
Hindawi Publishing Corporation
Journal of Probability and Statistics
Volume 2010, Article ID 764043, 17 pages
doi:10.1155/2010/764043

Research Article
Complete Convergence for Maximal Sums of
Negatively Associated Random Variables

Victor M. Kruglov

Department of Statistics, Faculty of Computational Mathematics and Cybernetics,
Moscow State University, Vorobyovy Gory, GSP-1, 119992, Moscow, Russia

Correspondence should be addressed to Victor M. Kruglov, krugvictor@gmail.com

Received 24 December 2009; Accepted 1 April 2010

Academic Editor: Mohammad Fraiwan Al-Saleh

Copyright q 2010 Victor M. Kruglov. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Necessary and sufficient conditions are given for the complete convergence of maximal sums of
identically distributed negatively associated random variables. The conditions are expressed in
terms of integrability of random variables. Proofs are based on new maximal inequalities for sums
of bounded negatively associated random variables.

1. Introduction

The paper by Hsu and Robbins [1] initiated a great interest to the complete convergence
of sums of independent random variables. Their research was continued by Erdös [2, 3],
Spitzer [4], and Baum and Katz [5]. Kruglov et al. [6] proved two general theorems that
provide sufficient conditions for the complete convergence for sums of arrays of row-wise
independent random variables. In the paper of Kruglov and Volodin [7], a criterion was
proved for the complete convergence of sums of independent identically distributed random
variable in a rather general setting. Taylor et al. [8] and Chen et al. [9, 10] demonstrated that
many known sufficient conditions for complete convergence of sums of independent random
variables can be transformed to sufficient conditions for the complete convergence of sums of
negatively associated random variables. Here we give necessary and sufficient conditions for
the complete convergence of maximal sums of negatively associated identically distributed
random variables. They resemble the criterions presented by Baum and Katz [5] and by
Kruglov and Volodin [7] for the complete convergence of sums of independent identically
distributed random variables. Theorems 2.3 and 2.5 are our main results. Theorem 2.3 is new
even for independent random variables.
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In what follows we assume that all random variables under consideration are defined
on a probability space (Ω,F, P). We use standard notations, in particular, IA denotes the
indicator function of a setA ⊆ Ω. Recall the notion of negatively associated random variables
and some properties of such random variables.

Definition 1.1. Random variables X1, . . . , Xn are called negatively associated if

Cov
(
f(Xi1 , . . . , Xik), g

(
Xj1 , . . . , Xjm

)) ≤ 0 (1.1)

for any pair of nonempty disjoint subsets A = {i1, . . . , ik} and B = {j1, . . . , jm}, k + m ≤ n, of
the set {1, . . . , n} and for any bounded coordinate-wise increasing real functions f(xi1 , . . . , xik)
and g(xj1 , . . . , xjm), x1, . . . , xn ∈ R = (−∞,∞). Random variables Xn, n ∈ N = {1, 2, . . . , } are
negatively associated if for any n ∈ N random variables X1, . . . , Xn are negatively associated.

In this definition the coordinate-wise increasing functions f and g may be replaced
by coordinate-wise decreasing functions. Indeed, if f and g are coordinate-wise decreasing
functions, then −f and −g are coordinate-wise increasing functions and the covariance (1.1)
coincides with the covariance for −f and −g.

Theorem A. Let Xn, n ∈ N, be negatively associated random variables. Then for every an, bn ∈
R, an ≤ bn, the random variables Yn = anI(−∞,an)(Xn) + XnI[an,bn](Xn) + bnI(bn,∞)(Xn), n ∈ N, are
negatively associated. For every n ∈ N and x1, . . . , xn ∈ R, the inequalities

P{X1 ≤ x1, . . . , Xn ≤ xn} ≤
n∏

k=1

P{Xk ≤ xk},

P{X1 ≥ x1, . . . , Xn ≥ xn} ≤
n∏

k=1

P{Xk ≥ xk}
(1.2)

hold.

Proof. It can be found in Taylor et al. [8].

TheoremB. LetXn be negatively associated random variables. LetX∗
n, n ∈ N, be independent random

variables such that Xk and X∗
k
are identically distributed for every k = 1, . . . , n. Then

E exp{X1 + · · · +Xn} ≤ E exp
{
X∗

1 + · · · +X∗
n

}
. (1.3)

If E|Xk|p < ∞ and EXk = 0 for all k = 1, . . . , n and for some p ≥ 1, then

E

∣∣∣∣∣
max
1≤r≤n

r∑

k=1

Xk

∣∣∣∣∣

p

≤ 2E

∣∣∣∣∣

n∑

k=1

X∗
k

∣∣∣∣∣

p

, n ∈ N. (1.4)

Proof. It can be found in Qi-Man Shao [11].
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2. Main Results

Our basic theorems will be stated in terms of special functions. They were introduced in
Kruglov and Volodin [7].

