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The spatial scan statistic is one of the main epidemiological tools to test for the presence of disease
clusters in a geographical region. While the statistical significance of the most likely cluster is
correctly assessed using the model assumptions, secondary clusters tend to have conservatively
high P-values. In this paper, we propose a sequential version of the spatial scan statistic to adjust
for the presence of other clusters in the study region. The procedure removes the effect due to the
more likely clusters on less significant clusters by sequential deletion of the previously detected
clusters. Using the Northeastern United States geography and population in a simulation study,
we calculated the type I error probability and the power of this sequential test under different
alternative models concerning the locations and sizes of the true clusters. The results show that
the type I error probability of our method is close to the nominal « level and that for secondary
clusters its power is higher than the standard unadjusted scan statistic.

1. Introduction

Spatial and space-time scan statistics [1] have become some of the main tools in geographic
disease surveillance to test the null hypothesis that geographical data are randomly
distributed against a localized cluster alternative. Examples include its use for breast cancer
mortality in Texas [2], giardiasis parasites in Canada [3], pneumonia in Brazil [4], lymphatic
filariasis in Haiti [5], and syndromic surveillance in New York City [6].

The standard spatial scan statistic is a maximum likelihood ratio test statistic S based
on a circular window of variable size scanning the geographical area under surveillance.
Under the null hypothesis, there are no disease clusters. Under the alternative hypothesis,
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there is a single geographical cluster in the region of unknown location and size. A detailed
description is presented in Section 2.

When the test significantly detects one cluster, it is of interest to know if there are
additional clusters present in the region. The test procedure provides evidence for the
presence of these so-called secondary clusters, spatial clusters not overlapping with the most
likely cluster but with significantly large likelihood ratio. These secondary clusters have an
associated P-value but they are calculated ignoring the existence of the most likely cluster
that had already been detected. One consequence of this is that these are conservative P-
values [1] leading to a loss in statistical power. The P-values for testing for a second cluster
could alternatively be calculated conditionally on the presence of the primary cluster and
their P-values could then be smaller than those delivered by the standard method.

In this paper, we propose a sequential method to evaluate the statistical significance
of secondary clusters by removing the effect caused by the previously detected stronger
clusters. In brief, data from the most likely cluster (MLC), possibly together with some
neighboring tracts, are deleted from the dataset if the MLC is statistically significant. The
standard spatial scan statistic is then applied to the reduced dataset to test for the presence
of a second cluster. The procedure is reiterated until no further statistically significant
cluster is found. We also evaluate an alternative approach, where we replace the cases
in the most likely cluster with the expected number of cases for each location in that
cluster. The expected numbers are calculated using data only from the tracts outside the
MLC.

Either methods is valid only if their type I error probability is close to the nominal
a level. Our simulation results show that the type I error probability is under control. We
compare the power of testing the significance of the second most likely cluster between the
standard method and the sequential method finding that the sequential method has higher
power for secondary clusters.

The paper is organized as follows. The spatial scan statistic is briefly reviewed in
Section 2. In Section 3, we adjust the spatial scan statistics by either removing the most likely
cluster or by replacing the most likely cluster with expected counts. We present the results
concerning the type I error probability and statistical power in Section 4. A practical example
applying both the standard approach and the new sequential approach to breast cancer
mortality in the Northeastern United States is given in Section 5. In Section 6, we discuss
the results derived in this paper.

2. The Spatial Scan Statistic

Suppose a geographical region is partitioned into small areas such as, for example, zip code
areas or census tracts. The areas are represented by their geometrical centroids. The data
input for the spatial scan statistic includes the geometrical centroid location (longitude and
latitude coordinates), the population at risk count, and the number of disease cases in each
area. We assume that the counts are independent Poisson distributed random variables.
The risk population may be the raw population count or a covariate adjusted population
at risk estimate. Centered at each centroid, a collection of circles of continuously varying
radii defines the potential clusters: each one is composed by its center plus the neighboring
centroids contained within the circle.

