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We explore the relation between matrix measures and quasi-birth-and-death processes. We derive
an integral representation of the transition function in terms of a matrix-valued spectral measure
and corresponding orthogonal matrix polynomials. We characterize several stochastic properties
of quasi-birth-and-death processes by means of this matrixmeasure and illustrate the theoretical
results by several examples.

1. Introduction

Let (Ω,F, P, (Xt)t≥0) be a continuous-time two-dimensional homogeneous Markov process
with state space

E =
{(

i, j
) ∈ N0 × {1, . . . , d}}, d ∈ N, d < ∞ (1.1)

and infinitesimal generator

Q =
(
Qij

)
i,j=0,1,... =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B0 A0 0

CT
1 B1 A1

CT
2 B2 A2

CT
3 B3 A3

0
. . . . . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (1.2)
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where A0, A1, . . . , B0, B1, . . . , C1, C2, . . . ∈ R
d×d. The transition rate from state (i, j) to state

(k, �) is given by the element in the position (j, �) of the matrix Qik. Markov processes
with an infinitesimal generator matrix of the form (1.2) are known as continuous-time
quasi-birth-and-death processes. These models have many applications in the evaluation of
communicating systems and queueing systems (see, e.g., [1–3]) and have been analyzed
by many authors (see, e.g., [4–6]). The case d = 1 corresponds to a “classical” birth-and-
death process with a tridiagonal infinitesimal generator which has been investigated in great
detail using the theory of orthogonal polynomials by Karlin and McGregor [7, 8]. Since this
pioneering work several authors have used these techniques to derive interesting properties
of birth-and-death processes in terms of orthogonal polynomials and the corresponding
measure of orthogonality (see, e.g., [9, 10]).

It is the purpose of the present paper to extend some of these results to quasi-birth-
and-death processes with a generator of the form (1.2) using the theory of matrix measures
and corresponding orthogonal matrix polynomials.

We associate to a matrix of the form of (1.2) a sequence of matrix polynomials,
recursively defined by

−xQn(x) = AnQn+1(x) + BnQn(x) + CT
nQn−1(x) (1.3)

with initial conditions Q−1(x) = 0 and Q0(x) = Id. A matrix measure Σ = {σij}i,j=1,...,d on
the real line is a function for which Σ(A) = {σij(A)}i,j=1,...,d is a symmetric and nonnegative
definite matrix in R

d×d for each Borel set A ⊂ R, where the entries σij are finite signed
measures. In Section 2 we formulate sufficient conditions on the infinitesimal generator (1.2)
such that there exists a matrix measure Σ on the real line with

〈Qi,Qj〉 =
∫

R

Qi(x)dΣ(x)QT
j (x) = δijId, (1.4)

that is, the matrix polynomials are orthonormal with respect to the matrix measure Σ (see
[11]). In this case we derive an integral representation for the blocks of the transition function
in terms of the orthogonal matrix polynomialsQi and thematrix measure Σ, which generalize
the representation of Karlin and McGregor [7] to the case d > 1. We also investigate relations
between the Stieltjes transforms of random walk measures corresponding to two quasi-birth-
and-death processes, where only a few blocks differ. In Section 3 we discuss several examples
to illustrate the theory. Finally, in Section 4 the theoretical results are used to characterize α-
recurrence of quasi-birth-and-death processes.

2. Quasi-Birth-and-Death Processes and Matrix Polynomials

The moments of the matrix measure Σ are defined by the d × d matrices

Sk =
∫
xkdΣ(x), k = 0, 1, . . . , (2.1)
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and throughout this paper we will only consider matrix measures with existing moments of
all order. The “left” inner product with respect to Σ of two matrix polynomials Q and P is
defined by

〈Q,P〉 =
∫
Q(x)dΣ(x)PT (x). (2.2)

If {Sn}n≥0 is a sequence of matrices such that the block Hankel matrices,

H2m =

⎛

⎜
⎝

S0 · · · Sm

...
...

Sm . . . S2m

⎞

⎟
⎠, m ≥ 0, (2.3)

are positive definite, then there exists a matrix measure Σ with moments Sn, n ≥ 0, and a
sequence of matrix polynomials {Qn(x)}n≥0 which is orthogonal with respect to Σ (see [12]).
The following theorem characterizes the existence of a matrix measure Σ such that there is a
sequence of matrix polynomials which is orthogonal with respect to Σ. The proof follows by
similar arguments as presented in Theorem 2.1 of [13] and is therefore omitted.

Theorem 2.1. Let the matrices An, n ≥ 0, and CT
n, n ≥ 1, in (1.2) be nonsingular and Bn ≥ 0, and

assume that {Qn(x)}n≥0 is a sequence of matrix polynomials defined by recursion (1.3).
There exists a matrix measure Σwith positive definite block Hankel matricesH2m,m ≥ 0, such

that the sequence of matrix polynomials {Qn(x)}n≥0 is orthogonal with respect to Σ if and only if there
is a sequence of nonsingular matrices {Rn}n≥0 with

RnBnR
−1
n symmetric, ∀n ∈ N0,

RT
nRn = C−1

n · · ·C−1
1

(
RT

0R0

)
A0 · · ·An−1, ∀n ∈ N.

(2.4)

Moreover,

R−1
0

((
RT

0

)−1)
=
(
RT

0R0

)−1
= S0, (2.5)

and the matrices {R̃n}n≥0 = {UnRn}n≥0
, where Un, n ≥ 0, are orthogonal matrices and also satisfy

condition (2.4).

