigenvalue is given. Finally, the selection
of observation points is solved by PCA.

4.1. The Analysis of the Largest Eigenvalue

The central idea of PCA is to reduce the dimensionality of a data set consisting of a large
number of interrelated variables, while retaining as much as possible of the variation present
in the data set [20]. Flow data is exactly in line with the conditions of PCA. Thus, we analyze
the network-wide traffic by PCA.

A number of mathematical symbols are defined here. Let XK×M denote the flow matrix,
in which xij represents the ith flow measured at the jth time interval. XK×M can also be
expressed as (x1, x2, . . . , xK)

′, in which xi, a vector of K variables, is denoted as the ith flow
measured at M different times. Σ is the covariance matrix of XK×M.

To well detecting the contribution of each flow to the whole network traffic, we should
define a variable vector Y to indicate the network-wide traffic which lies on each vector
of XK×M. In the real network, the concerned parameters of links and nodes are almost the
aggregation of flows, such as the receiving rate of each node, and the rate of each link. Then
Y can be described as

Y = L
′
X, (4.1)

in which the components li of L are the weight of the ith flow, representing the contribution
of the whole networks. PCA has proved that the var(Y ), in (4.2), reaches the maximum when
L is the corresponding eigenvectors of the largest eigenvalue:

var(Y ) = Var
[
L
′
X
]
= L

′
ΣL. (4.2)

As mentioned above, the element in the vector L represents the contribution of the
corresponding flow, and the variable Y can be used to monitor the network-wide traffic.
Thus, we can define a weight vector S = (s1, s2, . . . , sN) of the parameters about which we
are concerned. N means the number of parameters, such as the number of subnets or the
number of the links. If the pth element of S is the aggregation of the p1th, p2th, . . . , pmth flow,
sp can be represented as follows:

sp = l2p1 + l
2
p2 + · · · + l

2
pm, (4.3)

in which lpi corresponds to the weight of the pith flow. The detail of the weight vector of S
is explained in our previous works [10]. And S can be used to describe the network traffic
pattern, which is simulated in Section 5.

4.2. The Analysis of the Small Eigenvalues

RMT is a method to compare a random correlation matrix, constructed from mutually
uncorrelated time series, against a correlation matrix for data under investigation. Deviations
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between properties of the two matrices convey information about “genuine” correlations. In
this section, we will explain the information extracted from the small eigenvalues.

According to previous analysis, we can argue the problem of small eigenvalues
separately into two cases: the zero eigenvalue and the nonzero (small-positive number)
eigenvalue.

(i) If the smallest eigenvalues are zero: the zero variance defines an exactly constant
linear relationship between the elements of XK×M. If such relationship exists,
then we can infer that one of the elements of XK×M is redundant with one zero
eigenvalue. When there are q zero eigenvalues, deduced by analogy, q elements are
redundant without information lost. As a result, (K − q) variables can be retained
in Σ without information losts.

(ii) If the smallest eigenvalues are nonzero (a small-positive eigenvalue), the elements
of XK×M have a near-exact linear relationship. It reveals that much but not all
information is lost when the small eigenvalue is selected. It behaves a linearity with
little disturbance.

According to the analysis above, the small eigenvalue reveals the linear or near-
linear relationship between the elements of XK×M. The corresponding eigenvector of the
small eigenvalues is like a linear smooth filter here. Although little information is retained
with the small eigenvalues, an extraordinary relationship is exhibited between the variables
which correspond to a few observation points. In this case, the filtered information of L is
from the variables unobserved and the fluctuation of all observed variables. Thus, when the
eigenvectors of the small eigenvalues are used, the element of the vector S corresponding to
the observation points will appear in the spectrum of eigen analysis. Thus, if an observation
point failed, the raises of the corresponding node will vanish. Then, the effectiveness monitors
can be detected by small eigenvalue analysis. This result will be simulated in Section 5.

4.3. The Selection and Placement of the Observation Points

In this paper, we propose an approach based on RMT and PCA to monitor the traffic
pattern of the large-scale networks. In Renater study [8], the result is inferred from complete
information of all network connection points. The Renater study is feasible benefiting from
the small-scale networks with only 30 routers. However, real networks with hundreds of
routers typically have large-scale. As link speeds and the number of flows increase, it is too
expensive to arrange the observation points through the whole network, and thus real-time
monitoring is difficult to achieve in practice. In this part, we will address the problems of
selecting the number and arrangement of the observation points.

Above all, the number of the retained variables should be decided and they can
represent most of the variation of flow matrix XK×M. Using m PCs instead of p variables
considerably reduces the dimensionality of the problem when m � p, but usually the values
of all p variables are still needed in order to calculate the PCs, as each PC is likely to be a
function of all p variables. It might be preferable if, instead of using m PCs to account for
most of m, or perhaps slightly more, of the original variables, to account for most of the
variation in XK×M. Jolliffe [20] proposed that if Σ can be successfully described by only m
principal components (PCs), then it will often be true that XK×M can be replaced by a subset
of m variables, with a relative small loss of information.
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There are many rules for deciding the number of PCs retained to account for most of
the variation in XK×M. Here, we select the most intuitive rules called “Cumulative Percentage
of Total Variation” [20] to determine the number of observations. In this rule, the definition
of “Percentage of variation accounted for by the first m PCs” is given by

tm = 100
∑m

k=1 λk∑M
k=1 λk

, (4.4)

in which λk represents the kth largest eigenvalue, and M represents the dimensionality of Σ.
Suppose that there are N nodes in the networks. Thus, there are almost 2N(N − 1) link flows.
If m satisfies tm ≥ 90%, the number of sampled link data is almost m.

