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For at least a century academics and governmental researchers have been developing measures
that would aid them in understanding income distributions, their differences with respect to
geographic regions, and changes over time periods. It is a fascinating area due to a number of
reasons, one of them being the fact that different measures, or indices, are needed to reveal different
features of income distributions. Keeping also in mind that the notions of poor and rich are relative
to each other, Zenga (2007) proposed a new index of economic inequality. The index is remarkably
insightful and useful, but deriving statistical inferential results has been a challenge. For example,
unlike many other indices, Zenga’s new index does not fall into the classes of L-, U-, and V -
statistics. In this paper we derive desired statistical inferential results, explore their performance
in a simulation study, and then use the results to analyze data from the Bank of Italy Survey on
Household Income and Wealth (SHIW).

1. Introduction

Measuring and analyzing incomes, losses, risks, and other random outcomes, which we
denote by X, has been an active and fruitful research area, particularly in the fields of
econometrics and actuarial science. The Gini index is arguably the most popular measure
of inequality, with a number of extensions and generalizations available in the literature.
Keeping in mind that the notions of poor and rich are relative to each other, Zenga [1]
constructed an index that reflects this relativity. We will next recall the definitions of the Gini
and Zenga indices.
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Let F(x) = P[X ≤ x] denote the cumulative distribution function (cdf) of the random
variable X, which we assume to be nonnegative throughout the paper. Let F−1(p) = inf{x :
F(x) ≥ p} denote the corresponding quantile function. The Lorenz curve LF(p) is given by
the formula (see [2])

LF
(
p
)
=

1
μF

∫p

0
F−1(s)ds, (1.1)

where μF = E[X] is the unknown true mean of X. Certainly, from the rigorous mathematical
point of view we should call LF(p) the Lorenz function, but this would deviate from the
widely accepted usage of the term “Lorenz curve”. Hence, curves and functions are viewed
as synonyms throughout this paper.

The classical Gini index GF can now be written as follows:

GF =
∫1

0

(

1 − LF
(
p
)

p

)

ψ
(
p
)
dp, (1.2)

where ψ(p) = 2p. Note that ψ(p) is a density function on [0, 1]. Given the usual econometric
interpretation of the Lorenz curve [3], the function

GF

(
p
)
= 1 − LF

(
p
)

p
, (1.3)

which we call the Gini curve, is a relative measure of inequality (see [4]). Indeed, LF(p)/p is
the ratio between (i) the mean income of the poorest p × 100% of the population and (ii) the
mean income of the entire population: the closer to each other these two means are, the lower
is the inequality.

Zenga’s [1] index ZF of inequality is defined by the formula

ZF =
∫1

0
ZF

(
p
)
dp, (1.4)

where the Zenga curve ZF(p) is given by

ZF

(
p
)
= 1 − LF

(
p
)

p
· 1 − p

1 − LF
(
p
) . (1.5)

The Zenga curve measures the inequality between (i) the poorest p × 100% of the population
and (ii) the richer remaining (1 − p) × 100% part of the population by comparing the mean
incomes of these two disjoint and exhaustive subpopulations. We will elaborate on this
interpretation later, in Section 5.

The Gini and Zenga indices GF and ZF are (weighted) averages of the Gini and
Zenga curves GF(p) and ZF(p), respectively. However, while in the case of the Gini index the
weight function (i.e., the density) ψ(p) = 2p is employed, in the case of the Zenga index the
uniform weight function ψ(p) = 1 is used. As a consequence, the Gini index underestimates
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comparisons between the very poor and the whole population, and emphasizes comparisons
which involve almost identical population subgroups. From this point of view, the Zenga
index is more impartial: it is based on all comparisons between complementary disjoint
population subgroups and gives the same weight to each comparison. Hence, the Zenga
index ZF detects, with the same sensibility, all deviations from equality in any part of the
distribution.

To illustrate the Gini curve GF(p) and its weighted version gF(p) = GF(p)ψ(p),
and to also facilitate their comparisons with the Zenga curve ZF(p), we choose the Pareto
distribution

F(x) = 1 −
(x0

x

)θ
, x ≥ x0, (1.6)

where x0 > 0 and θ > 0 are parameters. Later in this paper, we will use this distribution in a
simulation study, setting x0 = 1 and θ = 2.06. Note that when θ > 2, then the second moment
of the distribution is finite. The “heavy-tailed” case 1 < θ < 2 is also of interest, especially
when modeling incomes of countries with very high economic inequality. We will provide
additional details on the case in Section 5.

Note 1. Pareto distribution (1.6) is perhaps the oldest model for income distributions. It dates
back to Pareto [5], and Pareto [6]. Pareto’s original empirical research suggested him that the
number of tax payers with income x is roughly proportional to x−(θ+1), where θ is a parameter
that measures inequality. For historical details on the interpretation of this parameter in the
context of measuring economic inequality, we refer to Zenga [7]. We can view the parameter
x0 > 0 as the lowest taxable income. In addition, besides being the greatest lower bound of
the distribution support, x0 is also the scale parameter of the distribution and thus does not
affect our inequality indices and curves, as we will see in formulas below.

Note 2. The Pareto distribution is positively supported, x ≥ x0 > 0. In real surveys, however,
in addition to many positive incomes we may also observe some zero and negative incomes.
This happens when evaluating net household incomes, which are the sums of payroll incomes
(net wages, salaries, fringe benefits), pensions and net transfers (pensions, arrears, financial
assistance, scholarships, alimony, gifts). Paid alimony and gifts are subtracted in forming
the incomes. However, negative incomes usually happen in the case of very few statistical
units. For example, in the 2006 Bank of Italy survey we observe only four households with
nonpositive incomes, out of the total of 7,766 households. Hence, it is natural to fit the
Pareto model to the positive incomes and keep in mind that we are actually dealing with
a conditional distribution. If, however, it is desired to deal with negative, null, and positive
incomes, then instead of the Pareto distribution we may switch to different ones, such as
Dagum distributions with three or four parameters [8–10].

Corresponding to Pareto distribution (1.6), the Lorenz curve is given by the formula
LF(p) = 1− (1−p)1−1/θ (see [11]), and thus the Gini curve becomes GF(p) = ((1−p)1−1/θ − (1−
p))/p. In Figure 1(a) we have depicted the Gini and weighted Gini curves. The corresponding
Zenga curve is equal toZF(p) = (1−(1−p)1/θ)/p and is depicted in Figure 1(b), alongside the
Gini curve GF(p) for an easy comparison. Figure 1(a) allows us to appreciate how the Gini
weight function ψ(p) = 2p disguises the high inequality between the mean income of the very
poor and that of the whole population, and overemphasizes comparisons between almost
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Figure 1: The Gini curve GF(p)(dashed; (a) and (b)), the weighted Gini curve gF(p)(solid; (a)), and the
Zenga curve ZF(p)(solid; (b)) in the Pareto case with x0 = 1 and θ = 2.06.

identical subgroups. The outcome is that the Gini index GF underestimates inequality. In
Figure 1(b) we see the difference between the Gini and Zenga inequality curves. For example,
GF(p) for p = 0.8 yields 0.296, which tells us that the mean income of the poorest 80% of
the population is 29.6% lower than the mean income of the whole population, while the
corresponding ordinate of the Zenga curve is ZF(0.8) = 0.678, which tells us that the mean
income of the poorest 80% of the population is 67.8% lower than the mean income of the
remaining (richer) part of the population.

The rest of this paper is organized as follows. In Section 2 we define two estimators of
the Zenga index ZF and develop statistical inferential results. In Section 3 we present results
of a simulation study, which explores the empirical performance of two Zenga estimators,
Ẑn and Z̃n, including coverage accuracy and length of several types of confidence intervals.
In Section 4 we present an analysis of the the Bank of Italy Survey on Household Income
and Wealth (SHIW) data. In Section 5 we further contribute to the understanding of the
Zenga index ZF by relating it to lower and upper conditional expectations, as well as to
the conditional tail expectation (CTE), which has been widely used in insurance. In Section 6
we provide a theoretical background of the aforementioned two empirical Zenga estimators.
In Section 7 we justify the definitions of several variance estimators as well as their uses in
constructing confidence intervals. In Section 8 we prove Theorem 2.1 of Section 2, which is the
main technical result of the present paper. Technical lemmas and their proofs are relegated to
Section 9.

2. Estimators and Statistical Inference

Unless explicitly stated otherwise, our statistical inferential results are derived under the
assumption that data are outcomes of independent and identically distributed (i.i.d.) random
variables.