Let n, and cz denote the total covariate adjusted population at risk and the total
number of cases of the areas within circle Z, respectively. In most disease surveillance
applications, there is no reliable external estimate concerning the expected number of cases
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under the null hypothesis. Also, interest is most often in comparing disease risk in different
parts of the map rather than a comparison with an external region or time period. Hence, we
use the conditional rather than unconditional scan statistic [7]. Conditioning on the observed
total number C of cases, the spatial scan statistic S is the maximum of the likelihood ratio
over all possible circles Z:

_ maxzL(Z) _ maxL(Z)

S
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where L(Z) is the likelihood that circle Z has ¢, observed cases conditionally on the total
number of cases C, on the within Z population n,, and on the total population N. The
denominator L is the likelihood function under the null hypothesis.

If we know the null hypothesis underlying disease rate, we can approach this problem
in a nonconditional way, as in [8]. He shows that better performance can be possible for
the spatiotemporal scan method when one does not condition on the total number of cases.
However, in most applications one does not have an estimate of the underlying rate with
enough precision to assume it known.

Let u(Z) = n,C/N be the expected number of cases in circle Z. We have L(Z)/Ly > 1
for all Z with L(Z)/Ly = 1if ¢z < u(Z). Therefore, we can write

sempi=me(55) () 22

The «a level critical value s is defined as P(S > s | Hy) = a, where a is the type I
error probability, and Hj represents the null hypothesis. A circle with likelihood ratio S > s
is significant, and the circle Z with the maximum likelihood ratio S is called the most likely
cluster (MLC). Besides the MLC, multiple additional clusters can be derived and evaluated
as well. The most interesting additional clusters are the circles Z that do not overlap with the
MLC and that have the likelihood ratio L(Z) /L larger than the critical cutoff point s.

To evaluate the significance, the scan statistic test uses Monte Carlo hypothesis testing
[9]. The P-value of the MLC is calculated by repeatedly simulating data under the null
hypothesis conditional on the same total number of cases C. For each of M simulations one
calculates the maximum likelihood ratio statistic. The critical value s is equal to the a(M + 1)
highest of these M maximum likelihood ratio statistics and p = R/(M + 1) where R -1 is
the number of test statistics from the simulated datasets that are larger than the test statistic
S from the real data.

If the test is significant, there is interest in testing for the presence of additional
secondary clusters that do not overlap with the most likely cluster. The standard way to
do this is to compare the likelihood ratio of such secondary clusters with the maximum
likelihood ratios from the simulated data. The interpretation of this approach is that we
are evaluating whether the secondary clusters are able to reject the null hypothesis on their
own strength, whether the most likely cluster is a true cluster or not. In some sense, it is
like a regression analysis, where each variable is entered in a separate regression model and
evaluated without adjusting for other variables. A drawback of this approach is that the P-
values are conservative [1] with a corresponding loss of statistical power. This is because
the likelihood ratio from the real data is less than the maximum while it is compared to the
maximum likelihood ratios from the simulated datasets.
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An alternative approach would be to compare the likelihood ratios from secondary
clusters in the real data with the likelihood ratios from the corresponding secondary clusters
from the simulated data. However, since the simulations are carried out under the null
hypothesis, these likelihood ratios from the simulations do not take into account that there is
one cluster already present in the map and outside the secondary cluster. A more interesting
approach is to try and adjust for the most likely clusters when evaluating secondary clusters.

3. Adjusting the Spatial Scan Statistic for Multiple Clusters

We propose to test the statistical significance of multiple clusters sequentially, so that one
would test the second most likely cluster only if the MLC is significant, and the third most
likely cluster only if the second most likely cluster is significant and so on. Since the spatial
scan statistic calculates the likelihood of cases within the circle to the remaining cases outside
the circle, the previously detected most likely clusters have an effect on calculating the test
statistic for the less likely clusters. Our objective is to eliminate this effect to be able to test
for the presence of additional clusters conditional on the presence of the previously detected
clusters.