Definition 2.1. A nonnegative function h(x), x ∈ [0,∞), belongs to the class Hq for some
q ∈ (0, 2) if it is nondecreasing, is not equal to zero identically, and

lim sup
x→∞

h(2x)
h(x)

< ∞, (2.1)

lim sup
y→∞

y2/q−1

h
(
y
)
∫∞

y

h(x)x−2/qdx < ∞. (2.2)

The class Hq contains all nondecreasing nonnegative functions slowly varying at
infinity which are not equal to zero identically, and in particular, lnβ(1 + x) with β > 0. The
functions xα and xαlnβ(1 + x) with α ∈ [0, 2/q − 1) and β > 0 are also inHq.

Remark 2.2. If a nonnegative function h(x), x ∈ [0,∞), is nondecreasing and satisfies
condition (2.1), then

h(x) ≤ Δxl (2.3)

for all x greater than some x0 ≥ 1 and for some Δ > 0 and l > 0.

Proof. We may assume that h(x) > 0 for all x greater than some x0 ≥ 1. From condition (2.1),
it follows that supx≥x0

h(2x)/h(x) = d < ∞. Choose a number l > 0 such that d ≤ 2l. If x ≥ 2x0,

then 2nx0 ≤ x < 2n+1x0 for some n ∈ N and h(x) ≤ h(2n+1x0) ≤ dn+1h(x0) ≤ 2l(n+1)h(x0) ≤
2lxlh(x0). Inequality (2.3) holds for all x ≥ x0 with Δ = 2lh(x0).

Theorem 2.3. Let Xn, n ∈ N, be negatively associated identically distributed random variables, Sn =
X1 + · · · + Xn, 0 < q < 2, r > 1. Let h(x), x ∈ [0,∞), be a function which is nondecreasing, is not
equal to zero identically, and satisfies condition (2.1). Then the following conditions are equivalent:

E
(|X1|rqh

(|X1|q
))

< ∞, EX1 = 0, for q ≥ 1, (2.4)

∞∑

n=1

nr−2h(n)P
{
max
1≤k≤n

|Sk| > εn1/q
}

< ∞, ∀ε > 0, (2.5)

∞∑

n=1

nr−2h(n)P

{

sup
k≥n

∣∣∣k−1/qSk

∣∣∣ > ε

}

< ∞, ∀ε > 0. (2.6)
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Corollary 2.4. LetXn, n ∈ N, be negatively associated identically distributed random variables, Sn =
X1 + · · · +Xn, 0 < q < 2, r > 1, β ≥ 0. The following conditions are equivalent:

E
(
|X1|rq(ln(1 + |X1|))βq

)
< ∞, EX1 = 0, for q ≥ 1,

∞∑

n=1

nr−2(lnn)βP
{
max
1≤k≤n

|Sk| > εn1/q
}

< ∞, ∀ε > 0,

∞∑

n=1

nr−2(lnn)βP

{

sup
k≥n

∣
∣
∣k−1/qSk

∣
∣
∣ > ε

}

< ∞, ∀ε > 0.

(2.7)

A part of Theorem 2.3 can be generalized to a larger range of r, r ≥ 1, under additional
restrictions on functions h(x), x ∈ [0,∞).

Theorem 2.5. Let Xn, n ∈ N, be negatively associated identically distributed random variables, Sn =
X1 + · · · +Xn, h ∈ Hq, 0 < q < 2, r ≥ 1. Then the following conditions are equivalent:

E
(|X1|rqh

(|X1|q
))

< ∞, EX1 = 0, for q ≥ 1, (2.8)

∞∑

n=1

nr−2h(n)P
{
max
1≤k≤n

|Sk| > εn1/q
}

< ∞, ∀ε > 0. (2.9)

Corollary 2.6. LetXn, n ∈ N, be negatively associated identically distributed random variables, Sn =
X1 + · · · +Xn, 0 < q < 2, β ≥ 0. The following conditions are equivalent:

E
(
|X1|q(ln(1 + |X1|))βq

)
< ∞, EX1 = 0, for q ≥ 1,

∞∑

n=1

(lnn)β

n
P

{
max
1≤k≤n

|Sk| > εn1/q
}

< ∞, ∀ε > 0.
(2.10)

Proof of Theorem 2.3. The theorem is obvious if the random variable X1 is degenerate, that is,
P{X1 = const.} = 1. From now on we suppose that the random variable X1 is not degenerate.
Denote