Hence, let X1, . . . , Xn be independent copies of X. We use two nonparametric
estimators for the Zenga index ZF . The first one [12] is given by the formula

Ẑn = 1 − 1
n

n−1∑

i=1

i−1 ∑i
k=1 Xk:n

(n − i)−1 ∑n
k=i+1 Xk:n

, (2.1)
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where X1:n ≤ · · · ≤ Xn:n are the order statistics of X1, . . . , Xn. With X denoting the sample
mean of X1, . . . , Xn, the second estimator of the Zenga index ZF is given by the formula

Z̃n = −
n∑

i=2

∑i−1
k=1 Xk:n − (i − 1)Xi:n
∑n

k=i+1 Xk:n + iXi:n
log

(
i

i − 1

)

+
n−1∑

i=1

(
X

Xi:n
− 1 −

∑i−1
k=1 Xk:n − (i − 1)Xi:n
∑n

k=i+1 Xk:n + iXi:n

)

log

(

1 +
Xi:n∑n

k=i+1 Xk:n

)

.

(2.2)

The two estimators Ẑn and Z̃n are asymptotically equivalent. However, despite the fact that
the estimator Z̃n is more complex, it will nevertheless be more convenient to work with when
establishing asymptotic results later in this paper.

Unless explicitly stated otherwise, we assume throughout that the cdf F(x) of X is
a continuous function. We note that continuous cdf’s are natural choices when modeling
income distributions, insurance risks, and losses (see, e.g., [13]).

Theorem 2.1. If the moment E[X2+α] is finite for some α > 0, then one has the asymptotic
representation

√
n
(
Z̃n − ZF

)
=

1√
n

n∑

i=1

h(Xi) + oP(1), (2.3)

where oP(1) denotes a random variable that converges to 0 in probability when n → ∞, and

h(Xi) =
∫∞

0
(1{Xi ≤ x} − F(x))wF(F(x))dx (2.4)

with the weight function

wF(t) = − 1
μF

∫ t

0

(
1
p
− 1

)
LF

(
p
)

(
1 − LF

(
p
))2

dp +
1
μF

∫1

t

(
1
p
− 1

)
1

1 − LF
(
p
)dp. (2.5)

In view of Theorem 2.1, the asymptotic distribution of
√
n (Z̃n−ZF) is centered normal

with the variance σ2
F = E[h2(X)], which is finite (see Theorem 7.1) and can be written as

follows:

σ2
F =

∫∞

0

∫∞

0

(
min

{
F(x), F

(
y
)} − F(x)F(y))wF(F(x))wF

(
F
(
y
))
dx dy. (2.6)

Alternatively,

σ2
F =

∫1

0

(∫

[0,u)
twF(t)dF−1(t) −

∫

[u,1)
(1 − t)wF(t)dF−1(t)

)2

du. (2.7)
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The latter expression of σ2
F is particularly convenient when working with distributions for

which the first derivative (when it exists) of the quantile F−1(t) is a relatively simple function,
as is the case for a large class of distributions (see, e.g., [14]). However, irrespectively of what
expression for the variance σ2

F we use, the variance is unknown since the cdf F(x) is unknown,
and thus σ2

F needs to be estimated empirically.

2.1. One Sample Case

Replacing the population cdf everywhere on the right-hand side of (2.6) by the empirical cdf
Fn(x) = n−1 ∑n

i=1 1{Xi ≤ x}, where 1 denotes the indicator function, we obtain (Theorem 7.2)
the following estimator of the variance σ2

F :

S2
X,n =

n−1∑

k=1

n−1∑

l=1

(
min{k, l}

n
− k

n

l

n

)

×wX,n

(
k

n

)
wX,n

(
l

n

)
(Xk+1:n −Xk:n)(Xl+1:n −Xl:n),

(2.8)

where

wX,n

(
k

n

)
= −

k∑

i=1

IX,n(i) +
n∑

i=k+1

JX,n(i) (2.9)

with the following expressions for the summands IX,n(i) and JX,n(i) : first,

IX,n(1) = −
∑n

k=2 Xk:n − (n − 1)X1:n
(∑n

k=1 Xk:n
)(∑n

k=2 Xk:n
) +

1
X1,n

log

(

1 +
X1:n∑n
k=2 Xk:n

)

. (2.10)

Furthermore, for every i = 2, . . . , n − 1,

IX,n(i) = n
∑i−1

k=1 Xk:n − (i − 1)Xi:n
(∑n

k=i+1 Xk:n + iXi:n
)2

log
(

i

i − 1

)

−
(∑n

k=i+1 Xk:n − (n − i)Xi:n
)(∑n

k=1 Xk:n
)

(∑n
k=i+1 Xk:n + iXi:n

)(∑n
k=i+1 Xk:n

)(∑n
k=i Xk:n

)

+

(
1
Xi:n

+ n
∑i−1

k=1 Xk:n − (i − 1)Xi:n
(∑n

k=i+1 Xk:n + iXi:n
)2

)

log

(

1 +
Xi:n∑n

k=i+1 Xk:n

)

,

(2.11)

JX,n(i) =
n

∑n
k=i+1 Xk:n + iXi:n

log
(

i

i − 1

)

−
∑n

k=i+1 Xk:n − (n − i)Xi:n

Xi:n
(∑n

k=i+1 Xk:n + iXi:n
) log

(

1 +
Xi:n∑n

k=i+1 Xk:n

)

.

(2.12)
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Finally,

JX,n(n) =
1

Xn,n
log

(
n

n − 1

)
. (2.13)

With the just defined estimator S2
X,n of the variance σ2

F , we have the asymptotic result:

√
n
(
Z̃n − ZF

)

SX,n
−→dN(0, 1), (2.14)

where → d denotes convergence in distribution.

2.2. Two Independent Samples

We now discuss a variant of statement (2.14) in the case of two populations when samples
are independent. Namely, let the random variables X1, . . . , Xn ∼ F and Y1, . . . , Ym ∼ H be
independent within and between the two samples. Just like in the case of the cdf F(x), here
we also assume that the cdfH(x) is continuous and E[Y 2+α] <∞ for some α > 0. Furthermore,
we assume that the sample sizes n and m are comparable, which means that there exists
η ∈ (0, 1) such that

m

n +m
−→ η ∈ (0, 1) (2.15)

when both n and m tend to infinity. From statement (2.3) and its counterpart for Yi ∼ H we
then have that the quantity

√
nm/(n +m) ((Z̃X,n−Z̃Y,m)−(ZF−ZH)) is asymptotically normal

with mean zero and the variance ησ2
F + (1 − η)σ2

H . To estimate the variances σ2
F and σ2

H , we
use S2

X,n and S2
Y,n, respectively, and obtain the following result:

(
Z̃X,n − Z̃Y,m

)
− (ZF − ZH)

√
(1/n)S2

X,n + (1/m)S2
Y,m

−→dN(0, 1). (2.16)

2.3. Paired Samples

Consider now the case when the two samples X1, . . . , Xn ∼ F and Y1, . . . , Ym ∼ H are
paired. Thus, we have that m = n, and we also have that the pairs (X1, Y1), . . . , (Xn, Yn) are
independent and identically distributed. Nothing is assumed about the joint distribution of
(X,Y ). As before, the cdf’s F(x) and H(y) are continuous and both have finite moments
of order 2 + α, for some α > 0. From statement (2.3) and its analog for Y we have that√
n ((Z̃X,n−Z̃Y,n)−(ZF−ZH)) is asymptotically normal with mean zero and the variance σ2

F,H =
E[(h(X) − h(Y ))2]. The latter variance can of course be written as σ2

F − 2E[h(X)h(Y )] + σ2
H .