To reduce the effect due to the MLC, we remove from the original data the areas
comprising the MLC. We also experiment with removing not only the MLC but also some
of its nearest neighboring areas. The areas that are removed leave an empty region in the
map, with no population and no cases. Next, the scan test procedure is carried out on this
reduced dataset, treating the removed area as if it was a “lake” with no information. This
procedure is iterated until no further statistically significant clusters are found.

By a conditioning argument, we can justify this deletion of the first cluster from the
map to run the second stage test. Suppose that we want to test for the presence of a second
cluster Z, given that we detected exactly the first cluster Z;. Since we assume independent
counts in the areas, the likelihood can be written as the product Li(p1)L2(p2) L, (p,) of three
factors. The first one, Li(p1) is associated only with the counts in Z; with probability p;.
The second one is similarly defined for a second cluster Z, with null intersection with Z;
and the third is associated with the remaining of the areas (L,(p,)). Then, the distribution
of the counts conditioned on those observed in Z; is simply L,(p>)L,(p,) and the maximum
likelihood test statistic should be

maxp,>p, max LyL,
max . (3.1)
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This is the same test statistic one obtains by removing from the map the data from cluster Z;
and working in the reduced map with the usual scan statistic test.

An alternative approach is to replace the number of cases of each area within the MLC
with its expected number of cases such that the ratio between the number of cases and the
population within the MLC is the same as that outside of it. More specifically, let ¢} be the
updated number of cases of tract i within the MLC, then cg = n;(C — emre)/ (N — nvie),
where C is the total number of cases, cvic is the number of cases within the MLC, n; is the
population of tract i, N is the total population and nmrc is the population within the MLC.
Conditional on the updated population and on the number of cases, the standard spatial scan
statistic is applied to test the significance of the MLC within the updated data. This procedure
is iterated until the MLC in the latest updated data is not significant.
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Either of these two methods will be valid only if the type I error probability is close to
the nominal level. In the next section, that is evaluated.

4. Type I Error and Power

A publicly available simulated benchmark dataset is used to evaluate the adjusted spatial
scan statistic. Described in detail by Kulldorff et al. [10], it can be downloaded from
“http:/ /www.satscan.org/datasets”.

The datasets use the geographical locations and the 1990 female population of
245 counties in the northeastern United States. The simulated datasets distributed 600
disease cases among the counties according to a multinomial distribution with probabilities
proportional to the product of the population times the relative risk. Under the null
hypothesis, the relative risk is equal to one. Under the alternative hypothesis, these relative
risks are larger than 1 in the areas belonging to true clusters imposed on the map.

There are three types of high relative risk clusters, composed by rural, urban, or by
mixed population areas. They are located in different parts of the map. The rural cluster is
centered on Grand Isle County in northern Vermont on the Canadian border, which is the
county with the smallest population, surrounded by other rural counties. The urban cluster
is centered on Manhattan in New York City, surrounded by other urban counties. The mixed
cluster is centered on Pittsburgh in western Pennsylvania, a large city surrounded by mostly
rural counties. The clusters differ also by their size, being comprised by 1, 4 or 16 counties.
There are 9 different types of datasets obtained by the crossing of different cluster sizes and
locations.

Depending on the cluster size, the relative risks of the clusters’ counties varied from
1.53 to 2.73 in the urban case, and from 2.10 to 2.85 in the mixed case. In the rural case, the
relative risks were equal to 3.90 and 7.05 for 16 and 4 counties in the cluster, and equal to
192.89 in the cluster with a single county. For further details, see the paper by Kulldorff et al.
[10].

There is one additional dataset classification, those with one true disease cluster
and those with two true disease clusters. The two cluster datasets were built with an
urban/rural, urban/mixed or mixed/rural combination, with the same number of counties
in each cluster. While the number of counties is the same in both clusters, the relative risks
and the population sizes are different. To calculate type I error probability of the adjusted
spatial scan statistics for testing the significance of the second most likely cluster, benchmark
data with one true disease cluster are needed. Each one of the type I error probabilities
estimates is based on 10,000 simulated datasets. To calculate its power, benchmark data
with two true disease clusters are needed. Each power estimate is based on 1000 simulated
datasets.