Note that condition (2.4) is crucial for our approach and is always satisfied in the case
d = 1. If d > 1 it has to be checked in concrete examples, but—to our best knowledge—there
do not exist any general conditions which imply (2.4). Some examples where (2.4) is satisfied
are presented in Section 3. Several other examples can be found in the papers of Grünbaum
[14, 15], Grünbaum et al. [16], and Cantero et al. [17]. If condition (2.4) is satisfied, the
corresponding measure Σ is called a spectral measure corresponding to {Qn(x)}n≥0 and the
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matrix Q in (2.4), respectively. The infinitesimal generator matrix (1.2) is called conservative
if

(A0 + B0)1 = 0,
(
An + Bn + CT

n

)
1 = 0, ∀n ∈ N, (2.6)

where 1 = (1, 1, . . . , 1)T ∈ R
d and 0 = (0, 0, . . . , 0)T ∈ R

d (see [18]). In this case there exists a
transition function

P(t) = (Pii′(t))i,i′=0,1,..., (2.7)

with d × d block matrices Pii′(t) ∈ R
d×d,

P(0) = I, P ′(0) = Q, (2.8)

which satisfies the Kolmogorov forward differential equation

P ′(t) = P(t)Q, ∀t ≥ 0 (2.9)

and the Kolmogorov backward differential equation

P ′(t) = QP(t), ∀t ≥ 0. (2.10)

The probability P(Xt = (i′, j ′) | X0 = (i, j)) of going from state (i, j) to (i′, j ′) in time t is given
by the element in the position (j, j ′) of the matrix Pii′(t).

Note that there always exists a transition function P(t) such that the Kolmogorov
forward differential equation (2.9) is satisfied. The infinitesimal generator Q is called regular
if there exists only one such transition function (see [18]). If additionally a spectral measure
Σ corresponding to the generator matrix (1.2) exists, we can derive an integral representation
for the block of the transition function P(t) in the position (i, j) in terms of the spectral
measure and the corresponding matrix orthogonal polynomials, which generalizes the
famous Karlin and McGregor representation.

Theorem 2.2. Assume that the conditions for the existence of the measure Σ in Theorem 2.1 are
satisfied and that there exists a transition function P(t) which satisfies the Kolmogorov forward
equation (2.9) for all t ≥ 0. Then the following representation holds for the block Pij(t) ∈ R

d×d in
the position (i, j) of the transition function P(t):

Pij(t) =
(∫

e−txQi(x)dΣ(x)QT
j (x)
)(∫

Qj(x)dΣ(x)QT
j (x)
)−1

. (2.11)

Proof. Let Q(x) = (QT
0 (x), Q

T
1 (x), . . . )

T denote the vector of orthogonal matrix polynomials
Qi(x) with respect to the spectral measure Σ. Then the recursive relation (1.3) is equivalent
to the matrix equation

−xQ(x) = QQ(x). (2.12)
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Defining

F(x, t) := P(t)Q(x), (2.13)

we obtain the differential equation

d

dt
F(x, t) = P ′(t)Q(x) = P(t)QQ(x) = −xP(t)Q(x) = −xF(x, t), (2.14)

and the condition P(0) = I yields

F(x, 0) = P(0)Q(x) = Q(x). (2.15)

Hence, it follows that

F(x, t) = e−txQ(x) = P(t)Q(x), (2.16)

which implies (integrating with respect to dΣ(x)) that

∫
e−txQ(x)dΣ(x)QT

j (x) = P(t)
∫
Q(x)dΣ(x)QT

j (x). (2.17)

Because of the orthogonality of the matrix polynomialsQn(x), n ≥ 0,we obtain for the blocks
Pij(t) of the transition function the representation

Pij(t) =
(∫

e−txQi(x)dΣ(x)QT
j (x)
)(∫

Qj(x)dΣ(x)QT
j (x)
)−1

, ∀i, j, (2.18)

which completes the proof of Theorem 2.2.

In what follows we present two results, which relate the Stieltjes transforms of
the spectral measures of two quasi-birth-and-death processes, which have an infinitesimal
generator of similar structure. The first result refers to the case where the entry B0 has been
replaced by the matrix B0. The proof is similar to a corresponding result in [13] and is
therefore omitted.

Theorem 2.3. Consider the infinitesimal generator defined by (1.2) and the matrix

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B0 A0 0

CT
1 B1 A1

CT
2 B2 A2

CT
3 B3 A3

0
. . .

. . .
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.19)
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Let Σ be a spectral measure corresponding to the infinitesimal generator Q with positive definite
block Hankel matrices such that the matrix R0B0R

−1
0 is symmetric and such that {Rn}n≥0 is a

sequence of matrix polynomials which satisfies condition (2.4). Then there exists a spectral measure
Σ corresponding to Q. If the spectral measures Σ and Σ are determined by their moments, then the
Stieltjes transforms of the measures satisfy

Φ(z) =
∫
dΣ(t)
z − t

=

⎧
⎨

⎩

(∫
dΣ(t)
z − t

)−1
− S−1

0

(
B0 − B0

)
⎫
⎬

⎭

−1

. (2.20)

Given a sequence {Qn(x)}n≥0 of matrix polynomials defined by recursion (1.3), the
corresponding associated sequence of matrix polynomials {Q(k)

n (x)}n≥0 of order k, k ≥ 1, is
defined by a recursion of the form of (1.3), in which the matrices An, Bn, and Cn have been
replaced by the matrices An+k, Bn+k, and Cn+k, respectively (see [19]). The following result
gives a relation between the Stieltjes transform of the spectral measure corresponding to
the sequence of matrix polynomials {Qn(x)}n≥0 and the Stieltjes transform of the spectral
measure corresponding to {Q(k)

n (x)}n≥0. The associated quasi-birth-and-death process will be
denoted by (X(k)

t )t≥0 with state space E defined by (1.1) (throughout this paper we use the
notation X

(0)
t := Xt).

Theorem 2.4. Consider the infinitesimal generator Q defined by (1.2) and the matrix

Q(k) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

Bk Ak 0
CT

k+1 Bk+1 Ak+1

CT
k+2 Bk+2 Ak+2

CT
k+3 Bk+3 Ak+3

0
. . .

. . .
. . .