δ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

r − 1
r + l

if 0 < rq < 1,

r − 1
4(r + l)

if 1 ≤ rq ≤ 2,

2 − q

4q(r + l)
if rq > 2,

(2.11)
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where l is the same as in (2.3). Define the function f(x), x ∈ R,

f(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

εn1/qδ if x > εn1/qδ,

x if |x| ≤ εn1/qδ,

−εn1/qδ if x < −εn1/qδ,

(2.12)

where ε > 0 is a fixed number. By Theorem A the random variables Yk = f(Xk), k = 1, . . . , n,
are negatively associated. Put S′

k
= Y1+ · · ·+Yk, k = 1, . . . , n.Note that |Y1| ≤ |X1| and Y1 → X1

as n → ∞. If E|X1|rq < ∞, then by the dominated convergence theorem we have

lim
n→∞

E|Y1|rq = E|X1|rq,

lim
n→∞

E|Y1 − EY1|rq = E|X1 − EX1|rq if rq ≥ 1.
(2.13)

Prove that (2.4)⇒(2.5). Assume that 0 < rq < 1. The probability P{max1≤k≤n|Sk| > εn1/q} can
be estimated as follows:

P

{
max
1≤k≤n

|Sk| > εn1/q
}

= P

{{
max
1≤k≤n

∣∣S′
k

∣∣ > εn1/q
}
∩

n⋂

k=1

{Xk = Yk}
}

+ P

{{
max
1≤k≤n

|Sk| > εn1/q
}
∩
(

n⋃

k=1

{Xk /=Yk}
)}

≤ P

{
max
1≤k≤n

∣∣S′
k

∣∣ > εn1/q
}
+ P

{
max
1≤k≤n

|Xk| > εn1/qδ

}
.

(2.14)

We intend to use Lemma 3.1 from the third part of the paper. Put γ = rq, x = εn1/q, c =
εn1/q(r − 1)/(r + l). From (2.13) it follows that the inequality E|Y1|γ < 2E|X1|γ holds for all
n ∈ N greater than some n0. By inequality (3.1), we get, for all n > n0,

P

{
max
1≤k≤n

∣∣S′
k

∣∣ > εn1/q
}

≤ 2 exp

{
x

c
− x

c
ln

(
xcγ−1

nE|Y1|γ
+ 1

)}

≤ 2 exp

{
r + l

r − 1
− r + l

r − 1
ln

(
εrq(r − 1)rq−1

2E|X1|rq(r + l)rq−1
nr−1 + 1

)}

≤ 2 exp
{
r + l

r − 1

}(
εrq(r − 1)rq−1

2E|X1|rq(r + l)rq−1

)−(r+l)/(r−1)
n−(r+l) = Cn−(r+l).

(2.15)

These inequalities and (2.3) imply that

∞∑

n=n0+1

nr−2h(n)P
{
max
1≤k≤n

∣∣S′
k

∣∣ > εn1/q
}

≤ ΔC
∞∑

n=n0+1

nr+l−2n−(r+l) < ∞. (2.16)
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Since P{max1≤k≤n|Xk| > εn1/qδ} ≤ nP{|X1| > εn1/qδ}, we obtain

∞∑

n=n0+1

nr−2h(n)P
{
max
1≤k≤n

|Xk| > εn1/qδ

}
≤

∞∑

n=n0+1

nr−1h(n)P
{
|X1| > εn1/qδ

}

≤ E

(∣∣
∣
∣
X1

εδ

∣
∣
∣
∣

rq

h

(∣∣
∣
∣
X1

εδ

∣
∣
∣
∣

q))
.

(2.17)

The last inequality holds by Lemma 3.2. From (2.1) it follows that

E

(∣∣
∣∣
X1

εδ

∣
∣
∣∣

rq

h

(∣∣
∣∣
X1

εδ

∣
∣
∣∣

q))
≤ const. E

(|X1|rqh
(|X1|q

))
. (2.18)

Condition (2.4) and inequalities (2.14)–(2.17) imply (2.5) for 0 < rq < 1.
Now assume that rq ≥ 1. First we consider the case 1 ≤ rq ≤ 2. Note that

P

{
max
1≤k≤n

|Sk| > εn1/q
}

≤ P

{
max
1≤k≤n

∣∣Sk − ES′
n

∣∣ > εn1/q − max
1≤k≤n

∣∣ES′
k

∣∣
}
. (2.19)

By Lemma 3.4, we have max1≤k≤nE|S′
k
|n−1/q → 0 as n → ∞, and hence

P

{
max
1≤k≤n

|Sk| > εn1/q
}

≤ P

{

max
1≤k≤n

∣∣Sk − ES′
n

∣∣ >
εn1/q

2

}

(2.20)

for all n ∈ N greater than some n′
0. The probability on the right-hand side can be estimated as

follows:

P

{

max
1≤k≤n

∣∣Sk − ES′
k

∣∣ >
εn1/q

2

}

= P

{{

max
1≤k≤n

∣∣S′
k − ES′

k

∣∣ >
εn1/q

2

}

∩
n⋂

k=1

{Xk = Yk}
}

+ P

{{

max
1≤k≤n

∣∣Sk − ES′
k

∣∣ >
εn1/q

2

}

∩
(

n⋃

k=1

{Xk /=Yk}
)}

≤ P

{

max
1≤k≤n

∣∣S′
k − ES′

k

∣∣ >
εn1/q

2

}

+ P

{
max
1≤k≤n

|Xk| > εn1/qδ

}
.