Table 1 shows the estimated type I error probability of detecting a second cluster when
there is in fact only one true cluster in the data. The tests were carried out at the nominal levels
a =0.01 and a = 0.05 with 0, 2, 5, 10 or 50 neighboring tracts removed, named as buffer size.

Generally, the estimated actual error type I probabilities are very close to the nominal
levels. Table 1 shows that changing the buffer size has very little effect on the error type I
probability. In the a = 0.01 case, the maximum difference between actual and nominal levels
is 0.001 for the mixed cluster and 0.003 for the urban cluster. In the a = 0.05 case, these
values are 0.006 and 0.004, respectively. Furthermore, the rural cluster with 4 and 16 counties
do not have substantial differences between actual and nominal levels of significance. The
only major discrepancies occur for the rural cluster composed by a single county, Grand Isle.
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Table 1: Estimated type I error probabilities when testing the second most likely cluster when there is only
one true cluster present, using the most likely cluster removing method. The buffer size is the number of
neighboring counties removed together with the true cluster. The true clusters consist of 1, 4 or 16 counties
located in an urban, rural or mixed population area, respectively, as described in the text.

Buffer size Controlled Urban Rural Mixed
a 1 4 16 1 4 16 1 4 16

0 0.01 0.007 0.007 0.009 0.017 0.010 0.009 0.010 0.011 0.010
2 0.01 0.007  0.007 0.009 0.016 0.008 0.009 0.011 0.009 0.009
5 0.01 0.008 0.008 0.009 0.016 0.010 0.009 0.009 0.010 0.009
10 0.01 0.011 0.007 0.008 0.016 0.009 0.010 0.010 0.009 0.009
50 0.01 0.010 0.010 0.009 0.008 0.010 0.010 0.010 0.009 0.011
0 0.05 0.047 0.043 0.042 0.059 0.052 0.048 0.047 0.049 0.051
2 0.05 0.044 0044 0042 0.059 0.051 0.049 0.050 0.047 0.050
5 0.05 0.045 0.045 0.040 0.058 0.052 0.048 0.048 0.047 0.050
10 0.05 0.053 0.048 0.040 0.057 0.051 0.050 0.050 0.048 0.052
50 0.05 0.054 0.047 0.045 0.053 0.048 0.051 0.051 0.052 0.056

Without a buffer, the estimated type I error probabilities are 0.017 and 0.059 for the nominal
levels of 0.01 and 0.05 respectively, and the results are similar with a buffer added, except for
the very largest buffer size.

To further investigate these type I error probabilities, we generated random dataset
using different relative risks for the Grand Isle cluster, in addition to the original RR = 192.89.
Also, in addition to the standard maximum window size of 50 percent of the population at
risk size, we also estimated the type I error probabilities for a spatial scan statistic with a
maximum window size of 5 percent. As shown in Table 2, the type I error probabilities are
good when RR = 100 but slightly on the high side for the larger relative risks. The reason
that the numbers for RR = 192.89 and circle size 50 percent is different from Table 1 is that a
different random seed was used.

In Table 3, we show the estimated type I error probabilities using the method that
replaces the observed counts within the MLC by the expected number of cases. The results
are similar to those in Table 1, but not quite as good. In addition to the single Grand Isle
cluster, there are also relatively large differences for all the rural and mixed clusters.

Table 4 shows the estimated power of the most likely cluster removing method,
together with the standard scan statistic. The power of the latter is generally lower, with
the biggest differences seen for larger cluster sizes. The power of the adjusted scan statistic
power is not overly sensitive to the buffer size.