Having already constructed estimators S2
X,n and S2

Y,n, we are only left to construct an estimator
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for E[h(X)h(Y )]. (Note that when X and Y are independent, then P[X ≤ x, Y ≤ y] =
F(x)H(y) and thus the expectation E[h(X)h(Y )] vanishes.) To this end, we write the equation

E[h(X)h(Y )] =
∫∞

0

∫∞

0

(
P
[
X ≤ x, Y ≤ y] − F(x)H(

y
))
wF(F(x))wH

(
H
(
y
))
dx dy. (2.17)

Replacing the cdf’s F(x) and H(y) everywhere on the right-hand side of the above equation
by their respective empirical estimators Fn(x) and Hn(y), we have (Theorem 7.3)

SX,Y,n =
n−1∑

k=1

n−1∑

l=1

(
1
n

k∑

i=1

1
{
Y(i,n) ≤ Yl:n

} − k

n

l

n

)

×wX,n

(
k

n

)
wY,n

(
l

n

)
(Xk+1:n −Xk:n)(Yl+1:n − Yl:n),

(2.18)

where Y(1,n), . . . , Y(n,n) are the induced (by X1, . . . , Xn) order statistics of Y1, . . . , Yn. (Note that
when Y ≡ X, then Y(i,n) = Yi:n and so the sum

∑k
i=1 1{Y(i,n) ≤ Yl:n} is equal to min{k, l}; hence,

estimator (2.18) coincides with estimator (2.8), as expected.) Consequently, S2
X,n−2SX,Y,n+S2

Y,n

is an empirical estimator of σ2
F,H , and so we have that

√
n
(
Z̃X,n − Z̃Y,n

)
− (ZF − ZH)

√
S2
X,n − 2SX,Y,n + S2

Y,n

−→dN(0, 1). (2.19)

We conclude this section with a note that the above established asymptotic results
(2.14), (2.16), and (2.19) are what we typically need when dealing with two populations,
or two time periods, but extensions to more populations and/or time periods would be a
worthwhile contribution. For hints and references on the topic, we refer to Jones et al. [15]
and Brazauskas et al. [16].

3. A Simulation Study

Here we investigate the numerical performance of the estimators Ẑn and Z̃n by simulating
data from Pareto distribution (1.6) with x0 = 1 and θ = 2.06. These choices give the value
ZF = 0.6, which is approximately seen in real income distributions. As to the (artificial) choice
x0 = 1, we note that since x0 is the scale parameter in the Pareto model, the inequality indices
and curves are invariant to it. Hence, all results to be reported in this section concerning the
coverage accuracy and size of confidence intervals will not be affected by the choice x0 = 1.

Following Davison and Hinkley [17, Chapter 5], we compute four types of confidence
intervals: normal, percentile, BCa, and t-bootstrap. For normal and studentized bootstrap
confidence intervals we estimate the variance using empirical influence values. For the
estimator Z̃n, the influence values h(Xi) are obtained from Theorem 2.1, and those for the
estimator Ẑn using numerical differentiation as in Greselin and Pasquazzi [12].

In Table 1 we report coverage percentages of 10, 000 confidence intervals, for each
of the four types: normal, percentile, BCa, and t-bootstrap. Bootstrap-based approximations



Journal of Probability and Statistics 9

Table 1: Coverage proportions of confidence intervals from the Pareto parent distribution with x0 = 1 and
θ = 2.06 (ZF = 0.6).

Ẑn Z̃n

0.9000 0.9500 0.9750 0.9900 0.9000 0.9500 0.9750 0.9900
n Normal confidence intervals
200 0.7915 0.8560 0.8954 0.9281 0.7881 0.8527 0.8926 0.9266
400 0.8059 0.8705 0.9083 0.9409 0.8047 0.8693 0.9078 0.9396
800 0.8256 0.8889 0.9245 0.9514 0.8246 0.8882 0.9237 0.9503
n Percentile confidence intervals
200 0.7763 0.8326 0.8684 0.9002 0.7629 0.8190 0.8567 0.8892
400 0.8004 0.8543 0.8919 0.9218 0.7934 0.8487 0.8864 0.9179
800 0.8210 0.8777 0.9138 0.9415 0.8168 0.8751 0.9119 0.9393
n BCa confidence intervals
200 0.8082 0.8684 0.9077 0.9383 0.8054 0.867 0.9047 0.9374
400 0.8205 0.8863 0.9226 0.9531 0.8204 0.886 0.9212 0.9523
800 0.8343 0.8987 0.9331 0.9634 0.8338 0.8983 0.9323 0.9634
n t-bootstrap confidence intervals
200 0.8475 0.9041 0.9385 0.9658 0.8485 0.9049 0.9400 0.9675
400 0.8535 0.9124 0.9462 0.9708 0.8534 0.9120 0.9463 0.9709
800 0.8580 0.9168 0.9507 0.9758 0.8572 0.9169 0.9504 0.9754

have been obtained from 9, 999 resamples of the original samples. As suggested by Efron [18],
we have approximated the acceleration constant for the BCa confidence intervals by one-sixth
times the standardized third moment of the influence values. In Table 2 we report summary
statistics concerning the size of the 10, 000 confidence intervals. As expected, the confidence
intervals based on Ẑn and Z̃n exhibit similar characteristics. We observe from Table 1 that
all confidence intervals suffer from some undercoverage. For example, with sample size 800,
about 97.5% of the studentized bootstrap confidence intervals with 0.99 nominal confidence
level contain the true value of the Zenga index. It should be noted that the higher coverage
accuracy of the studentized bootstrap confidence intervals (when compared to the other
ones) comes at the cost of their larger sizes, as seen in Table 2. Some of the studentized
bootstrap confidence intervals extend beyond the range [0, 1] of the Zenga index ZF , but this
can easily be fixed by taking the minimum between the currently recorded upper bounds
and 1, which is the upper bound of the Zenga index ZF for every cdf F. We note that for the
BCa confidence intervals, the number of bootstrap replications of the original sample has to
be increased beyond 9, 999 if the nominal confidence level is high. Indeed, for samples of size
800, it turns out that the upper bound of 1, 598 (out of 10, 000) of the BCa confidence intervals
based on Ẑn and with 0.99 nominal confidence level is given by the largest order statistics of
the bootstrap distribution. For the confidence intervals based on Z̃n, the corresponding figure
is 1, 641.

4. An Analysis of Italian Income Data

In this section we use the Zenga index ZF to analyze data from the Bank of Italy Survey on
Household Income and Wealth (SHIW). The sample of the 2006 wave of this survey contains
7, 768 households, with 3, 957 of them being panel households. For detailed information on
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Table 2: Size of the 95% asymptotic confidence intervals from the Pareto parent distribution with x0 = 1
and θ = 2.06 (ZF = 0.6).

Ẑn Z̃n

min mean max min mean max
n Normal confidence intervals
200 0.0680 0.1493 0.7263 0.0674 0.1500 0.7300
400 0.0564 0.1164 0.7446 0.0563 0.1167 0.7465
800 0.0462 0.0899 0.6528 0.0462 0.0900 0.6535
n Percentile confidence intervals
200 0.0673 0.1456 0.4751 0.0667 0.1462 0.4782
400 0.0561 0.1140 0.4712 0.0561 0.1143 0.4721
800 0.0467 0.0883 0.4110 0.0468 0.0884 0.4117
n BCa confidence intervals
200 0.0668 0.1491 0.4632 0.0661 0.1497 0.4652
400 0.0561 0.1183 0.4625 0.0558 0.1186 0.4629
800 0.0465 0.0925 0.4083 0.0467 0.0927 0.4085
n t-bootstrap confidence intervals
200 0.0677 0.2068 2.4307 0.0680 0.2099 2.5148
400 0.0572 0.1550 2.0851 0.0573 0.1559 2.1009
800 0.0473 0.1159 2.2015 0.0474 0.1162 2.2051

the survey, we refer to the Bank of Italy [19] publication. In order to treat data correctly
in the case of different household sizes, we work with equivalent incomes, which we have
obtained by dividing the total household income by an equivalence coefficient, which is the
sum of weights assigned to each household member. Following the modified Organization
for Economic Cooperation and Development (OECD) equivalence scale, we give weight 1 to
the household head, 0.5 to the other adult members of the household, and 0.3 to the members
under 14 years of age. It should be noted, however, that—as is the case in many surveys
concerning income analysis—households are selected using complex sampling designs. In
such cases, statistical inferential results are quite complex. To alleviate the difficulties, in the
present paper we follow the commonly accepted practice and treat income data as if they
were i.i.d.

In Table 3 we report the values of Ẑn and Z̃n according to the geographic area of the
households, and we also report confidence intervals for ZF based on the two estimators. We
note that two households in the sample had negative incomes in 2006, and so we have not
included them in our computations.

Note 3. Removing the negative incomes from our current analysis is important as otherwise
we would need to develop a much more complex methodology than the one offered in this
paper. To give a flavour of technical challenges, we note that the Gini index may overestimate
the economic inequality when negative, zero, and positive incomes are considered. In this
case the Gini index needs to be renormalized as demonstrated by, for example, Chen et al.
[20]. Another way to deal with the issue would be to analyze the negative incomes and their
concentration separately from the zero and positive incomes and their concentration.