(2.21)
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In order to apply Lemma 3.1, put γ = rq, x = εn1/q/2, c = εn1/q(r − 1)/(4(r + l)) . From (2.13)
it follows that the inequality E|Y1 − EY1|γ < 2E|X1 − EX1|γ holds for all n ∈ N greater than
some n′′

0 ≥ n′
0. By inequality (3.2)we get, for n > n′′

0,

P

{

max
1≤k≤n

∣
∣S′

k − ES′
k

∣
∣ >

εn1/q

2

}

≤ 4 exp

{
x

2γ−1c
− x

2c
ln

(
xcγ−1

nE|Y1 − EY1|γ
+ 1

)}

≤ 4 exp

{
2(r + l)
r − 1

− r + l

r − 1
ln

(
εrq(r − 1)rq−1

2E|X1 − EX1|rq(4(r + l))rq−1
nr−1 + 1

)}

≤ 4 exp
{
2(r + l)
r − 1

}(
εrq(r − 1)rq−1

2E|X1 − EX1|rq(4(r + l))rq−1

)−(r+l)/(r−1)
n−(r+l) = C1n

−(r+l).

(2.22)

These inequalities and (2.3) imply

∞∑

n=n′′
0+1

nr−2h(n)P

{

max
1≤k≤n

∣∣S′
k − ES′

k

∣∣ >
εn1/q

2

}

≤ ΔC1

∞∑

n=n′′
0+1

nr+l−2n−(r+l) < ∞. (2.23)

From this inequality and (2.17) with n′′
0 instead of n0, (2.20) and (2.21), it follows that (2.5)

holds for 1 ≤ rq ≤ 2. The case rq > 2 can be considered in the same way. In order to apply
Lemma 3.1, put γ = 2, x = εn1/q/2, c = εn1/q(2 − q)/(4q(r + l)) . From (2.13) it follows that
the inequality E|Y1 − EY1|2 < 2E|X1 − EX1|2 holds for all n ∈ N greater than some n′′′

0 ≥ n′
0. By

inequality (3.2), we get, for n > n′′′
0 ,

P

{

max
1≤k≤n

∣∣S′
k − ES′

k

∣∣ >
εn1/q

2

}

≤ 4 exp

{
x

2c
− x

2c
ln

(
xc

nE|Y1 − EY1|2
+ 1

)}

≤ 4 exp

{
q(r + l)
2 − q

− q(r + l)
2 − q

ln

(
ε2
(
2 − q

)

16E|X1 − EX1|2q(r + l)
n2/q−1 + 1

)}

≤ 4 exp
{
q(r + l)
2 − q

}(
ε2(2 − q)

16E|X1 − EX1|2q(r + l)

)−q(r+l)/(2−q)
n−(r+l) = C2n

−(r+l).

(2.24)

These inequalities and (2.3) imply

∞∑

n=n′′′
0 +1

nr−2h(n)P

{

max
1≤k≤n

∣∣S′
k − ES′

k

∣∣ >
εn1/q

2

}

≤ ΔC2

∞∑

n=n′′′
0 +1

nr+l−2n−(r+l) < ∞. (2.25)
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From this inequality and (2.17) with n′′′
0 instead of n0, (2.20) and (2.21), it follows that (2.5)

holds for rq > 2.
Prove that (2.5)⇒(2.6). Note that

∞∑

n=3

nr−2h(n) P

{

sup
k≥n

∣
∣
∣k−1/qSk

∣
∣
∣ > ε

}

=
∞∑

j=1

2j+1∑

n=2j+1

nr−2h(n)P

{

sup
k≥n

∣
∣
∣k−1/qSk

∣
∣
∣ > ε

}

≤
∞∑

j=1

2(j+1)(r−1)h
(
2j+1
)
P

{

sup
k≥2j

∣
∣
∣k−1/qSk

∣
∣
∣ > ε

}

≤
∞∑

j=1

2(j+1)(r−1)h
(
2j+1
) ∞∑

i=j

P

{
max

2i≤k≤2i+1

∣
∣
∣k−1/qSk

∣
∣
∣ > ε

}

=
∞∑

i=1

i∑

j=1

2(j+1)(r−1)h
(
2j+1
)
P

{
max

2i≤k≤2i+1

∣∣∣k−1/qSk

∣∣∣ > ε

}

≤ 2r−1

2r−1 − 1

∞∑

i=1

2(i+1)(r−1)h
(
2i+1
)
P

{
max

2i≤k≤2i+1
|Sk| > ε2i/q

}
.