5. Breast Cancer Mortality in Northeastern United States

We illustrate the practical use of the adjusted spatial scan statistic using breast cancer
mortality data for Northeastern United States, during 1988-1992, as collected by the National
Center for Health Statistics. The study area composed by 245 counties and county equivalents
in Northeast states including Maine, New Hampshire, Vermont, Massachusetts, Rhode
Island, Connecticut, New York, New Jersey, Pennsylvania, Delaware, Maryland, and the
District of Columbia. During 1988-1992, there were 58,943 breast cancer deaths recorded
among women in this region, for which we have information about age and county of
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Table 2: The estimated type I error probabilities for the second most likely cluster when there is only one
true cluster in Grand Isle county, with 95% confidence intervals. Different relative risks were used, two
different bounds on the maximum window size as well as two different buffer sizes defining the number
of neighboring counties that were removed together with the counties in the most likely cluster detected.
The circle size is the maximum geographic size of the scanning window defined in terms of a percentage
of the total populations.

Relative risk Buffer size Circle size a=0.01 a=0.05

100 0 5 0.010 (0.008,0.012) 0.043 (0.039,0.047)
100 0 50 0.013 (0.011,0.015) 0.045 (0.041,0.049)
100 50 5 0.010 (0.008,0.012) 0.047 (0.043,0.051)
100 50 50 0.008 (0.006,0.010) 0.051 (0.047,0.055)
192.89 0 5 0.014 (0.012,0.016) 0.056 (0.051,0.061)
192.89 0 50 0.014 (0.012,0.016) 0.057 (0.052,0.062)
192.89 50 5 0.013 (0.011,0.015) 0.054 (0.050,0.058)
192.89 50 50 0.010 (0.008,0.012) 0.058 (0.053,0.063)
200 0 5 0.012 (0.010,0.014) 0.057 (0.052,0.062)
200 0 50 0.013 (0.011,0.015) 0.057 (0.052,0.062)
200 50 5 0.013 (0.011,0.015) 0.052 (0.048,0.056)
200 50 50 0.010 (0.008,0.012) 0.056 (0.051,0.061)
400 0 5 0.011 (0.009,0.013) 0.055 (0.051,0.059)
400 0 50 0.010 (0.008,0.012) 0.051 (0.047,0.055)
400 50 5 0.010 (0.008,0.012) 0.052 (0.048,0.056)
400 50 50 0.010 (0.008,0.012) 0.056 (0.051,0.061)

Table 3: Estimated type I error probabilities when testing the second most likely cluster when there is only
one true cluster present, using the most likely cluster repalcement method. The buffer size is the number
of neighboring counties. The true cluster consisting of 1, 4 or 16 counties is located in an urban, rural or
mixed population area respectively, as described in the text.

Buffer size Controlled Urban Rural Mixed
a 1 4 16 1 4 16 1 4 16

0 0.01 0.008 0.009 0.010 0.018 0.012 0.011 0.011 0.012 0.015
5 0.01 0.008 0.009 0.010 0.018 0.011 0.013 0.011 0.013 0.017
10 0.01 0.009 0.010 0.009 0.019 0.012 0.014 0.012 0.014 0.017
0 0.05 0.047 0.054 0.046 0.062 0.057 0.058 0.058 0.055 0.071
5 0.05 0.048 0.054 0.047 0.065 0.057 0.063 0.055 0.058 0.076
10 0.05 0.050 0.054 0.050 0.066 0.060 0.069 0.060 0.064 0.082

residence. The population is available for each county by five-year age groups. The total
female population in the region was 29,535,210. The geographical location of each county was
used as specified by the 1990 Census [11]. The data has been described in detail elsewhere
[1]. The analysis is adjusted for age using indirect standardization.

Using the standard spatial scan statistic, it has previously been shown that women
who live in the New York City - Philadelphia metropolitan area have an increased risk of
dying from breast cancer compared to the rest of the region with 24044 cases when 23040
were expected [1]. This cluster is statistically significant (P = .001) and it is shown in Figure 1.
Using the standard method, the second most likely cluster in the Buffalo area is not significant
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Table 4: Comparison of power to test the second most likely cluster for significance levels 0.01 and 0.05
when two true clusters exist and the tests are the buffer removing method and the standard scan statistic
method. For the standard method, power is based on the critical values under the the null hypothesis that
there are no true clusters. The upper 0.01 and 0.05 log likelihood ratio critical values are 9.717 and 7.907
respectively.