Consequently, the point estimates of ZF are based on 7, 766 equivalent incomes with
Ẑn = 0.6470 and Z̃n = 0.6464. As pointed out by Maasoumi [21], however, good care is
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Table 3: Confidence intervals for ZF in the 2006 Italian income distribution.

Ẑn estimator Z̃n estimator
95% 99% 95% 99%

Lower Upper Lower Upper Lower Upper Lower Upper
Northwest: n = 1988, Ẑn = 0.5953, Z̃n = 0.5948

Normal 0.5775 0.6144 0.5717 0.6202 0.5771 0.6138 0.5713 0.6196
Student 0.5786 0.6168 0.5737 0.6240 0.5791 0.6172 0.5748 0.6243
Percent 0.5763 0.6132 0.5710 0.6193 0.5758 0.6124 0.5706 0.6185
BCa 0.5789 0.6160 0.5741 0.6234 0.5785 0.6156 0.5738 0.6226

Northeast: n = 1723, Ẑn = 0.6108, Z̃n = 0.6108
Normal 0.5849 0.6393 0.5764 0.6478 0.5849 0.6393 0.5764 0.6479
Student 0.5874 0.6526 0.5796 0.6669 0.5897 0.6538 0.5836 0.6685
Percent 0.5840 0.6379 0.5773 0.6476 0.5839 0.6379 0.5772 0.6475
BCa 0.5894 0.6478 0.5841 0.6616 0.5894 0.6479 0.5842 0.6615

Center: n = 1574, Ẑn = 0.6316, Z̃n = 0.6316
Normal 0.5957 0.6708 0.5839 0.6826 0.5956 0.6708 0.5838 0.6827
Student 0.5991 0.6991 0.5897 0.7284 0.6036 0.7016 0.5977 0.7311
Percent 0.5948 0.6689 0.5864 0.6818 0.5948 0.6688 0.5863 0.6818
BCa 0.6024 0.6850 0.5963 0.7021 0.6024 0.6850 0.5963 0.7020

South: n = 1620, Ẑn = 0.6557, Z̃n = 0.6543
Normal 0.6358 0.6770 0.6293 0.6834 0.6346 0.6756 0.6282 0.6820
Student 0.6371 0.6805 0.6313 0.6902 0.6371 0.6796 0.6320 0.6900
Percent 0.6351 0.6757 0.6286 0.6828 0.6337 0.6742 0.6276 0.6812
BCa 0.6375 0.6793 0.6325 0.6888 0.6363 0.6778 0.6315 0.6873

Islands: n = 861, Ẑn = 0.6109, Z̃n = 0.6095
Normal 0.5918 0.6317 0.5856 0.6380 0.5910 0.6302 0.5848 0.6364
Student 0.5927 0.6339 0.5864 0.6405 0.5928 0.6330 0.5874 0.6401
Percent 0.5897 0.6297 0.5839 0.6360 0.5885 0.6275 0.5831 0.6340
BCa 0.5923 0.6324 0.5868 0.6414 0.5914 0.6307 0.5860 0.6394

Italy (entire population): n = 7766, Ẑn = 0.6470, Z̃n = 0.6464
Normal 0.6346 0.6596 0.6307 0.6636 0.6341 0.6591 0.6302 0.6630
Student 0.6359 0.6629 0.6327 0.6686 0.6358 0.6627 0.6331 0.6683
Percent 0.6348 0.6597 0.6314 0.6640 0.6343 0.6592 0.6309 0.6635
BCa 0.6363 0.6619 0.6334 0.6676 0.6358 0.6613 0.6330 0.6669

needed when comparing point estimates of inequality measures. Indeed, direct comparison
of the point estimates corresponding to the five geographic areas of Italy would lead us
to the conclusion that the inequality is higher in the central and southern areas when
compared to the northern area and the islands. But as we glean from pairwise comparisons
of the confidence intervals, only the differences between the estimates corresponding to the
northwestern and southern areas and perhaps to the islands and the southern area may be
deemed statistically significant.

Moreover, we have used the paired samples of the 2004 and 2006 incomes of the 3,957
panel households in order to check whether during this time period there was a change
in inequality among households. In Table 4 we report the values of Z̃n based on the panel
households for these two years, and the 95% confidence intervals for the difference between
the values of the Zenga index for the years 2006 and 2004. These computations have been
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Table 4: 95% confidence intervals for the difference of the Zenga indices between 2006 and 2004 in the
Italian income distribution.

Northwest (926 pairs) Northeast (841 pairs) Center (831 pairs)
Z̃

(2006)
n 0.5797 Z̃

(2006)
n 0.6199 Z̃

(2006)
n 0.5921

Z̃
(2004)
n 0.5955 Z̃

(2004)
n 0.6474 Z̃

(2004)
n 0.5766

Difference −0.0158 Difference −0.0275 Difference 0.0155
Lower Upper Lower Upper Lower Upper

Normal −0.0426 0.0102 −0.0573 0.0003 −0.0183 0.0514
Student −0.0463 0.0103 −0.0591 0.0017 −0.0156 0.0644
Percent −0.0421 0.0108 −0.0537 0.0040 −0.0183 0.0505
BCa −0.0440 0.0087 −0.0551 0.0022 −0.0130 0.0593

South (843 pairs) Islands (512 pairs) Italy (3953 pairs)
Z̃

(2006)
n 0.6200 Z̃

(2006)
n 0.6179 Z̃

(2006)
n 0.6362

Z̃
(2004)
n 0.6325 Z̃

(2004)
n 0.6239 Z̃

(2004)
n 0.6485

Difference −0.0125 Difference −0.0060 Difference −0.0123
Lower Upper Lower Upper Lower Upper

Normal −0.0372 0.0129 −0.0333 0.0213 −0.0259 0.0007
Student −0.0365 0.0166 −0.0351 0.0222 −0.0264 0.0013
Percent −0.0372 0.0131 −0.0333 0.0214 −0.0253 0.0016
BCa −0.0351 0.0162 −0.0331 0.0216 −0.0255 0.0013

based on formula (2.19). Having removed the four households with at least one negative
income in the paired sample, we were left with a total of 3, 953 observations. We see that even
though we deal with large sample sizes, the point estimates alone are not reliable. Indeed, for
Italy as the whole and for all geographic areas except the center, the point estimates suggest
that the Zenga index decreased from the year 2004 to 2006. However, the 95% confidence
intervals in Table 4 suggest that this change is not significant.

5. An Alternative Look at the Zenga Index

In various contexts we have notions of rich and poor, large and small, risky and secure.
They divide the underlying populations into two parts, which we view as subpopulations.
The quantile F−1(p), for some p ∈ (0, 1), usually serves as a boundary separating the two
subpopulations. For example, we may define rich if X > F−1(p) and poor if X ≤ F−1(p).
Calculating the mean value of the former subpopulation gives rise to the upper conditional
expectation E[X | X > F−1(p)], which is known in the actuarial risk theory as the conditional
tail expectation (CTE). Calculating the mean value of the latter subpopulation gives rise to
the lower conditional expectation E[X | X ≤ F−1(p)], which is known in the econometric
literature as the absolute Bonferroni curve, as a function of p.

Clearly, the ratio

RF

(
p
)
=

E
[
X | X ≤ F−1(p

)]

E
[
X | X > F−1

(
p
)] (5.1)

of the lower and upper conditional expectations takes on values in the interval [0, 1]. WhenX
is equal to any constant, which can be interpreted as the egalitarian case, then RF(p) is equal
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to 1. The ratio RF(p) is equal to 0 for all p ∈ (0, 1) when the lower conditional expectation
is equal to 0 for all p ∈ (0, 1). This means extreme inequality in the sense that, loosely
speaking, there is only one individual who possesses the entire wealth. Our wish to associate
the egalitarian case with 0 and the extreme inequality with 1 leads to function 1−RF(p), which
coincides with the Zenga curve (1.5) when the cdf F(x) is continuous. The area

1 −
∫1

0

E
[
X | X ≤ F−1(p

)]

E
[
X | X > F−1

(
p
)]dp (5.2)

beneath the function 1 − RF(p) is always in the interval [0, 1]. Quantity (5.2) is a measure
of inequality and coincides with the earlier defined Zenga index ZF when the cdf F(x) is
continuous, which we assume throughout the paper.