(2.26)

The last series can be estimated as follows:

∞∑

i=1

2(i+1)(r−1)h
(
2i+1
)
P

{
max

2i≤k≤2i+1
|Sk| > ε2i/q

}

≤ 25r−3h
(
25
)
+max

{
1, 22−r

} ∞∑

i=1

2i+2∑

n=2i+1+1

nr−2h(n)P
{
max
1≤k≤n

|Sk| > ε2−2/qn1/q
}

≤ 25r−3h
(
25
)
+max

{
1, 22−r

} ∞∑

n=1

nr−2h(n)P
{
max
1≤k≤n

|Sk| > ε2−2/qn1/q
}
.

(2.27)

Condition (2.5) and these inequalities imply (2.6).
Prove that (2.6)⇒(2.4). The sequence {P{supk≥n|k−1/qSk| > ε}}

n≥1 decreases to zero for
any ε > 0. Indeed, if the sequence converges to a number a > 0, then

∞ = a
∞∑

n=1

nr−2h(n) ≤
∞∑

n=1

nr−2h(n)P

{

sup
k≥n

∣∣∣k−1/qSk

∣∣∣ > ε

}

< ∞. (2.28)

Note that P{maxn≤k≤2n|Sk| > ε(2n)1/q} ≤ P{supk≥n|k−1/qSk| > ε} → 0 as n → ∞.
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With the help of (1.2), we obtain

P

{
max
n<k≤2n

Xk > n1/q
}

= 1 − P

{
max
n<k≤2n

Xk ≤ n1/q
}

≥ 1 −
2n∏

k=n+1

P
{
Xk ≤ n1/q

}
= 1 −

(
1 − P

{
X1 > n1/q

})n
,

P

{
max
n<k≤2n

(−Xk) > n1/q
}

= 1 − P

{
max
n<k≤2n

(−Xk) ≤ n1/q
}

≥ 1 −
2n∏

k=n+1

P
{
Xk ≥ −n1/q

}
= 1 −

(
1 − P

{
−X1 > n1/q

})n
.

(2.29)

Denote a+
n = P{X1 > n1/q} and a−

n = P{−X1 > n1/q}. Note that P{|X1| > n1/q} = a+
n + a−

n and
1−(1 − a±

n)
n ≤ P{maxn<k≤2n|Xk| > n1/q} ≤ P{maxn≤k≤2n|Sk| > n1/q/2}. Since P{maxn≤k≤2n|Sk| >

n1/q/2} → 0 and a±
n ≤ P{|X1| > n1/q} → 0 as n → ∞, then n ln(1 − a±

n) > − ln 2 and
0 ≤ a+

n + a−
n < 1 for all n ∈ N greater than some n0. By the inequalities − ln(1 − x) ≥ x for

x ∈ [0, 1) and 1 − ex ≥ ex|x| for x ≤ 0, we obtain

na±
n ≤ −n ln

(
1 − a±

n

) ≤ 2
(
1 − en ln(1−a±n)

)
= 2
(
1 − (1 − a±

n

)n) ≤ 2P
{
max
1≤k≤n

|Xk| > n1/q
}

(2.30)

for all n > n0, and

∞∑

n=n0+1

nr−1h(n)P
{
|X1| > n1/q

}
=
∑

n=n0+1

nr−1h(n)
(
a+
n + a−

n

)

≤ 4
∞∑

n=n0+1

nr−2h(n)P
{

max
n<k≤2n

|Xk| > n1/q
}

≤ 4
∞∑

n=1

nr−2h(n)P

{

max
n≤k≤2n

|Sk| > n1/q

2

}

≤ 4
∞∑

n=1

nr−2h(n)P

{

max
n≤k≤2n

∣∣∣k−1/qSk

∣∣∣ >
2−1/q

2

}

≤ 4
∞∑

n=1

nr−2h(n)P

{

sup
k≥n

∣∣∣k−1/qSk

∣∣∣ >
2−1/q

2

}

< ∞.