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (2.21)

The matrixQ(k) is called the associated matrix of order k, k ≥ 1, corresponding toQ. Assume that Σ is
a spectral measure corresponding toQ with positive definite block Hankel matrices, that is, there exists
a sequence {Rn}n≥0 of nonsingular matrices, which satisfies condition (2.4) of Theorem 2.1. Then there
exists a spectral measure Σ(k) corresponding toQ(k) with positive definite block Hankel matrices. If the
measures are determined by their moments, then the Stieltjes transforms of the measures are related by
∫
dΣ(x)
z − x

=R−1
0

⎧
⎨

⎩
zId−E0−D1

⎧
⎨

⎩
zId−E1−D2

⎧
⎨

⎩
zId−E2−· · ·

· · · −Dk−1

{

zId−Ek−1−DkRk

∫
dΣ(k)(x)
z − x

RT
kD

T
k

}−1
DT

k−1

⎫
⎬

⎭

−1

· · ·

· · ·DT
2

⎫
⎬

⎭

−1

DT
1

⎫
⎬

⎭

−1
(
RT

0

)−1
,

(2.22)
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where

Dn+1 = −RnAnR
−1
n+1, En = −RnBnR

−1
n , DT

n = −RnC
T
nR

−1
n−1, (2.23)

and the Stieltjes transforms of the matrix measures Σ(k) and Σ(k+1) are related by

∫
dΣ(k)(x)
z − x

= R−1
k

{

zId + RkBkR
−1
k − RkAk

∫
dΣ(k+1)(x)

z − x
RT

k+1Rk+1C
T
k+1R

−1
k

}−1(
RT

k

)−1
. (2.24)

Proof. Let the sequence of polynomials {Qn(x)}n≥0 be defined by recursion (1.3) with
corresponding spectral measure Σ. Then the polynomialsWn(x) := RnQn(x) are orthonormal
with respect to the matrix measure Σ and satisfy the three-term recurrence relation

xWn(x) = Dn+1Wn+1(x) + EnWn(x) +DT
nWn−1(x) (2.25)

with initial conditionsW−1(x) = 0 andW0(x) = R0. From Theorem 1.2 and Lemma 1.3 in [20]
it follows that

∫
dΣ(x)
z − x

= lim
n→∞

R−1
0

{

zId−E0−D1

{
· · · zId−E1−D2

{
zId−E2−· · ·

· · ·−Dn{zId−En}−1DT
n

}−1 · · ·
}−1

DT
2

}−1
DT

1

⎫
⎬

⎭

−1
(
RT

0

)−1
.

(2.26)

Assume that the sequence of polynomials {Q(k)
n (x)}n≥0 is defined by recursion (1.3), where

the matrices Bn,An, and Cn have been replaced by the matrices Bn+k,An+k, and Cn+k,
respectively, that is

−xQ(k)
n (x) = An+kQ

(k)
n+1(x) + Bn+kQ

(k)
n (x) + CT

n+kQ
(k)
n−1(x), (2.27)

withQ
(k)
0 (x) = I andQ

(k)
−1 (x) = 0. DefineA(k)

n = An+k, B
(k)
n = Bn+k,C

(k)
n = Cn+k, andR

(k)
n = Rn+k,

n ≥ 0. From Theorem 2.1 we obtain the symmetry of the matrices

−R(k)
n B

(k)
n

(
R

(k)
n

)−1
= −Rn+kBn+kR

−1
n+k, ∀n ≥ 0 (2.28)
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and the equation

(
R

(k)
n

)T
R

(k)
n = RT

n+kRn+k

= C−1
n+kC

−1
n+k−1 · · ·C−1

k+1C
−1
k · · ·C−1

1 RT
0R0A0A1 · · ·Ak−1Ak · · ·An+k−1

= C−1
n+kC

−1
n+k−1 · · ·C−1

k+1R
T
kRkAk · · ·An+k−1

=
(
C

(k)
n

)−1(
C

(k)
n−1
)−1 · · ·

(
C

(k)
1

)−1(
R

(k)
0

)T
R

(k)
0 A

(k)
0 · · ·A(k)

n−1, ∀n ≥ 1.

(2.29)

Therefore, from Theorem 2.1 it follows that there exists a spectral measure Σ(k) with positive
definite block Hankel matrices corresponding to the sequence of polynomials {Q(k)

n (x)}n≥0.
The polynomials W (k)

n (x) := R
(k)
n Q

(k)
n (x) are orthonormal with respect to the measure

Σ(k) and satisfy the recursion

xW
(k)
n (x) = D

(k)
n+1W

(k)
n+1(x) + E

(k)
n W

(k)
n (x) +

(
D

(k)
n

)T
W

(k)
n−1(x), W

(k)
0 (x) = R

(k)
0 = Rk,

(2.30)

where

D
(k)
n+1 = Dn+k+1, E

(k)
n = En+k, ∀n ≥ 0. (2.31)

Therefore, it follows from Theorem 1.2 and Lemma 1.3 in [20] that

∫
dΣ(k)(x)
z − x

= lim
n→∞

(
R

(k)
0

)−1
{

zId−E(k)
0 −D(k)

1

{

zId−E(k)
1 −D(k)

2

{
zId−E(k)

2 −· · ·

· · ·−D(k)
n

{
zId − E

(k)
n

}−1(
D

(k)
n

)T}−1

. . .

}−1(
D

(k)
2

)T
⎫
⎬

⎭

−1
(
D

(k)
1

)T
⎫
⎪⎬

⎪⎭

−1
((

R
(k)
0

)T)−1

= lim
n→∞

R−1
k

{

zId−Ek−Dk+1

{
. . . zId−Ek+1−Dk+2

{
zId−Ek+2−· · ·

· · ·−Dn+k{zId−En+k}−1DT
n+k

}−1
. . .

}−1
DT

k+2

}−1
DT

k+1

⎫
⎬

⎭

−1
(
RT

k

)−1
.

(2.32)
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A combination of (2.26) and (2.32) yields

∫
dΣ(x)
z − x

= R−1
0

⎧
⎪⎨

⎪⎩
zId−E0−D1

⎧
⎪⎨

⎪⎩
zId−E1−D2

⎧
⎨

⎩
zId−E2−· · ·

· · ·−Dk−1

{

zId−Ek−1−DkRk

∫
dΣ(k)(x)
z−x RT

kD
T
k

}−1
DT

k−1

⎫
⎬

⎭

−1

· · ·

· · ·DT
2

⎫
⎪⎬

⎪⎭

−1

DT
1

⎫
⎪⎬

⎪⎭

−1
(
RT

0

)−1
,

(2.33)

and from (2.32) and (2.23) we obtain

∫
dΣ(k)(x)
z − x

= R−1
k

{

zId − Ek −Dk+1Rk+1

∫
dΣ(k+1)(x)

z − x
RT

k+1D
T
k+1

}−1(
RT

k

)−1

= R−1
k

{

zId + RkBkR
−1
k − RkAk

∫
dΣ(k+1)(x)

z − x
RT

k+1Rk+1C
T
k+1R

−1
k

}−1(
RT

k

)−1
,

(2.34)

which completes the proof of the theorem.