Note that under the continuity of F(x), the lower and upper conditional expectations
are equal to the absolute Bonferroni curve p−1ALF(p) and the dual absolute Bonferroni curve
(1 − p)−1(μF −ALF(p)), respectively, where

ALF
(
p
)
=
∫p

0
F−1(t)dt (5.3)

is the absolute Lorenz curve. This leads us to the expression of the Zenga index ZF given by
(1.4), which we now rewrite in terms of the absolute Lorenz curve as follows:

ZF = 1 −
∫1

0

(
1
p
− 1

)
ALF

(
p
)

μF −ALF
(
p
)dp. (5.4)

We will extensively use expression (5.4) in the proofs below. In particular, we will see in the
next section that the empirical Zenga index Z̃n is equal to ZF with the population cdf F(x)
replaced by the empirical cdf Fn(x).

We are now in the position to provide additional details on the earlier noted Pareto
case 1 < θ < 2, when the Pareto distribution has finite E[X] but infinite E[X2]. The above
derived asymptotic results and thus the statistical inferential theory fail in this case. The
required adjustments are serious and rely on the use of the extreme value theory, instead
of the classical central limit theorem (CLT). Specifically, the task can be achieved by first
expressing the absolute Lorenz curve ALF(p) in terms of the conditional tail expectation
(CTE):

CTEF

(
p
)
=

1
1 − p

∫1

p

F−1(t)dt (5.5)

using the equation ALF(p) = μF − (1 − p)CTEF(p). Hence, (5.4) becomes

ZF = 1 −
∫1

0

1
p

(
CTEF(0)
CTEF

(
p
) − (

1 − p)
)

dp, (5.6)

where CTEF(0) is of course the mean μF . Note that replacing the population cdf F(x) by its
empirical counterpart Fn(x) on the right-hand side of (5.6) would not lead to an estimator
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that would work when E[X2] = ∞, and thus when the Pareto parameter 1 < θ < 2. A solution
to this problem is provided by Necir et al. [22], who have suggested a new estimator of the
conditional tail expectation CTEF(p) for heavy-tailed distributions. Plugging in that estimator
instead of the CTE on the right-hand side of (5.6) produces an estimator of the Zenga index
when E[X2] = ∞. Establishing asymptotic results for the new “heavy-tailed” Zenga estimator
would, however, be a complex technical task, well beyond the scope of the present paper, as
can be seen from the proofs of Necir et al. [22].

6. A Closer Look at the Two Zenga Estimators

Since samples are “discrete populations”, (5.2) and (5.4) lead to slightly different empirical
estimators of ZF . If we choose (5.2) and replace all population-related quantities by their
empirical counterparts, then we will arrive at the estimator Ẑn, as seen from the proof of the
following theorem.

Theorem 6.1. The empirical Zenga index Ẑn is an empirical estimator of ZF .

Proof. Let U be a uniform on [0, 1] random variable independent of X. The cdf of F−1(U) is
F. Hence, we have the following equations:

ZF = 1 − EU

(
EX

[
X | X ≤ F−1(U)

]

EX
[
X | X > F−1(U)

]

)

= 1 −
∫

(0,∞)

1 − F(x)
F(x)

E[X 1{X ≤ x}]
E[X 1{X > x}]dF(x)

= 1 −
∫

(0,∞)

1 − F(x)
F(x)

∫
(0,x] y dF

(
y
)

∫
(x,∞) y dF

(
y
)dF(x).

(6.1)

Replacing every F on the right-hand side of (6.1) by Fn, we obtain

1 − 1
n

n−1∑

i=1

1 − Fn(Xi:n)
Fn(Xi:n)

∑n
k=1 Xk:n1{Xk:n ≤ Xi:n}

∑n
k=1 Xk:n1{Xk:n > Xi:n}

, (6.2)

which simplifies to

1 − 1
n

n−1∑

i=1

1 − i/n
i/n

∑i
k=1 Xk:n

∑n
k=i+1 Xk:n

. (6.3)

This is the estimator Ẑn [12].
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If, on the other hand, we choose (5.4) as the starting point for constructing an empirical
estimator for ZF , then we first replace the quantile F−1(p) by its empirical counterpart

F−1
n

(
p
)
= inf

{
x : Fn(x) ≥ p

}

= Xi:n when p ∈
(
(i − 1)
n

,
i

n

] (6.4)

in the definition of ALF(p), which leads to the empirical absolute Lorenz curve ALn(p), and
then we replace each ALF(p) on the right-hand side of (5.4) by the just constructed ALn(p).
(Note that μF = ALF(1) ≈ ALn(1) = X.) These considerations produce the empirical Zenga
index Z̃n, as seen from the proof of the following theorem.

Theorem 6.2. The empirical Zenga index Z̃n is an estimator of ZF .

Proof. By construction, the estimator Z̃n is given by the equation:

Z̃n = 1 −
∫1

0

(
1
p
− 1

)
ALn

(
p
)

X −ALn
(
p
)dp. (6.5)

Hence, the proof of the lemma reduces to verifying that the right-hand sides of (2.2) and (6.5)
coincide. For this, we split the integral in (6.5) into the sum of integrals over the intervals
((i − 1), i/n) for i = 1, . . . , n. For every p ∈ ((i − 1)/n, i/n), we have ALn(p) = Ci,n + pXi:n,
where

Ci,n =
1
n

i−1∑

k=1

Xk:n − i − 1
n

Xi:n. (6.6)

Hence, (6.5) can be rewritten as Z̃n =
∑n

i=1 ζi,n, where

ζi,n =
1
n
−
∫ i/n

(i−1)/n

(
1
p
− 1

)
Λi,n + p
Ψi,n − pdp

(6.7)

with

Λi,n =
Ci,n

Xi:n
, Ψi,n =

X − Ci,n

Xi:n
. (6.8)

Consider first the case i = 1. We have C1,n = 0 and thus Λ1,n = 0, which implies

ζ1,n =

(
X

X1:n
− 1

)

log

(

1 +
X1:n∑n
k=2 Xk:n

)

. (6.9)
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Next, we consider the case i = n. We have Cn,n = X −Xn:n and thus Ψn,n = 1, which implies

ζn,n =

(

1 − X

Xn:n

)

log
(

n

n − 1

)
. (6.10)

When 2 ≤ i ≤ n − 1, then the integrand in the definition of ζi,n does not have any singularity,
since Ψi,n > i/n due to

∑n
k=i+1 Xk:n > 0 almost surely. Hence, after simple integration we have

that, for i = 2, . . . , n − 1,

ζi,n =
(i − 1)Xi:n −

∑i−1
k=1 Xk:n

∑n
k=i+1 Xk:n + iXi:n

log
(

i

i − 1

)

+

(
X

Xi:n
− 1 +

(i − 1)Xi:n −
∑i−1

k=1 Xk:n
∑n

k=i+1 Xk:n + iXi:n

)

log

(

1 +
Xi:n∑n

k=i+1 Xk:n

)

.

(6.11)

With the above formulas for ζi,n we easily check that the sum
∑n

i=1 ζi,n is equal to the right-
hand side of (2.2). This completes the proof of Theorem 6.2.

7. A Closer Look at the Variances

Following the formulation of Theorem 2.1 we claimed that the asymptotic distribution of√
n (Z̃n−ZF) is centered normal with the finite variance σ2

F = E[h2(X)]. The following theorem
proves this claim.

Theorem 7.1. When E[X2+α] < ∞ for some α > 0, then n−1/2 ∑n
i=1 h(Xi) converges in distribution

to the centered normal random variable

Γ =
∫∞

0
B(F(x))wF(F(x))dx, (7.1)

where B(p) is the Brownian bridge on the interval [0, 1]. The variance of Γ is finite and equal to σ2
F .