Buffer size Controlled Rural Urban Mixed Rural MixedUrban
a 1 4 16 1 4 16 1 4 16

0 0.01 0.830 0.726 0.717 0867 0.796 0.797 0.681 0.654 0.679
2 0.01 0.824 0.711 0.717 0851 0.786 0.799 0.701 0.653 0.672
5 0.01 0.825 0.724 0.723 0.853 0.792 0.802 0.698 0.653 0.666
10 0.01 0.840 0.730 0.727 0.872 0.798 0.804 0.712 0.653 0.659
50 0.01 0.811 0.721 0.696 0.847 0.798 0.805 0.698 0.629 0.627
Standard 0.01 0.777 0.668 0480 0.832 0.737 0.706 0.568 0.398 0.222
0 0.05 0909 0.859 0.866 0932 0902 0911 0.844 0.823 0.840
2 0.05 0906 0.855 0.863 0923 0901 0910 0.847 0.815 0.836
5 0.05 0909 0.860 0.861 0925 0901 0911 0.845 0.818 0.834
10 0.05 0907 0.856 0.863 0925 0902 0911 0.849 0.817 0.833
50 0.05 0917 0.859 0.849 0933 0906 0914 0.845 0.813 0.812
Standard 0.05 0900 0.704 0.685 0914 0.860 0.845 0766 0.599 0.440

(P = .12), with 1416 observed deaths when 1280 were expected. This cluster is shown in
Figure 1, in the northwestern part of the map. Using the sequential method, with the most
likely cluster removal method without a buffer, the second most likely cluster is instead in the
Boston metropolitan area (P = .0001), with 5966 observed deaths when 55565 were expected.

A complete list of the detected clusters is presented in Table 5, for both the standard
and the adjusted spatial scan statistics. When using the standard method, only the most
likely cluster was statistically significant. When adjusting for more likely clusters using the
sequential method, six statistically significant clusters were found at the a = 0.05 level.
This illustrates the behavior of the usual scan statistic which, by not taking into account the
previously detected clusters, may miss some less likely clusters, and especially if the most
likely cluster is large in size. Compare, for example, the P-values for the cluster around
Boston, ranked as fourth in the standard scan statistic with P = .40 and as second in the
sequential method with P = .0001. Note also that two significant clusters found by the
sequential method, Pittsburgh and Albany, are not among the five most likely clusters found
by the standard spatial scan statistic.

6. Discussion

When using the standard spatial scan statistic, a large cluster in one area of the map may
hide the existence of a secondary cluster in another area of the map. By removing the
MLC, secondary clusters can be detected using the standard scan statistic on the reduced
dataset. We have shown that this procedure has an actual error type probability very
close to the nominal level and that it has a higher power than the standard scan statistic
for secondary clusters. The sequential approach can be applied recursively to locate other
clusters conditionally on the presence of all the previously detected clusters. This is repeated
until the most likely cluster in the updated data is nonsignificant. For the breast cancer
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Figure 1: The most likely cluster and the second most likely cluster using the standard scan method and the
sequential scan method. The most likely cluster is around New York City, the second most likely cluster
detected using the standard method is close to Buffalo and it is not significant. The second most likely
cluster detected using the sequential method is around Boston and it is significant.

Table 5: Breast cancer mortality analysis for women in the Northeast United States, 1988-1992, using the
standard and the sequential spatial scan statistics. RR = relative risk within the cluster compared to the rest
of the Northeast; LLR: log likelihood ratio.