Remark 2.5. Note that in the literature, many queueing models are considered, where the
matrices Cn do not have full rank (see [21]). Following the arguments used in Remark 2.7 in
[13] the conditions

RnBn = EnRn, n ≥ 0,

Cn+1R
T
n+1Rn+1 = RT

nRnAn, n ≥ 1
(2.35)

are sufficient for the existence of a spectral measure Σ corresponding toQ,where {En}n≥0 is a
sequence of symmetric matrices and

∫
Qi(x)dΣ(x)QT

j (x) = δijR
T
j Rj . (2.36)

In other words, the assumption of nonsingularity of the matrices Cn can be relaxed. The same
arguments as those used in Theorem 2.2 then imply that

Pij(t)RT
j Rj =

∫
e−txQi(x)dΣ(x)QT

j (x). (2.37)
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3. Examples

Example 3.1. Dayar and Quessette [3] considered a queuing system consisting of anM/M/1-
system and an M/M/1/d − 1-system. Both queues have Poisson arrival processes with rate
λi, i = 1, 2, and exponential service distributions with rate μi, i = 1, 2, and it was assumed that
γ = λ1 + λ2 + μ1 + μ2. The level represents the length of queue 1, which is unbounded, and
the phase represents the length of queue 1, which can range from 0 to d − 1. The process is of
interest because of its level geometric stationary distribution. This system can be described by
a homogeneousMarkov processX(t) = (L1(t), L2(t))t∈R+ with state spaceE = N× {0, . . . , d−1},
where L1(t) and L2(t) denote the length of the first queue at time t and the length of the
second queue at time t, respectively. The entries of the corresponding infinitesimal generator
(1.2) have the form

B0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−(λ1 + λ2) λ2

μ2 −(γ − μ1
)

λ2

. . . . . . . . .

μ2 −(γ − μ1
)

λ2

μ2 −(λ1 + μ2
)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

Bi =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−(γ − μ2
)

λ2

μ2 −γ λ2

. . . . . . . . .

μ2 −γ λ2

μ2 −(γ − λ2
)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, i ≥ 1,

(3.1)

Ai = λ1Id, i ≥ 0, and CT
i = μ1Id, i ≥ 1. It is easy to see thatQ is conservative. A straightforward

calculation shows that the conditions of Theorem 2.1 are satisfied with the matrices

R0 = diag

⎛

⎝1,

√
λ2
μ2

,

(√
λ2
μ2

)2

, . . . ,

(√
λ2
μ2

)d−1⎞

⎠,

Ri =

(√
λ1
μ1

)i

R0, i ∈ N.

(3.2)

This implies the existence of a spectral measure.

Example 3.2. In general, the spectral distribution can only be identified in special cases. Even
if the Stieltjes transform can be determined, its inversion is usually difficult (see, e.g., [22,
Chapter 3]). We now present an example where the spectral measure can be found explicitly.



Journal of Probability and Statistics 11

To be precise consider a homogeneous Markov process (Xt)t≥0 with infinitesimal generator
(1.2), where

B0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−γ β1
β2 −γ β1

. . . . . . . . .
β2 −γ β1

β2 −γ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, γ /= 0, Bi =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−δ β1
β2 −δ β1

. . . . . . . . .
β2 −δ β1

β2 −δ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, i ≥ 1, δ /= 0,

(3.3)

Ai = α1Id, i ≥ 0, and CT
i = α2Id, i ≥ 1. A generator matrix of this form can be associated to a

queueing model which consists of d different M/M/1-systems. Each M/M/1-system has a
Poisson arrival process with rate α1 and an exponential service time distribution with rate α2.
If the customer is situated in system i, then it changes to the system i−1 and i+1 with the rate
β2 and β1, respectively. This model can be described by the two-dimensional homogeneous
Markov process (Nt, St)t≥0 with state space E = N0 ×{0, . . . , d− 1},where N0 = {0, 1, 2, . . .},Nt

denotes the number of customers in the whole model at time t, and St denotes the number of
the system at time t.

If β1 /= 0 and β2 /= 0 the conditions of Theorem 2.1 are satisfied with

R0 = diag

((
β2
β1

)(d−1)/2
,

(
β2
β1

)(d−2)/2
, . . . ,

(
β2
β1

)1/2

, 1

)

,

Rn =
(√

α1

α2

)n

R0, n ≥ 1.

(3.4)

This implies the existence of a spectral measure Σ corresponding to Q. In order to determine
the measure explicitly, note that the matrices in (2.23) have the form

D := Dn = −√α1α2Id, n ≥ 1,

E0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

γ −√β1β2

−√β1β2 γ −√β1β2
. . . . . . . . .

−√β1β2 γ −√β1β2

−√β1β2 γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

E := En =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

δ −√β1β2

−√β1β2 δ −√β1β2
. . . . . . . . .

−√β1β2 δ −√β1β2

−√β1β2 δ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, n ≥ 1.