Proof. Note that n−1/2 ∑n
i=1 h(Xi) can be written as

∫∞
0 en(F(x))wF(F(x))dx, where en(p) =√

n(En(p) − p) is the empirical process based on the uniform on [0, 1] random variables Ui =
F(Xi), i = 1, . . . , n. We will next show that

∫∞

0
en(F(x))wF(F(x))dx−→d

∫∞

0
B(F(x))wF(F(x))dx. (7.2)

The proof is based on the well-known fact that, for every ε > 0, the following weak
convergence of stochastic processes takes place:

{
en
(
p
)

p1/2−ε(1 − p)1/2−ε , 0 ≤ p ≤ 1

}

=⇒
{

B(p)

p1/2−ε(1 − p)1/2−ε , 0 ≤ p ≤ 1

}

. (7.3)
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Hence, in order to prove statement (7.2), we only need to check that the integral

∫∞

0
F(x)1/2−ε(1 − F(x))1/2−εwF(F(x))dx (7.4)

is finite. For this, by considering, for example, the two cases p ≤ 1/2 and p > 1/2 separately,
we first easily verify the bound |wF(p)| ≤ c + c log(1/p) + c log(1/(1 − p)). Hence, for every
ε > 0, there exists a constant c <∞ such that, for all p ∈ (0, 1),

∣
∣wF

(
p
)∣∣ ≤ c

pε
(
1 − p)ε . (7.5)

Bound (7.5) implies that integral (7.4) is finite when
∫∞

0 (1 − F(x))1/2−2εdx < ∞, which is true
since the moment E[X2+α] is finite for some α > 0 and the parameter ε > 0 can be chosen
as small as desired. Hence, n−1/2 ∑n

i=1 h(Xi)→ dΓ with Γ denoting the integral on the right-
hand side of statement (7.2). The random variable Γ is normal because the Brownian bridge
B(p) is a Gaussian process. Furthermore, Γ has mean zero because B(p) has mean zero for
every p ∈ [0, 1]. The variance of Γ is equal to σ2

F because E[B(p)B(q)] = min{p, q} − pq for all
p, q ∈ [0, 1]. We are left to show that E[Γ2] <∞. For this, we write the bound:

E
[
Γ2
]
=
∫∞

0

∫∞

0
E
[B(F(x))B(F(y))]wF(F(x))wF

(
F
(
y
))
dx dy

≤
(∫∞

0

√
E[B2(F(x))] wF(F(x))dx

)2

.

(7.6)

Since E[B2(F(x))] = F(x)(1 − F(x)), the finiteness of the integral on the right-hand side of
bound (7.6) follows from the earlier proved statement that integral (7.4) is finite. Hence,
E[Γ2] <∞ as claimed, which concludes the proof of Theorem 7.1.

Theorem 7.2. The empirical variance S2
X,n is an estimator of σ2

F .

Proof. We construct an empirical estimator for σ2
F by replacing every F on the right-hand side

of (2.6) by the empirical Fn. Consequently, we replace the function wF(t) by its empirical
version

wX,n(t) = −
∫ t

0

(
1
p
− 1

)
ALn

(
p
)

(
X −ALn

(
p
))2

dp +
∫1

t

(
1
p
− 1

)
1

X −ALn
(
p
)dp. (7.7)

We denote the resulting estimator of σ2
F by S2

X,n. The rest of the proof consists of verifying
that this estimator coincides with the one defined by (2.8). Note that min{Fn(x), Fn(y)} −
Fn(x)Fn(y) = 0 when x ∈ [0, X1:n) ∪ [Xn:n,∞) and/or y ∈ [0, X1:n) ∪ [Xn:n,∞). Hence, the just
defined S2

X,n is equal to

∫Xn:n

X1:n

∫Xn:n

X1:n

(
min

{
Fn(x), Fn

(
y
)} − Fn(x)Fn

(
y
))
wX,n(Fn(x))wX,n

(
Fn

(
y
))
dx dy. (7.8)
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Since Fn(x) = k/n when x ∈ [Xk:n, Xk+1:n), we therefore have that

S2
X,n =

n−1∑

k=1

n−1∑

l=1

(
min{k, l}

n
− k

n

l

n

)

×wX,n

(
k

n

)
wX,n

(
l

n

)
(Xk+1:n −Xk:n)(Xl+1:n −Xl:n).

(7.9)

Furthermore,

wX,n

(
k

n

)
= −

∫k/n

0

(
1
p
− 1

)
ALn

(
p
)

(
X −ALn

(
p
))2

dp +
∫1

k/n

(
1
p
− 1

)
1

X −ALn
(
p
)dp

= −
k∑

i=1

IX,n(i) +
n∑

i=k+1

JX,n(i),

(7.10)

where, using notations (6.6) and (6.8), the summands on the right-hand side of (7.10) are

IX,n(i) =
1
Xi:n

∫ i/n

(i−1)/n

(
1
p
− 1

)
Λi,n + p

(
Ψi,n − p

)2
dp (7.11)

for all i = 1, . . . , n − 1, and

JX,n(i) =
1
Xi:n

∫ i/n

(i−1)/n

(
1
p
− 1

)
1

Ψi,n − pdp
(7.12)

for all i = 2, . . . , n. When i = 1, then Λi,n = 0. Hence, we immediately arrive at the expression
for IX,n(1) given by (2.10). When 2 ≤ i ≤ n − 1, then

IX,n(i) =
Λi,n

Xi:nΨ2
i,n

log
(

i

i − 1

)
− (Λi,n + Ψi,n)(Ψi,n − 1)
nXi:nΨi,n(Ψi,n − (i − 1)/n)(Ψi,n − i/n)

+
1
Xi:n

(

1 +
Λi,n

Ψ2
i,n

)

log
(
Ψi,n − (i − 1)/n

Ψi,n − i/n
)
,

(7.13)

and, after some algebra, we arrive at the right-hand side of (2.11). When 2 ≤ i ≤ n − 1, then
we have the expression

JX,n(i) =
1

Xi:nΨi,n
log

(
i

i − 1

)
− 1
Xi:n

(
1 − 1

Ψi,n

)
log

(
Ψi,n − (i − 1)/n

Ψi,n − i/n
)
, (7.14)

which, after some algebra, becomes the expression recorded in (2.12). When i = n, then Ψi,n =
1, and so we see that JX,n(n) is given by (2.13). This completes the proof of Theorem 7.2.
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Theorem 7.3. The empirical mixed moment SX,Y,n is an estimator of E[h(X)h(Y )].

Proof. We proceed similarly to the proof of Theorem 7.2. We estimate the integrand P[X ≤
x, Y ≤ y] − F(x)H(y) using

1
n

n∑

i=1

1
{
Xi ≤ x, Yi ≤ y

} − 1
n

n∑

i=1

1{Xi ≤ x} 1
n

n∑

i=1

1
{
Yi ≤ y

}
. (7.15)

After some rearrangement of terms, estimator (7.15) becomes

1
n

n∑

i=1

1
{
Xi:n ≤ x, Y(i,n) ≤ y

} − 1
n

n∑

i=1

1{Xi:n ≤ x} 1
n

n∑

i=1

1
{
Yi:n ≤ y}. (7.16)

When x ∈ [Xk:n, Xk+1:n) and y ∈ [Yl:n, Yl+1:n), then estimator (7.16) is equal to
n−1 ∑k

i=1 1{Y(i,n) ≤ Yl:n} − (k/n)(l/n), which leads us to the estimator SX,Y,n. This completes
the proof of Theorem 7.3.

8. Proof of Theorem 2.1

Throughout the proof we use the notation AL∗
F(p) for the dual absolute Lorenz curve

∫1
p F

−1(t)dt, which is equal to μF − ALF(p). Likewise, we use the notation AL∗
n(p) for the

empirical dual absolute Lorenz curve.

Proof. Simple algebra gives the equations

√
n
(
Z̃n − ZF

)
= −√n

∫1

0

(
1
p
− 1

)(
ALn

(
p
)

AL∗
n

(
p
) − ALF

(
p
)

AL∗
F

(
p
)

)

dp

= −√n
∫1

0

(
1
p
− 1

)
ALn

(
p
) −ALF

(
p
)

AL∗
F

(
p
) dp

+
√
n

∫1

0

(
1
p
− 1

)
ALF

(
p
)

AL∗2
F

(
p
)
(
AL∗

n

(
p
) −AL∗

F

(
p
))
dp

+OP(rn,1) +OP(rn,2)

(8.1)

with the remainder terms

rn,1 =
√
n

∫1

0

(
1
p
− 1

)
(
ALn

(
p
) −ALF

(
p
))
(

1
AL∗

n

(
p
) − 1

AL∗
F

(
p
)

)

dp,

rn,2 =
√
n

∫1

0

(
1
p
− 1

)
ALF

(
p
)

AL∗
F

(
p
)
(
AL∗

n

(
p
) −AL∗

F

(
p
))
(

1
AL∗

n

(
p
) − 1

AL∗
F

(
p
)

)

dp.