PCA is probably the best known method for dimensionality reduction. Perhaps the
most important problem in PCA is to determine the number of principal components m in a
given data set, and to decide which subset or subsets of m variables are best. Moving on to
the choice of m variables, the problem is focused on the method for selecting a subset of m
variables that preserve most of the variation in the original matrix.

When the number of retained variables is fixed, how to place the monitoring points
must be taken into consideration. There are many methods proposed to select “best” retained
subsets of XK×M [21]. Some of the methods compared, and indeed some of those which
performed quite well, are based on PCs. Other methods, including some based on cluster
analysis of variables, are applicable to small data sets but not to data sampled from real
networks. For example, the data set of the network model is 1600 ∗ 1600. If the method based
on variables’ cluster analysis is applied for such a large amount of data, the calculation time
and the complexity are insupportable.

Our method is based on the first criterion of McCabe [22], which is described as (4.5):

Minimize
m∗∏
j=1

θj , (4.5)

where θj , j = 1, 2, . . . , m∗ are the eigenvalues of the conditional covariance matrix of the
m∗ deleted variables. For this criterion it is computationally feasible to explore all possible
subsets of variables. According to (4.5), we will find the deleted subsets of variables by
statistical analysis, then some useful variables are retained. That means the corresponding
link of each variable is found, and we can select as the observation points the subset of nodes
which are passed by the links most frequently.

In the network model, when we follow “Cumulative Percentage of Total Variation”,
the resulting set of useful variables is 80 ∼ 88, that is, almost 1500 variables can be deleted. We
repeat the calculation 500 times to find the subset nodes whose flow data are often retained.
The statistical result is that the times of I1, J5 and K2, and so forth, whose degree are 4, 5, and
5, respectively, is more than other nodes. In the real networks, the problem may be explained
simply. Our purpose is to select a few observation points and reserve enough information
about Σ. Aiming for this purpose, the intuitive idea is to select the nodes with large degree
as observation points. That is because nodes with large degree have more information about
more flows. Thus, the optimal placement is to lay the observation points on the nodes with
large degree. Our experiment result has verified this idea in Section 5.
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In conclusion, the selection of the observation points can be described in 5 steps as
follows.

Step 1. The number of variables m could be calculated according (4.4).

Step 2. m variables could be selected as (4.5).

Step 3. Repeat Step 2 many times.

Step 4. Identify the most frequent variables in statistical results on Step 3.

Step 5. According to Table 2, identify the most frequent node which are observation points. I
have added the steps in the end of Section 4.

5. Simulation Results

In order to verify the method stated in Sections 3 and 4, we do some experiments to monitor
the traffic patterns by large and small eigenvalues, with all or few observation points. The
experiment to monitor traffic pattern is conducted as follows.

(i) Monitoring peer-to-peer (P2P) traffic by the largest eigenvalue: the experiment is
done with all of the routers and then repeated with few of the observation points
selected by the method in Section 4.3. The related results are shown in Sections 5.1
and 5.4.

(ii) Monitoring the traffic patterns of link flows by the largest and the smallest
eigenvalue: previously, the traffic patterns aggregated in the subnet is monitored.
In this part, the link flows can also be monitored by the analysis of Sections 3 and
4. The related results are shown in Section 5.2.

(iii) Monitoring the traffic patterns of the observation points by the smallest eigenvalue:
according to the analysis of Section 4.2, the observation points can be monitored by
the small eigenvalues. The results are shown in Section 5.3.

In fact, our method of monitoring the traffic patterns can be applied in many scenarios,
such as monitoring of mixed traffic pattern and detecting a victim of DDoS attacks, which are
discussed, respectively, in our previous work [9, 10].

5.1. Monitoring the P2P Traffic Pattern by the Largest Eigenvalue and
Corresponding Eigenvector

In the experiment, P2P traffic is simulated. Hosts as peers are dynamically distributed under
A1, D2, H2, J5, K2, and K3. Peers under A1, D2, J5, K2, and K3 start communicating with
each other at t = 125 time unit with the constant rate 25 packets per time unit. Then at t = 160
time unit, the peer groups under D2 leave and that under H2 join in at t = 200 time unit with
the rate t = 35 packets per time unit. The simulation result is shown in Figure 4, which is
calculated by the full data set.