(3.5)
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The eigenvalues of the matrix E are given by

λk = δ + 2
√
β1β2 cos

(
kπ

d + 1

)
, k = 1, . . . , d, (3.6)

with corresponding eigenvectors given by u(k) = (u(k)
1 , . . . , u

(k)
d

)T ,where

u
(k)
j =

√
2

d + 1
sin
(

kjπ

d + 1

)
, j, k = 1, . . . , d. (3.7)

With the notations H := diag(λ1 − z, . . . , λd − z) and U := (u(1), . . . , u(d)), it follows that

E − zId = UHUT, UTU = Id. (3.8)

Let Q be the infinitesimal generator obtained from Q by replacing the first diagonal block B0

by block B1 (which coincides with all other blocks Bi, i ≥ 2), and denote by Σ the spectral
measure corresponding to Q. From [23] we obtain for the Stieltjes transform Φ(z) of the
matrix measure Σ

Φ(z) = −1
2
D−2(E − zId)1/2

{
Id +
{
Id − 4D2(E − zId)−2

}1/2}
(E − zId)1/2

= − 1
2α1α2

UH1/2
{
Id +
{
Id − 4α1α2H

−2
}1/2}

H1/2UT,

(3.9)

and Theorem 2.3 gives the Stieltjes transform Φ(z) of the measure Σ. Moreover, the results in
[23, page 318] also show that the support of the spectral measure is given by

supp(Σ) =
{
x ∈ R : D−1/2(xId − E)D−1/2 has an eigenvalue in [−2, 2]

}

=
[
−2√α1α2 + δ + 2

√
β1β2 cos

(
πd

d + 1

)
, 2
√
α1α2 + δ + 2

√
β1β2 cos

( π

d + 1

)]
.

(3.10)

Note that supp(Σ) ⊂ [0,∞) if δ ≥ α1 + α2 + β1 + β2.

4. α-Recurrence

The decay parameter of continuous-time quasi-birth-and-death processes was introduced by
van Doorn [19]. To be precise assume that (Xt)t≥0 is an irreducible quasi-birth-and-death
process with state space (1.1) and infinitesimal generator Q defined by (1.2), where

B01 +A01 < 0. (4.1)
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Then the decay parameter α of the process (Xt)t≥0 is defined by

α = sup
{
s ≥ 0 : eTj

∫∞

0
estPii′(t)dt ej ′ < ∞

}
,
(
i, j
)
,
(
i′, j ′
) ∈ E. (4.2)

A state (i, �) ∈ E is called α-recurrent

eT�

∫∞

0
eαtPii(t)dt e� = ∞, (4.3)

where e� = (0, . . . , 0, 1, 0, . . . , 0)T ∈ R
d denotes the �th unit vector. The process (Xt)t≥0 is called

α-recurrent if and only if some state (and then all states in E) is α-recurrent. The process
(Xt)t≥0 is called α-positive if and only if for some state (i, �) ∈ E (and then for all states in E)

eT� limt→∞
eαtPii(t)e� > 0. (4.4)

The following results characterize α-recurrence of the process (Xt)t≥0 in terms of the
spectral measure Σ, the corresponding orthogonal polynomials Qj(x), and the blocks of the
infinitesimal generator. Throughout this section it will be assumed that condition (2.4) of
Theorem 2.1 is satisfied.

Theorem 4.1. Assume that the conditions of Theorem 2.1 are satisfied with a spectral measure
supported in the interval [α,∞) and that there exists a transition function, which satisfies the
Kolmogorov forward differential equation (2.9). The process (Xt)t≥0 is α-recurrent if and only if for
some state (i, �) ∈ E (and then for all states in E)

eT�

(∫
Qi(x)dΣ(x)QT

i (x)
x − α

)(∫
Qi(x)dΣ(x)QT

i (x)
)−1

e� = ∞. (4.5)

Proof. With representation (2.11) and Fubini’s Theorem, condition (4.3) is equivalent to

eT�

(∫ ∫∞

0
e(α−x)tdtQi(x)dΣ(x)QT

i (x)
)(∫

Qi(x)dΣ(x)QT
i (x)
)−1

e� = ∞, (4.6)

which implies (4.5).

In the following we define for a matrix measure Σ with existing moments the d × d
matrices ζ0 = 0 and ζk = (Sk−1 − S−

k−1)
−1(Sk − S−

k
) ∈ R

d×d, where S2n − S−
2n and S2n−1 − S−

2n−1
denote the Schur complement of S2n and S2n−1 in the matrix H2n and

H2n−1 =

⎛

⎜
⎝

S1 · · · Sn

...
...

Sn . . . S2n−1

⎞

⎟
⎠, (4.7)
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respectively (see [24]). The next result gives a representation of the Stieltjes transform of the
spectral measure Σ in terms of the quantities ζj and the blocks of the generator matrix (1.2).

Note that supp(Σ) ⊂ [α,∞) is crucial for our approach and in general difficult to
check. Consider for example the case of recurrence (i.e., α = 0), then it follows from the
results of Duran and Lopez-Rodriguez [25] that the spectral measure Σ can be found as weak
accumulation points of a sequence of discrete measures with support precisely on

Δn = {x | detQn(x) = 0}. (4.8)

A straightforward calculation shows that the set Δn coincides with the eigenvalues of the
matrix

−

⎛

⎜⎜⎜⎜⎜⎜
⎝

B0 A0

CT
1 B1 A1

. . . . . . . . .

CT
n−1 B1

⎞

⎟⎟⎟⎟⎟⎟
⎠

(4.9)

and consequently all bounds on eigenvalues of these matrices will yield bounds on the
support of spectral measure.

Corollary 4.2. Assume that conditions (2.4) of Theorem 2.1 are satisfied. Let {Qn(x)}n≥0 denote
the corresponding orthogonal matrix polynomials defined by recursion (1.3). Assume that the
corresponding spectral measure Σ is supported in the interval [0,∞) and that it is determined by
its moments. Then the Stieltjes transform of the measure Σ can be represented as

∫
dΣ(x)
z − x

= lim
n→∞

⎧
⎨

⎩
zId −

{

Id −
{
zId − · · · −

{
zId − ζT2n+1

}−1
ζT2n

}−1
. . .

}−1
ζT2

⎫
⎬

⎭

−1

ζT1

⎫
⎪⎬

⎪⎭

−1

S0.