Method Cluster Location Counties Deaths Expected RR LLR P-value
1 NYC-Philadelphia 32 24044 23040 1.07 357 0.0001
2 Buffalo 4 1416 1280 111 71 0.12

Standard 3 Washington DC 1 712 618 1.15 69 0.15
4 Boston 9 5966 5726 1.05 55 0.40
5 Eastern Maine 3 267 229 117 3.0 0.99
1 NYC-Philadelphia 32 24044 23040 1.07 357  0.0001
2 Boston 9 5966 5565 1.07 16.8  0.0001
3 Buffalo-Rochester 9 2362 2119 112 145  0.0004

Sequential 4 Baltimore-Washington 17 4255 3901 1.09 183  0.0001
5 Pittsburgh 1 1765 1565 113 133  0.0002
6 Albany 19 2336 2156 1.08 82 0.04
7 Eastern Maine 3 267 210 127 72 0.07

mortality data from the Northeastern United States, we make different inference about the
presence of disease clusters when using the two methods. While we find only one significant
most likely cluster using the standard method we find six significant clusters using the
sequential approach. This may have important practical implications.
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A key finding of this study is that when adjusting the analysis for more likely clusters,
it is better to remove these clusters rather than replacing them with expected counts. While
the type I error probabilities are close to the nominal levels for both approaches, they are
consistently closer when the removing method is used. Another important finding is that
there is no need to use a buffer around the clusters to be removed, but it is enough to remove
the cluster itself. The type I error probabilities are about equally good in both cases, while the
power suffers slightly when a large buffer is used.

If there is a reliable external estimate for the expected counts under the null hypothesis,
and we are interested in the absolute differences in risk compared to this external estimate
rather than the geographical variation of the relative risks within the study region, we should
use the unconditional rather than the conditional scan statistic. Sonesson [8] has shown that
this will give higher statistical power. For the unconditional scan statistics there is no need to
use a sequential approach though, as the expected number of cases will not change when the
most likely cluster is removed. The only effect of the sequential approach would be a slight
change in the P-value of secondary clusters due to slightly less multiple testing that needs to
be adjusted for. Hence, we have only considered the conditional scan statistic in this paper.

While we used a sequential approach for the breast cancer mortality example, by
removing more likely clusters when evaluating the statistical significance of clusters with
lower likelihood ratios, the procedure could also be used to evaluate the stronger clusters
after adjusting for weaker ones. For example, one could check whether the Albany cluster
has a much lower P-value than its current .04 after removing and therefore adjusting for
the Eastern Maine cluster. In this manner, one may evaluate the statistical significance of
any cluster adjusting for any collection of other clusters. The P-values will of course be
different for the same cluster depending on what other clusters were adjusted for, just like in
a regression analysis, where the P-value of one variable will depend on what other variables
are included (adjusted for) in the regression model.

The spatial scan statistic is commonly used to analyze mortality or incidence data
using a Poisson model, but there is also for example a Bernoulli model for dichotomous case-
control data and an exponential model for survival data with or without censoring [12]. If one
is not willing to assume a parametric distribution to the observed counts, an alternative is the
semiparametric method of Wen and Kedem [13] which provides inference for the primary
and secondary clusters by means of a false discovery rate method.

The sequential scan statistic approach may also be applied for these other probability
models to adjust for multiple clusters. The same may or may not be true for other types of
scan statistics such as purely temporal and space-time scan statistics, whether performed in a
retrospective or prospective manner [14, 15], or scan statistics that are designed to detect areas
with lower rather than higher rates of disease, and we do not know how well a sequential
procedure would work in such a setting. Moreover, while the scan statistic is most often
applied using a circular window as we did in this paper, there have more recently been
developments of nonparametric shaped scan statistics as well [16-19], in addition to other
noncircular shapes [20]. It would be interesting to evaluate how the sequential approach
works in these settings, to learn whether the type I error probabilities are still under control
and close to their nominal values.

The sequential scan statistic presented here is more computer intensive than the
standard scan statistic since a standard analysis must be run for each sequential stage of the
procedure. The sequential scan statistic has been incorporated as an option into the freely
available SaTScan software (http://www.satscan.org/) that already contain the standard
temporal, spatial and space-time scan statistics.
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