In Figure 2, the simulation calculates S using M data within a moving window. The
sampling rate of the data is T = 0.5 time unit, and the rate of the moving window is 10 data,
that is, the step of the window is 10 data. The first 200 data points are regarded as the initial
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Figure 2: The pattern of P2P traffic, calculated by complete information. For each peer in the group A1, D2,
J5, K2, and K3, rate = 25, starting time = 125 (X = (125 ∗ 2–200) ∗ 0.1 = 5). Then peers of D2 leave at t = 160
and peers of H2 join in at t = 200 (X = (200 ∗ 2–200) ∗ 0.1 = 20) with rate = 35.

data, sliding 10 data points each time unit. So, the x-axis represents how many times the time
window slides. Apparently we can calculate corresponding time, for example, if X = 5, the
corresponding time is (200 + 5 ∗ 10) ∗ 0.5 = 125 time unit. The y-axis represents the subnet
number, and the z-axis represents the weight vector S of each subnet flows (which can be
decided by (4.3) and the topology). The start and the end of each raises of corresponding
subnets is almost the same as what we designed previously. Consequently, our method can
extract the dynamically temporal-and-spatial information of the P2P traffic pattern well.

5.2. Monitoring the Aggregat Flow of Each Link by the Largest Eigenvalue
and Corresponding Eigenvector

In order to monitor the link flow, we let all hosts except ones under I1, I2, and I3 send packets
to I1 with a constant rate 5 packets per time unit.

Firstly, the largest eigenvalue and the corresponding eigenvectors of Σ are calculated.
Secondly, in the light of Table 2, we should determine all the flows through each nodes. At
last, the weight vector S of each link can be calculated according to (4.3).

Based on the static route in Table 2, if all hosts (except hosts distributed under I1 ∼ I3)
send packets to I1, the links between G and I, E and G, and C and E have the highest-rate
flow. Similarly, the links between E and F, that is, EF and FE, have the lowest-rate flow. The
result is illustrated in Figure 3. Obviously, the traffic pattern of GI, EG, and CE significantly
raised; on the contrary, the traffic patterns of EF and FE seems low and flat.

In order to compare the traffic patterns in Figure 4 with the flows of each link, we use
the Matlab corrcoef command to calculate the correlation coefficient of S and the rate of flows.
A illustrated in Figure 6, the correlation coefficient is all in the range of [0.7, 0.9]. As a result,
the traffic patterns of link flows in the backbone can be well monitored.

Conversely, if the traffic patterns are monitored by the small eigenvalue, the results in
Figures 5 and 6 reveal much weaker correlation than those in Figures 3 and 4.
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Figure 3: The traffic patterns monitored by the largest eigenvalue.
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Figure 4: The correlation coefficient of the aggregate flow vector and the corresponding rate.

5.3. Monitoring Observation Points by the Small Eigenvalues

As explained in (4.2), with only a few observation points, when small eigenvalue is selected,
the information including the nonobservation points and the fluctuation information of the
observation points is filtered by the small eigenvalue. As a result, the information of the
observation points will appear in the spectrum of the small eigenvalue. Here, we repeat the
experiment in 5.1 with observation points (A3, B1, C1, C2, D1, F4), monitoring the traffic
patterns by the second and third smallest eigenvalue, the result is shown in Figure 7. It is
clear that the traffic patterns of the observation points raise sharply. As a result, the spectrum
of small eigenvalues can be used to monitor the observation points distributed all over the
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Figure 5: The traffic patterns monitored by the smallest eigenvalue.
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Figure 6: The correlation coefficient of the aggregate flow vector and the corresponding rate.
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Figure 7: The spectrum of the second small eigenvalue with observation points A3, B1, C1, C2, D1, F4.
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Figure 8: The spectrum of the second small eigenvalue with observation points A3, B1, C1, C2, D1.
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Figure 9: The pattern of P2P traffic, monitored by A3, B1, C1, C2, and D1. For each peer in the group A1,
D2, J5, K2, and K3, rate = 25, starting time = 125. Then peers of D2 leave at t = 160 and peers of H2 join in
at t = 200 with rate = 35.

networks. For example, if the observation point F4 failed, we can be informed by the spectrum
shown in Figure 8, in which the raise of F4 disappeared.

5.4. Selection of the Observation Points

According to the analysis in (4.3), it is optimal to select the nodes with large degree as
observation points. With this purpose, the experiment in 5.1 is redone with only a few
observation points. As illustrated in Figure 9, selecting A3, B1, C1, C2, and D1 as observation
points, some information of A1 and D2 is lost compared with Figure 2. With B4, D5, J5 and
D2 selected, shown in Figure 10, the traffic pattern is similar to that in Figure 4 with little
information lost. The analysis in (4.3) is verified.
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Figure 10: The pattern of P2P traffic, monitored by B4, D5, J5, and D2. For each peer in the group A1, D2,
J5, K2, and K3, rate = 25, starting time = 125. Then peers of D2 leave at t = 160 and peers of H2 join in at
t = 200 with rate = 35.

6. Conclusion

In this paper, a method based on RMT and PCA is proposed for monitoring and analyzing
network-wide traffic patterns in the Internet. Our work makes three contributions: (1) we
theoretically explain the information implied by the large/small eigenvalues of correlation
matrices by PCA method, which is instructive for traffic measurement; (2) Using no more
than 10% of subnet routers as observation points, key information about the Internet traffic
pattern can be monitored and extracted by our method; (3) we apply RMT and PCA to
capture various traffic patterns.
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