(4.10)

In particular, the following representations hold:

∫
dΣ(x)

x
= lim

n→∞

n+1∑

j=0

(
ζT2j+1ζ

T
2j−1 · · · ζT1

)−1(
ζT2jζ

T
2j−2 · · · ζT2

)
S0 (4.11)

= lim
n→∞

n+1∑

j=0

T−1
j+1A

−1
j CT

j Tj−1T
−1
j A−1

j−1C
T
j−1Tj−2T

−1
j−1 · · · T0T−1

1 A−1
0 T0S0, (4.12)

where Tj = Qj(0), j ≥ 0.
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Proof. From Lemma 3.3 in [24] it follows that the monic orthogonal matrix polynomials
{Pn(x)}n≥0 with respect to a matrix measure Σ supported in [0,∞) satisfy the recursive
relation

xPn(x) = Pn+1(x) +
(
ζT2n+1 + ζT2n

)
Pn(x) + ζT2nζ

T
2n−1Pn−1(x), (4.13)

with P−1(x) = 0, P 0(x) = Id, ζ0 = 0, and ζk = (Sk−1 − S−
k−1)

−1(Sk − S−
k),where the matrices

Δ2n := 〈Pn, Pn〉 = (S0ζ1 · · · ζ2n)T (4.14)

are positive definite. Then the polynomials

Pn(x) := Δ−1/2
2n Pn(x), n ≥ 0, (4.15)

are orthonormal with respect to the matrix measure Σ and satisfy the recursion

xPn(x) = An+1Pn+1(x) + BnPn(x) +AT
nPn−1(x) (4.16)

with P−1(x) = 0, P0(x) = S−1/2
0 , and

An+1 = Δ−1/2
2n Δ1/2

2n+2,

Bn = Δ−1/2
2n

(
ζT2n + ζT2n+1

)
Δ1/2

2n ,

AT
n = Δ−1/2

2n ζT2nζ
T
2n−1Δ

1/2
2n−2.

(4.17)

From Theorem 1.2 in [20] it follows that

Fn(z) = (Pn+1(z))−1P̃
(1)
n+1(z)

= S1/2
0

{

zId − B0 −A1

{
zId − B1 −A2

{
zId − B2 − · · ·

· · · −An{zId − Bn}−1AT
n

}−1}−1
· · ·AT

1

}−1
S1/2
0 ,

(4.18)
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where P̃
(1)
n (z) denote the first associated polynomials for Pn(z) defined by recursion (4.13)

with initial conditions P̃
(1)
0 (z) = 0, P̃ (1)

1 (z) = ζT1 . An application of Markov’s Theorem (see
[26]), (4.17), and (4.18) now yields

∫
dΣ(x)
z−x

= lim
n→∞

Fn(z)

= lim
n→∞

⎧
⎨

⎩
zId−ζT1 −

{

zId−ζT2 −ζT3 −
{
zId−ζT4 −ζT5 · · ·

· · · −
{
zId−ζT2n−ζT2n+1

}−1
ζT2nζ

T
2n−1

}−1
· · · ζT4 ζT3

}−1
ζT2 ζ

T
1

⎫
⎬

⎭

−1

S0

= lim
n→∞

⎧
⎨

⎩
zId−

{

Id −
{
zId − · · · −

{
zId − ζT2n+1

}−1
ζT2n

}−1
· · ·
}−1

ζT2

⎫
⎬

⎭

−1

ζT1

⎫
⎪⎬

⎪⎭

−1

S0.

(4.19)

If z = 0, then we obtain from (4.19) and (1.3) in [27]

∫
dΣ(x)
−x = − lim

n→∞

n+1∑

j=0

X−1
j+1ζ

T
2jζ

T
2j−1Xj−1X−1

j ζT2j−2ζ
T
2j−3Xj−2X−1

j−1 · · ·X1X
−1
2 ζT2S0, (4.20)

where X0 = Id, X1 = −ζT1 , and

Xn+1 = −
(
ζT2n+1 + ζT2n

)
Xn − ζT2nζ

T
2n−1Xn−1, n ≥ 1. (4.21)

An induction argument yields Xn = (−1)nζT2n−1ζT2n−3 · · · ζT1 , n ≥ 1, and the first repre-
sentation in (4.11) follows. For the second part we note that the polynomials Q

n
(x) :=

(−1)nA0 · · ·An−1Qn(x), n ≥ 0, have leading coefficient Id and because of (1.3) they satisfy
the recursion

Q
n+1

(x) = xQ
n
(x) +A0 · · ·An−1BnA

−1
n−1 · · ·A−1

0 Q
n
(x) −A0 · · ·An−1CT

nA
−1
n−2 · · ·A−1

0 Q
n−1(x).

(4.22)

A comparison with the polynomials Pn(x) in (4.13) now yields

A0 · · ·An−1BnA
−1
n−1 · · ·A−1

0 = −
(
ζT2n + ζT2n+1

)
,

A0 · · ·An−1CT
nAn−2 · · ·A0 = ζT2nζ

T
2n−1.

(4.23)
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Define Tn := Qn(0), n ≥ 0. Then (4.23) imply

Tn = A−1
n−1 · · ·A−1

0 ζT2n−1ζ
T
2n−3 · · · ζT1 , ∀n ≥ 0. (4.24)

Therefore, we can define the polynomials Q̂n(x) := T−1
n Qn(x). From (1.3) it follows that these

polynomials satisfy the recurrence relation

xQ̂n(x) = ÂnQ̂n+1(x) + B̂nQ̂n(x) + ĈT
nQ̂n−1(x) (4.25)

with

Ân = T−1
n AnTn+1, B̂n = T−1

n BnTn, ĈT
n = T−1

n CT
nTn−1, (4.26)

and Ân + B̂n + ĈT
n = 0. Consequently we obtain from (4.23) that

Â0 · · · Ân−1B̂nÂ
−1
n−1 · · · Â−1

0 = −
(
ζT2n + ζT2n+1

)
,

Â0 · · · Ân−1ĈT
nÂ

−1
n−2 · · · Â−1

0 = ζT2nζ
T
2n−1,

(4.27)

and hence

ζT2n+1 = Â0 · · · ÂnÂ
−1
n−1 · · · Â−1

0 ,

ζT2n = Â0 · · · Ân−1ĈT
nÂ

−1
n−1 · · · Â−1

0 .
(4.28)