(2.31)

It follows by Lemma 3.3 that E(|X1|rqh(|X1|q)) < ∞.
Now we will prove that a = EX1 = 0 provided that 1 ≤ q < 2. Assume that a/= 0. Since

n|a| ≤ |Sn − na| + |Sn|, then

1 = P

{

|Sn − na| + |Sn| > |a|n1/q

2

}

≤ P

{

|Sn − na| > |a|n1/q

4

}

+ P

{

|Sn| > |a|n1/q

4

}

, (2.32)
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and hence

∞ =
∞∑

n=1

nr−2h(n) ≤
∞∑

n=1

nr−2h(n)P

{

|Sn − na| > |a|n1/q

4

}

+
∞∑

n=1

nr−2h(n)P

{

|Sn| > |a|n1/q

4

}

.

(2.33)

But this contradicts the convergence of the series on the right-hand side of the inequality. The
equality EX1 = 0 is proved.

Proof of Theorem 2.5. Both theorems overlap. We need to consider only the case r = 1. Prove
that (2.8)⇒(2.9). Define random variables Zn = −εn1/qI(−∞,−εn1/q)(Xn) + XnI[−εn1/q,εn1/q](Xn) +
εn1/qI(εn1/q,∞)(Xn), n ∈ N. By Theorem A the random variables Zn, n ∈ N, as well as
Zn−EZn, n ∈ N, are negatively associated. Denote S′′

k
= (Z1−EZ1)+· · ·+(Zk−EZk). By Theorem

B there exist independent random variables X∗
1 , . . . , X

∗
n such that the random variables

Zk − EZk and X∗
k are identically distributed for all k = 1, . . . , n, and E(max1≤k≤n|S′′

k|
2) ≤

2E(X∗
1 + · · · +X∗

n)
2. Similarly to (2.21), we can prove that

P

{
max
1≤k≤n

|Sk| > εn1/q
}

≤ P

{

max
1≤k≤n

∣∣S′′
k − ES′′

k

∣∣ >
εn1/q

2

}

+ P

{
max
1≤k≤n

|Xk| > εn1/q
}

(2.34)

for all n ∈ N grater than some n0. In the same way as (2.17), one can prove that

∞∑

n=n0+1

h(n)
n

P

{
max
1≤k≤n

|Xk| > εn1/q
}

≤
∞∑

n=n0+1

h(n)P
{
|X1| > εn1/q

}

≤ E

(∣∣∣∣
X1

ε

∣∣∣∣

q

h

(∣∣∣∣
X1

ε

∣∣∣∣

q))
< ∞.

(2.35)

With the help of the Markov inequality, we obtain

P

{

max
1≤k≤n

∣∣S′′
k − ES′′

k

∣∣ >
εn1/q

2

}

≤ 4ε−2n−2/qE
(
max
1≤k≤n

∣∣S′′
k − ES′′

k

∣∣2
)

≤ 8ε−2n−2/qE
(
X∗

1 + · · · +X∗
n

)2

= 8ε−2n1−2/qE|Z1 − ZY1|2.

(2.36)

From (2.34) and (2.35), it follows that (2.9) holds if the series
∑∞

n=1 h(n)n
−2/qE|Z1 − EZ1|2

converges. This series can be estimated as follows:

∞∑

n=1

h(n)
n2/q

E|Z1 − EZ1|2 ≤
∞∑

n=1

h(n)
n2/q

E|Z1|2

=
∞∑

n=1

h(n)
n2/q

E
(
X2

1I{|X1|≤εn1/q}
)
+ ε2

∞∑

k=1

h(n)P
{
|X1| > εn1/q

}
.

(2.37)
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Rewrite the first summand on the right-hand side in the following way:

∞∑

n=1

h(n)
n2/q

E
(
|X1|2I{|X1|≤εn1/q}

)
=

∞∑

n=1

h(n)
n2/q

n∑

k=1

E
(
X2

1I{ε(k−1)1/q<|X1|≤εk1/q}
)

=
∞∑

k=1

∞∑

n=k

h(n)
n2/q

E
(
X2

1I{ε(k−1)1/q<|X1|≤εk1/q}
)
.

(2.38)

From (2.1) and (2.2), it follows that there exist numbers k0 ∈ N, k0 > 2, and C > 0 such that

h(k) ≤ Ch

(
k

2

)
,

∫∞

k

h(x)x−2/qdx ≤ Ch(k)k1−2/q, ∀k ≥ k0. (2.39)

For any k ∈ N, we have

∞∑

n=k

h(n)
n2/q

≤ 22/q
∞∑

n=k

∫n+1

n

h(x)
x2/q

dx = 22/q
∫∞

k

h(x)
x2/q

dx < ∞. (2.40)

If k > k0, then

∞∑

n=k

h(n)
n2/q

≤ 22/q
∫∞

k

h(x)
x2/q

dx ≤ 22/qCh(k)k1−2/q ≤ 22/qC2h(k − 1)(k − 1)1−2/q. (2.41)

With the help of these estimates, we get

∞∑

n=1

h(n)
n2/q

E
(
|X1|2I{|X1|≤εn1/q}

)
≤ 22/q

k0∑

k=1

∫∞

k

h(x)
x2/q

dx

+ 22/qC2
∞∑

k=k0+1

h(k − 1)

(k − 1)2/q−1
E
(
X2

1I{ε(k−1)1/q<|X1|≤εk1/q}
)
.