(8.2)
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We will later show (Lemmas 9.1 and 9.2) that the remainder terms rn,1 and rn,2 are of the order
oP(1). Hence, we now proceed with our analysis of the first two terms on the right-hand side
of (8.1), for which we use the (general) Vervaat process

Vn
(
p
)
=
∫p

0

(
F−1
n (t) − F−1(t)

)
dt +

∫F−1(p)

0
(Fn(x) − F(x))dx (8.3)

and its dual version

V ∗
n

(
p
)
=
∫1

p

(
F−1
n (t) − F−1(t)

)
dt +

∫∞

F−1(p)
(Fn(x) − F(x))dx. (8.4)

For mathematical and historical details on the Vervaat process, see Zitikis [23], Davydov and
Zitikis [24], Greselin et al. [25], and references therein. Since

∫1
0 (F

−1
n (t) − F−1(t))dt = X − μF

and
∫∞

0 (Fn(x) − F(x))dx = −(X − μF), adding the right-hand sides of (8.3) and (8.4) gives the
equation V ∗

n (p) = −Vn(p). Hence, whatever upper bound we have for |Vn(p)|, the same bound
holds for |V ∗

n (p)|. In fact, the absolute value can be dropped from |Vn(p)| since Vn(p) is always
nonnegative. Furthermore, we know that Vn(p) does not exceed (p − Fn(F−1(p)))(F−1

n (p) −
F−1(p)). Hence, with the notation en(p) =

√
n(Fn(F−1(p)) − p), which is the uniform on [0, 1]

empirical process, we have that

√
n Vn

(
p
) ≤ ∣∣en

(
p
)∣∣
∣∣∣F−1

n

(
p
) − F−1(p

)∣∣∣. (8.5)

Bound (8.5) implies the following asymptotic representation for the first term on the right-
hand side of (8.1):

− √
n

∫1

0

(
1
p
− 1

)
ALn

(
p
) −ALF

(
p
)

AL∗
F

(
p
) dp

=
√
n

∫1

0

(
1
p
− 1

)
1

AL∗
F

(
p
)

(∫F−1(p)

0
(Fn(x) − F(x))dx

)

dp +OP(rn,3),

(8.6)

where

rn,3 =
∫1

0

(
1
p
− 1

)
1

AL∗
F

(
p
)
∣∣en

(
p
)∣∣
∣∣∣F−1

n

(
p
) − F−1(p

)∣∣∣dp. (8.7)

We will later show (Lemma 9.3) that rn,3 = oP(1). Furthermore, we have the following
asymptotic representation for the second term on the right-hand side of (8.1):

√
n

∫1

0

(
1
p
− 1

)
ALF

(
p
)

AL∗2
F

(
p
)
(
AL∗

n

(
p
) −AL∗

F

(
p
))
dp

= −√n
∫1

0

(
1
p
− 1

)
ALF

(
p
)

AL∗2
F

(
p
)

(∫∞

F−1(p)
(Fn(x) − F(x))dx

)

dp +OP(rn,4),

(8.8)



Journal of Probability and Statistics 21

where

rn,4 =
∫1

0

(
1
p
− 1

)
ALF

(
p
)

AL∗2
F

(
p
)
∣
∣en

(
p
)∣∣
∣
∣
∣F−1

n

(
p
) − F−1(p

)∣∣
∣dp. (8.9)

We will later show (Lemma 9.4) that rn,4 = oP(1). Hence, (8.1), (8.6) and (8.8) together with
the aforementioned statements that rn,1, . . . , rn,4 are of the order oP(1) imply that

√
n
(
Z̃n − ZF

)
=
√
n

∫1

0

(
1
p
− 1

)
1

AL∗
F

(
p
)

(∫F−1(p)

0
(Fn(x) − F(x))dx

)

dp

− √
n

∫1

0

(
1
p
− 1

)
ALF

(
p
)

AL∗2
F

(
p
)

(∫∞

F−1(p)
(Fn(x) − F(x))dx

)

dp + oP(1)

=
1√
n

n∑

i=1

h(Xi) + oP(1).

(8.10)

This completes the proof of Theorem 2.1.

9. Negligibility of Remainder Terms

The following four lemmas establish the above noted statements that the remainder terms
rn,1, . . . , rn,4 are of the order oP(1). In the proofs of the lemmas we will use a parameter δ ∈
(0, 1/2], possibly different from line to line but never depending on n. Furthermore, we will
frequently use the fact that

E[Xq] <∞ implies
∫1

0

∣∣∣F−1
n (t) − F−1(t)

∣∣∣
q
dt = oP(1). (9.1)

Another technical result that we will frequently use is the fact that, for any ε > 0 as small as
desired,

sup
x∈R

√
n|Fn(x) − F(x)|

F(x)1/2−ε(1 − F(x))1/2−ε = OP(1) (9.2)

when n → ∞.

Lemma 9.1. Under the conditions of Theorem 2.1, rn,1 = oP(1).

Proof. We split the remainder term rn,1 =
√
n
∫1

0 · · ·dp into the sum of r∗n,1(δ) =
√
n
∫1−δ

0 · · ·dp
and r∗∗n,1(δ) =

√
n
∫1

1−δ · · ·dp. The lemma follows if

(1) for every δ > 0, the statement r∗n,1(δ) = oP(1) holds when n → ∞,

(2) r∗∗n,1(δ) = h(δ)OP(1) for a deterministic h(δ) ↓ 0 when δ ↓ 0, where OP(1) does not
depend on δ.
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To prove part (1), we first note that when 0 < p < 1 − δ, then AL∗
F(p) ≥ ∫1

1−δ F
−1(t)dt,

which is positive, and AL∗
n(p) ≥

∫1
1−δ F

−1(t)dt+oP(1) due to statement (9.1) with q = 1. Hence,
we are left to show that, when n → ∞,

√
n

∫1−δ

0

1
p

∣
∣ALn

(
p
) −ALF

(
p
)∣∣
∣
∣AL∗

n

(
p
) −AL∗

F

(
p
)∣∣dp = oP(1). (9.3)

Since AL∗
n(p) −AL∗

F(p) = (X − μF) − (ALn(p) −ALF(p)), statement (9.3) follows if

√
n
∣
∣
∣X − μF

∣
∣
∣

∫1−δ

0

1
p

∣
∣ALn

(
p
) −ALF

(
p
)∣∣dp = oP(1), (9.4)

√
n

∫1−δ

0

1
p

∣
∣ALn(p) −ALF(p)

∣
∣2
dp = oP(1). (9.5)

We have
√
n |X − μF | = OP(1) and |ALn(p) −ALF(p)| ≤ √

p (
∫1

0 |F−1
n (p) − F−1(p)|2dp)1/2. Since

∫1
0 |F−1

n (p) − F−1(p)|2dp = oP(1) and
∫1−δ

0 p−1√p dp < ∞, we have statement (9.4). To prove
statement (9.5), we use bound (8.5) and reduce the proof to showing that

1√
n

∫1−δ

0

1
p

∣∣∣∣∣

∫F−1(p)

0

√
n (Fn(x) − F(x))dx

∣∣∣∣∣

2

dp = oP(1), (9.6)

1√
n

∫1−δ

0

1
p

∣∣en(p)
∣∣2
∣∣∣F−1

n (p) − F−1(p)
∣∣∣

2
dp = oP(1). (9.7)

To prove statement (9.6), we use statement (9.2) and observe that

∫1−δ

0

1
p

(∫F−1(p)

0
F(x)1/2−εdx

)2

dp ≤ c(F, δ)
∫1−δ

0

1
p
p1−2εdp <∞. (9.8)

To prove statement (9.7), we use the uniform on [0, 1] version of statement (9.2) and Hölder’s
inequality, and in this way reduce the proof to showing that

1√
n

(∫1−δ

0

1
p2εa

dp

)1/a(∫1−δ

0

∣∣∣F−1
n (p) − F−1(p)

∣∣∣
2b
dp

)1/b

= oP(1) (9.9)

for some a, b > 1 such that a−1 + b−1 = 1. We choose the parameters a and b as follows. First,
since E[X2+α] < ∞, we set b = (2 + α)/2. Next, we choose ε > 0 on the left-hand side of
statement (9.9) so that 2εa < 1, which holds when ε < α/(4 + 2α) in view of the equation
a−1 + b−1 = 1. Hence, statement (9.9) holds and thus statement (9.7) follows. This completes
the proof of part (1).