Equation (4.11) finally yields

∫
dΣ(x)

x
= lim

n→∞

n+1∑

j=0

Â−1
j ĈT

j Â
−1
j−1 · · · Â−1

1 ĈT
1 Â

−1
0 S0

= lim
n→∞

n+1∑

j=0

T−1
j+1A

−1
j CT

j Tj−1T
−1
j A−1

j−1C
T
j−1Tj−2T

−1
j−1 · · · T0T−1

1 A−1
0 T0S0,

(4.29)

which completes the proof of the theorem.
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In the following, the α-recurrence condition will be represented in terms of properties
of the spectral measure, the corresponding orthogonal matrix polynomials, and the blocks
of the infinitesimal generator (1.2). For this purpose, consider the process (Xt,α)t≥0 with state
space E defined in (1.1) and infinitesimal generator matrix

Qα =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

B0,α A0,α 0

CT
1,α B1,α A1,α

CT
2,α B2,α A2,α

CT
3,α B3,α A3,α

0
. . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

, (4.30)

where

An,α := Q−1
n (α)AnQn+1(α), n ≥ 0,

Bn,α := Q−1
n (α)BnQn(α), n ≥ 0,

CT
n,α := Q−1

n (α)CT
nQn−1(α), n ≥ 1.

(4.31)

The corresponding sequence {Qn,α(x)}n≥0 of matrix polynomials satisfies the recurrence
relation

−xQn,α(x) = An+1,αQn+1,α(x) + Bn,αQn,α(x) + CT
n,αQn−1,α(x) (4.32)

with initial conditions Q−1,α(x) = 0, Q0,α(x) = Id. If conditions (2.4) of Theorem 2.1 are
satisfied, then the matrix Qα can be symmetrized with the matrices

Rn,α = RnQn(α), n ≥ 0. (4.33)

An induction argument shows the representation

Qn,α(x) = Q−1
n (α)Qn(x + α), n ≥ 0, (4.34)

and therefore

∫
Qn,α(x)dΣα(x)QT

m,α(x) = 0, n /=m, (4.35)

where the matrix measure Σα is defined by

Σα(0, x] = Σ(α, α + x]. (4.36)
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If representation (2.11) holds, it is easy to see that

eαtP00(t) =
∫
e−txdΣα(x)S−1

0 , (4.37)

and the following remark is a consequence of Theorem 4.1.

Remark 4.3. Assume that the conditions of Theorem 4.1 are satisfied and that Σ is a
corresponding spectral measure supported in the interval [α,∞). The process (Xt)t≥0 is α-
recurrent if and only if

eTj

∫∞

0

dΣα(x)
x

S−1
0 ej = eTj

∫∞

α

dΣ(x)
x − α

S−1
0 ej = ∞ (4.38)

for some j ∈ {1, . . . , d}. The process is α-positive if

eT� limt→∞
eαtP00(t)e� > 0 (4.39)

for some � ∈ {1, . . . , d}. This is the case if and only if the measure eT� dΣ(x)S
−1
0 e� has a jump

in the point x = α.

Theorem 4.4. Assume that the conditions of Theorem 2.1 are satisfied and that the corresponding
matrix measure Σ is supported in the interval [α,∞) and determined by its moments. The process
(Xt)t≥0 is α-recurrent if and only if for some state (0, �) ∈ E (and then for all states in (0, k) ∈ E)

eT�

∞∑

j=0

H−1
j+1A

−1
j CT

j Hj−1H−1
j A−1

j−1C
T
j−1Hj−2 · · ·CT

1H
−1
1 A−1

0 H0S0e� = ∞, (4.40)

whereHj := Qj(α), j ≥ 0.

Proof. Because condition (2.4) holds for the polynomials {Qn(x)}n≥0, this condition is also
fulfilled for the polynomials {Qn,α}n≥0 with Rn,α := RnQn(α), n ≥ 0. From (4.34) it follows that
Qj,α(0) = Id for all j ≥ 0. Therefore we obtain with (4.12)

∫
dΣα(x)

x
=

∞∑

j=0

A−1
j,αC

T
j,αA

−1
j−1,αC

T
j−1,α · · ·CT

1,αA
−1
0,αS0. (4.41)

From the representation A−1
j,αC

T
j,α = Qj+1(α)A−1

j CT
j Qj−1(α), j ≥ 0, it follows from Remark 4.3

that the state (0, �) is α-recurrent if and only if

eT�

∞∑

j=0

H−1
j+1A

−1
j CT

j Hj−1H−1
j A−1

j−1C
T
j−1Hj−2 · · ·CT

1H
−1
1 A−1

0 H0S0e� = ∞, (4.42)

where Hj = Qj(α), j ≥ 0.
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Remark 4.5. In the case d = 1, the results of Theorems 4.1 and 4.4 reduce to known results in
the scalar case (see Theorem 5.2(ii), (iii), (vii) in [10]).

Remark 4.6. Assume that the conditions of Theorem 4.4 are satisfied, and let Σ(1) be a spectral
measure corresponding to the sequence of associated matrix polynomials {Q(1)

n (x)}n≥0.
(1) The state (0, �) ∈ E is α-recurrent if and only if

eT�

∫
dΣ(x)
x − α

S−1
0 e� = eT�

{

−αId − B0 −A0

∫
dΣ(1)(x)
x − α

RT
1R1C

T
1

}−1
e� = ∞. (4.43)

(2) The state (0, �) ∈ E is α-positive if and only if

eT� limt→∞
eαtP00(t)e� = lim

z→ 0
zeT�

∫
dΣ(x)

(z + α) − x
S−1
0 e�

= eT� limz→ 0

{
z + α

z
Id +

1
z

(

B0 −A0

∫
dΣ(1)(x)
(z + α) − x

RT
1R1C

T
1

)}−1
> 0.

(4.44)

Note that conditions (4.3) and (4.4) reduce to recurrence and positive recurrence if α = 0.
Therefore, with Theorem 4.2 we obtain the following conditions for recurrence and positive
recurrence of a quasi-birth-and-death process.

Corollary 4.7. Assume that the conditions of Theorem 2.1 are satisfied and that the corresponding
matrix measure Σ is supported in the interval [0,∞) and determined by its moments. The following
statements hold.