(2.42)

The last series can be estimated as follows:

∞∑

k=k0+1

h(k − 1)

(k − 1)2/q−1
E
(
X2

1I{ε(k−1)1/q<|X1|≤εk1/q}
)

≤ ε222/q−1
∞∑

k=k0+1

E
(∣∣∣ε−1X

∣∣∣
q
h
(∣∣∣ε−1X1

∣∣∣
q)

I{ε(k−1)1/q<|X1|≤εk1/q}
)

≤ ε222/q−1E
(∣∣∣ε−1X1

∣∣∣
q
h
(∣∣∣ε−1X1

∣∣∣
q))

< ∞.

(2.43)

As a result we get that
∑∞

n=1 h(n)n
−2/qE(|X1|2I{|X1|≤εn1/q}) < ∞. Taking account of (2.35) and

(2.37), we see that
∑∞

n=1 h(n) n
−2/qE|Z1 − EZ1|2 < ∞.
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Prove that (2.9)⇒(2.8) for r = 1. Note that

∞∑

n=1

h(2n)P
{

max
2n<k≤2n+1

|Xk| > 2n/q
}

≤
∞∑

n=1

h(2n)P

{

max
2n≤k≤2n+1

|Sk| > 2n/q

2

}

≤ 2
∞∑

n=1

2n+2−1∑

j=2n+1

h
(
j
)

j
P

{

max
2n≤k≤j

|Sk| >
2−2/qj1/q

2

}

≤ 2
∞∑

n=1

h(n)
n

P

{

max
1≤k≤n

|Sk| > 2−2/qn1/q

2

}

< ∞.

(2.44)

Denote b+n = P{X1 > 2n/q} and b−n = P{−X1 > 2n/q}. Note that P{|X1| > 2n/q} = b+n + b−n. With
the help of (1.2), one can prove the inequality 1−(1−b±n)2

n ≤ P{max2n+1<k≤2n+2 |Xk| > 2n/q}. Since
P{max2n<k≤2n+1 |Xk| > 2n/q} → 0 and b±n ≤ P{|X1| > 2n/q} → 0 as n → ∞, then 2n ln(1 − b±n) >
− ln 2 and 0 ≤ b+n + b−n < 1 for all n ∈ N greater than some n0. By the inequalities − ln(1− x) ≥ x
for x ∈ [0, 1) and 1 − ex ≥ ex|x| for x ≤ 0,we obtain

2nb±n ≤ −2n ln(1 − b±n
) ≤ 2

(
1 − e2

n ln(1−b±n)
)

= 2
(
1 − (1 − b±n

)2n)

≤ 2P
{

max
2n+1<k≤2n+2

|Xk| > 2n/q
}
,

∞∑

n=1

h(2n)
(
2n+1 − 2n

)
P
{
|X1| > 2n/q

}
=

∞∑

n=1

h(2n)2n
(
b+n + b−n

)

≤ 4
∞∑

n=1

h(2n)P
{

max
2n<k≤2n+1

|Xk| > 2n/q
}

< ∞.

(2.45)

By Lemma 3.3, we have that E(|X1|qh(|X1|q)) < ∞. In the same way as in the proof of the
previous theorem, one can prove that EX1 = 0 if q ≥ 1.

3. Auxiliary Results

Let X1, . . . , Xn be random variables. Denote Sk = X1 + · · · + Xk for k = 1, . . . , n and An,γ =
E|X1|γ + · · · + E|Xn|γ , Bn,γ = E|X1 − EX1|γ + · · · + E|Xn − EXn|γ for some γ ∈ (0, 2], coshx =
(ex + e−x)/2, x ∈ R = (−∞,∞).
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Lemma 3.1. If negatively associated random variables X1, . . . , Xn are bounded by a constant c > 0,
then

P

{
max
1≤k≤n

|Sk| > x

}
≤ 2 exp

{
x

c
− x

c
ln

(
xcγ−1

An,γ
+ 1

)}

, 0 < γ ≤ 1, (3.1)

P

{
max
1≤k≤n

|Sk − ESk| > x

}
≤ 4 exp

{
x

2γ−1c
− x

2c
ln

(
xcγ−1

Bn,γ
+ 1

)}

, 1 ≤ γ ≤ 2, (3.2)

for any number x > 0.