To establish part (2), we first estimate |r∗∗n,1(δ)| from above using the bounds AL∗
F(p) ≥

(1 − p)F−1(1/2) and AL∗
n(p) ≥ (1 − p)F−1

n (1/2), which hold since δ ≤ 1/2. Hence, we have
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reduced our task to verifying the statement
√
n
∫1

1−δ |ALn(p) −ALF(p)|dp = h(δ)OP(1). Using
the Vervaat process Vn(p) and bound (8.5), we reduce the proof of the statement to showing
that the integrals

∫1

1−δ

(∫F−1(p)

0

√
n |Fn(x) − F(x)|dx

)

dp, (9.10)

∫1

1−δ

∣
∣en

(
p
)∣∣
∣
∣
∣F−1

n

(
p
) − F−1(p

)∣∣
∣dp (9.11)

are of the order h(δ)OP(1) with possibly different h(δ) ↓ 0 in each case. In view of statement
(9.2), we have the desired statement for integral (9.10) if the quantity

∫1

1−δ

(∫F−1(p)

0
(1 − F(x))1/2−εdx

)

dp (9.12)

converges to 0 when δ ↓ 0, in which case we use it as h(δ). The inner integral of (9.12) does not
exceed

∫∞
0 (1−F(x))1/2−εdx, which is finite for all sufficiently small ε > 0 since E[X2+α] <∞ for

some α > 0. This completes the proof that quantity (9.10) is of the order h(δ)OP(1). To show
that quantity (9.11) is of a similar order, we use the uniform on [0, 1] version of statement
(9.2) and reduce the task to showing that

∫1
1−δ |F−1

n (p) − F−1(p)|dp is of the order h(δ)OP(1).
By the Cauchy-Bunyakowski-Schwarz inequality, we have that

∫1

1−δ

∣∣∣F−1
n

(
p
) − F−1(p

)∣∣∣dp ≤
√
δ

(∫1

0

∣∣∣F−1
n (p) − F−1(p)

∣∣∣
2
dp

)1/2

. (9.13)

Since E[X2] <∞, we have
∫1

0 |F−1
n (p)−F−1(p)|2dp = oP(1), and so setting h(δ) =

√
δ establishes

the desired asymptotic result for integral (9.11). This also completes the proof of part (2), and
also of Lemma 9.1.

Lemma 9.2. Under the conditions of Theorem 2.1, rn,2 = oP(1).

Proof. Like in the proof of Lemma 9.1, we split the remainder term rn,2 =
√
n
∫1

0 · · ·dp into the

sum of r∗n,2(δ) =
√
n
∫1−δ

0 · · ·dp and r∗∗n,2(δ) =
√
n
∫1

1−δ · · ·dp. To prove the lemma, we need to
show the following.

(1) For every δ > 0, the statement r∗n,2(δ) = oP(1) holds when n → ∞.

(2) r∗∗n,2(δ) = h(δ)OP(1) for a deterministic h(δ) ↓ 0 when δ ↓ 0, where OP(1) does not
depend on δ.

To prove part (1), we first estimate |r∗n,2(δ)| from above using the bounds p−1ALF(p) ≤
F−1(1 − δ) < ∞, AL∗

F(p) ≥
∫1

1−δ F
−1(t)dt > 0, and AL∗

n(p) ≥
∫1

1−δ F
−1(t)dt + oP(1). This reduces

our task to showing that, for every δ > 0,

√
n

∫1−δ

0

∣∣AL∗
n(p) −AL∗

F(p)
∣∣2
dp = oP(1). (9.14)
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Since AL∗
n(p) −AL∗

F(p) = (X − μF) − (ALn(p) −ALF(p)) and
√
n (X − μF)2 = oP(1), statement

(9.14) follows from

√
n

∫1−δ

0

∣
∣ALn(p) −ALF(p)

∣
∣2
dp = oP(1), (9.15)

which is an elementary consequence of statement (9.5). This establishes part (1).
To prove part (2), we first estimate |r∗∗n,2(δ)| from above using the bounds AL∗

F(p) ≥
(1 − p)F−1(1/2) and AL∗

n(p) ≥ (1 − p)F−1
n (1/2), and in this way reduce the task to showing

that

√
n

∫1

1−δ

1
1 − p

∣
∣AL∗

n

(
p
) −AL∗

F

(
p
)∣∣dp = h(δ)OP(1). (9.16)

Using the Vervaat process, statement (9.16) follows if

∫1

1−δ

1
1 − p

(∫∞

F−1(p)

√
n |Fn(x) − F(x)|dx

)

dp = h(δ)OP(1), (9.17)

∫1

1−δ

1
1 − p

∣∣en
(
p
)∣∣
∣∣∣F−1

n

(
p
) − F−1(p

)∣∣∣dp = h(δ)OP(1) (9.18)

with possibly different h(δ) ↓ 0 in each case. Using statement (9.2), we have that statement
(9.17) holds with h(δ) defined as the integral

∫1

1−δ

1
1 − p

(∫∞

F−1(p)
(1 − F(x))1/2−εdx

)

dp, (9.19)

which converges to 0 when δ ↓ 0 as the following argument shows. First, we write the
integrand as the product of (1 − F(x))ε and (1 − F(x))1/2−2ε. Then we estimate the first factor
by (1 − p)ε. The integral

∫∞
0 (1 − F(x))1/2−2εdx is finite for all sufficiently small ε > 0 since

E[X2+α] < ∞ for some α > 0. Since
∫1

1−δ(1 − p)−1+εdp ↓ 0 when δ ↓ 0, integral (9.19) converges
to 0 when δ ↓ 0. The proof of statement (9.17) is finished.

We are left to prove statement (9.18). Using the uniform on [0, 1] version of statement
(9.2), we reduce the task to showing that

∫1

1−δ

1
(
1 − p)1/2+ε

∣∣∣F−1
n

(
p
) − F−1(p

)∣∣∣dp = h(δ)OP(1). (9.20)

In fact, we will see below that OP(1) can be replaced by oP(1). Using Hölder’s inequality, we
have that the right-hand side of (9.20) does not exceed

(∫1

1−δ

1
(
1 − p)(1/2+ε)a

dp

)1/a(∫1

1−δ

∣∣∣F−1
n (p) − F−1(p)

∣∣∣
b
dp

)1/b

(9.21)
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for some a, b > 1 such that a−1 + b−1 = 1. We choose the parameters a and b as follows. Since
E[X2+α] < ∞, we set b = 2 + α, and so the right-most integral of (9.21) is of the order oP(1).
Furthermore, a = (2 + α)/(1 + α) < 2, which can be made arbitrarily close to 2 by choosing
sufficiently small α > 0. Choosing ε > 0 so small that (1/2+ε)a < 1, we have that the left-most
integral in (9.21) converges to 0 when δ ↓ 0. This establishes statement (9.18) and completes
the proof of Lemma 9.2.

Lemma 9.3. Under the conditions of Theorem 2.1, rn,3 = oP(1).

Proof. We split the remainder term rn,3 =
∫1

0 · · ·dp into the sum of r∗n,3 =
∫1/2

0 · · ·dp and r∗∗n,3 =
∫1

1/2 · · ·dp. The lemma follows if the two summands are of the order oP(1).

To prove r∗n,3 = oP(1), we use the bound AL∗
F(p) ≥ ∫1

1/2 F
−1(p)dp and the uniform on

[0, 1] version of statement (9.2), and in this way reduce our task to showing that

∫1/2

0

1
p1/2+ε

∣∣∣F−1
n

(
p
) − F−1(p

)∣∣∣dp = oP(1). (9.22)

This statement can be established following the proof of statement (9.20), with minor
modifications.

To prove r∗∗n,3 = oP(1), we use the bound AL∗
F(p) ≥ (1 − p)F−1(1/2), the fact that

supt|en(t)| = OP(1), and statement (9.1) with q = 1. The desired result for r∗∗n,3 follows, which
finishes the proof of Lemma 9.3.

Lemma 9.4. Under the conditions of Theorem 2.1, rn,4 = oP(1).

Proof. We split rn,4 =
∫1

0 · · ·dp into the sum of r∗n,4 =
∫1/2

0 · · ·dp and r∗∗n,4 =
∫1

1/2 · · ·dp, and then
show that the two summands are of the order oP(1).

To prove r∗n,4 = oP(1), we use the bounds p−1ALF(p) ≤ F−1(1/2) < ∞ and AL∗
F(p) ≥

∫1
1/2 F

−1(p)dp > 0 together with the uniform on [0, 1] version of statement (9.2). This reduces

our task to showing that
∫1/2

0 |F−1
n (p) − F−1(p)|dp = oP(1), which holds due to statement (9.1)

with q = 1.
To prove r∗∗n,4 = oP(1), we use the bound AL∗

F(p) ≥ (1 − p)F−1(1/2) and the uniform on
[0, 1] version of statement (9.2), and in this way reduce the proof to showing that

∫1

1/2

1
(
1 − p)1/2+ε

∣∣∣F−1
n

(
p
) − F−1(p

)∣∣∣dp = oP(1). (9.23)

This statement can be established following the proof of statement (9.20). The proof of
Lemma 9.4 is finished.
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