(1) The state (i, �) ∈ E is recurrent if and only if

eT�

(∫
Qi(x)dΣ(x)QT

i (x)
x

)(∫
Qi(x)dΣ(x)QT

i (x)
)−1

e� = ∞, (4.45)

where e� = (0, . . . , 0, 1, 0, . . . , 0)T . In particular, the state (0, �) ∈ E is recurrent if and only
if

eT�

∫∞

0

dΣ(x)
x

S−1
0 e� = ∞. (4.46)

(2) The state (0, �) is recurrent if and only if

eT�

∞∑

j=0

T−1
j+1A

−1
j CT

j Tj−1T
−1
j A−1

j−1C
T
j−1Tj−2T

−1
j−1 · · · T0T−1

1 A−1
0 T0S0e� = ∞ (4.47)

with Tj = Qj(0), j ≥ 0.
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(3) The state (0, �) is positive recurrent if and only if the matrix measure eT� dΣ(x)S
−1
0 e� has a

jump in the point x = 0.

Remark 4.8. (1) Let Σ(1) be a spectral measure supported in [0,∞) corresponding to the
associated polynomials {Q(1)

n (x)}n≥0 introduced in Theorem 2.4. Then, a combination of
Theorem 2.4 and Corollary 4.7 shows that the state (0, �) ∈ E is recurrent if and only if

eT�

∫
dΣ(x)

x
S−1
0 e� = −lim

z→ 0
eT�

∫
dΣ(x)
z − x

RT
0R0e�

= eT�

{

−B0 −A0

∫
dΣ(1)(x)

x
RT

1R1C
T
1

}−1
e� = ∞.

(4.48)

An induction argument shows that

Q
(1)
n (x) = −Q̃(1)

n+1(x)S
−1
0 A0, n ≥ 0, (4.49)

where Q̃
(1)
n (x) are the first associated polynomials corresponding to Q

(1)
n (x), and Q

(1)
n (x) are

the associated polynomials of order k = 1 corresponding to Qn(x). Therefore it follows for
the Stieltjes transform of the spectral measure corresponding to the associated orthogonal
polynomials that

∫
dΣ(1)(x)

x
= lim

n→∞

n+1∑

j=0

A−1
0 S0Z

−1
j+1A

−1
j+1C

T
j+1Zj−1Z−1

j A−1
j · · ·

· · ·A−1
2 CT

2Z
−1
1 A−1

1 Z0

(
RT

1R1

)−1
,

(4.50)

where Zj := Q̃
(1)
j+1(0).

(2) A straightforward calculation yields

eTi Σ({0})ej = lim
z→ 0

zeTi Φ(z)ej . (4.51)

From Theorem 2.4 it follows that the state (0, �) ∈ E is positive recurrent if the condition

eT� limt→∞
P00(t)e� = eT� limz→ 0

z

∫
dΣ(x)
z − x

S−1
0 e�

= eT� limz→ 0
zR−1

0

{

zId + R0B0R
−1
0 − R0A0

∫
dΣ(1)(x)
z − x

RT
1R1C

T
1R

−1
0

}−1
R0e�

= eT� limz→ 0

{

Id +
1
z
(B0 −A0

∫
dΣ(1)(x)
z − x

RT
1R1C

T
1

}−1
e� > 0

(4.52)

holds.



22 Journal of Probability and Statistics

Acknowledgments

The work of the authors was supported by the Deutsche Forschungsgemeinschaft (De
502/22-1/2). The authors would like to thank Martina Stein, who typed parts of this paper
with considerable technical expertise. They are also grateful to two anonymous referees for
their constructive comments on an earlier version of this paper.

References

[1] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models. An Algorithmic Approach, vol. 2 of Johns
Hopkins Series in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, Md, USA, 1981.

[2] A. Ost, Performance of Communication Systems: A Model-Based Approach with Matrix-Geometric Methods,
Springer, Berlin, Germany, 2001.

[3] T. Dayar and F. Quessette, “Quasi-birth-and-death processes with level-geometric distribution,”
SIAM Journal on Matrix Analysis and Applications, vol. 24, no. 1, pp. 281–291, 2002.

[4] L. Bright and P. G. Taylor, “Calculating the equilibrium distribution in level dependent quasi-birth-
and-death processes,” Communications in Statistics, vol. 11, no. 3, pp. 497–525, 1995.

[5] V. Ramaswami and P. G. Taylor, “Some properties of the rate operators in level dependent quasi-
birth-and-death processes with a countable number of phases,” Communications in Statistics. Stochastic
Models, vol. 12, no. 1, pp. 143–164, 1996.

[6] G. Latouche, C. E. M. Pearce, and P. G. Taylor, “Invariant measures for quasi-birth-and-death
processes,” Communications in Statistics. Stochastic Models, vol. 14, no. 1-2, pp. 443–460, 1998.

[7] S. Karlin and J. L. McGregor, “The differential equations of birth-and-death processes, and the Stieltjes
moment problem,” Transactions of the American Mathematical Society, vol. 85, pp. 489–546, 1957.

[8] S. Karlin and J. L. McGregor, “The classification of birth and death processes,” Transactions of the
American Mathematical Society, vol. 86, pp. 366–400, 1957.

[9] E. A. van Doorn, “Representations for the rate of convergence of birth-death processes,” Theory of
Probability and Mathematical Statistics , vol. 65, pp. 37–43, 2002.

[10] E. A. van Doorn, “On associated polynomials and decay rates for birth-death processes,” Journal of
Mathematical Analysis and Applications, vol. 278, no. 2, pp. 500–511, 2003.

[11] A. Sinap and W. Van Assche, “Orthogonal matrix polynomials and applications,” Journal of
Computational and Applied Mathematics, vol. 66, no. 1-2, pp. 27–52, 1996.

[12] F. Marcellán and G. Sansigre, “On a class of matrix orthogonal polynomials on the real line,” Linear
Algebra and Its Applications, vol. 181, pp. 97–109, 1993.

[13] H. Dette, B. Reuther, W. J. Studden, and M. Zygmunt, “Matrix measures and random walks with a
block tridiagonal transition matrix,” SIAM Journal on Matrix Analysis and Applications, vol. 29, no. 1,
pp. 117–142, 2006.
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