Proof. Prove Inequality (3.1). It is easily verified that {max1≤k≤n|Sk| > x} ⊆ {∑n
k=1 X

+
k
> x} ∪

{∑n
k=1 X

−
k > x} where X+

k = max{0, Xk} and X−
k = max{0,−Xk}. With the help of Markov

inequality, we get

P

{
max
1≤k≤n

|Sk| > x

}
≤ P

{
n∑

k=1

X+
k |> x

}

+ P

{
n∑

k=1

X−
k > x

}

≤ e−hxE exp

{

h
n∑

k=1

X+
k

}

+ e−hxE exp

{

h
n∑

k=1

X−
k

} (3.3)

for any h > 0. By Theorem A, random variables X+
k
, k = 1, . . . , n, as well as X−

k
, k = 1, . . . , n,

are negatively associated. By Theorem B, the inequality

E exp
{
h
(
X±

1 + · · · +X±
n

)} ≤ E exp
{
h
((

X∗
1

)± + · · · + (X∗
n)

±)} (3.4)

holds where random variables X∗
1 , . . . , X

∗
n are independent, and for any k = 1, . . . , n, random

variables Xk and X∗
k
are identically distributed. It follows that

P

{
max
1≤k≤n

|Sk| > x

}
≤ e−hx

n∏

k=1

Eeh(X
∗
k
)+ + e−hx

n∏

k=1

Eeh(X
∗
k
)−

= e−hx
n∏

k=1

EehX
+
k + e−hx

n∏

k=1

EehX
−
k ≤ 2e−hx

n∏

k=1

Eeh|Xk |.

(3.5)
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Further we can proceed as in Prokhorov [12], Fuk and Nagaev [13], and Kruglov [14].
Assume that 0 < γ ≤ 1. The function (ehx − 1)/xγ , 0 ≤ x ≤ c, increases and hence
(ehx − 1)/xγ ≤ (ehc − 1)/cγ . With the help of this inequality, we obtain

n∏

k=1

Eeh|Xk | =
n∏

k=1

E
(
1 + |Xk|−γ

(
eh|Xk | − 1

)
|Xk|γ

)

≤
n∏

k=1

(
1 + c−γ

(
ehc − 1

)
E|Xk|γ

)

= exp
{
c−γ
(
ehc − 1

)
An,γ

}
.

(3.6)

From this inequality and from (3.5), it follows

P

{
max
1≤k≤n

|Sk| > x

}
≤ 2 exp

{
−hx + c−γ

(
ehc − 1

)
An,γ

}
. (3.7)

Put h = c−1 ln(xcγ−1/An,γ + 1) . As a result we obtain (3.1).
Now we assume that 1 ≤ γ ≤ 2. By the Markov inequality we get

P

{
max
1≤k≤n

|Sk − ESk| > x

}
≤ E cosh(hmax1≤k≤n|Sk − ESk|)

cosh(hx)
(3.8)

for any h > 0. By Theorem B, the inequality

E

(
max
1≤k≤n

|Sk − ESk|
)r

≤ 2E
∣∣(X∗

1 − EX∗
1

)
+ · · · + (X∗

n − EX∗
n)
∣∣r (3.9)

holds for any r > 1. Denote S∗
n = X∗

1 + · · · + X∗
n. Note that cosh(|x|) = cosh(x) for any x ∈ R.

With these remarks, we obtain

E cosh
(
hmax
1≤k≤n

|Sk − ESk|
)

= 1 +
∞∑

r=1

E

(
hmax

1≤k≤n
|Sk − ESk|2r

)

(2r)!

≤ 1 + 2
∞∑

r=1

E|h(S∗
n − ES∗

n)|2r
(2r)!

≤ 2E cosh(h|S∗
n − ES∗

n|) = 2E cosh(h(S∗
n − ES∗

n)),

(3.10)

and hence

P

{
max
1≤k≤n

|Sk − ESk| > x

}
≤ 2

E cosh(h(S∗
n − ES∗

n))
cosh(hx)

≤ 2e−hx
(
Eeh(S

∗
n−ES∗

n) + Ee−h(S
∗
n−ES∗

n)
)
.

(3.11)
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By the inequalities α ≤ eα−1 and eα − 1 − α ≤ coshα − 1 for α ∈ R, we obtain

Eeh(S
∗
n−ES∗

n) =
n∏

k=1

Eeh(X
∗
k
−EX∗

k
) ≤

n∏

k=1

exp
{
E
(
eh(X

∗
k
−EX∗

k
) − 1

)}

= exp

{
n∑

k=1

E
(
eh(X

∗
k
−EX∗

k
) − 1 − h

(
X∗

k − EX∗
k

))
}

≤ exp

{

2
n∑

k=1

E
(
cosh

(
h
(
X∗

k − EX∗
k

)) − 1
)
}

.

(3.12)

Put f(α) = (coshα − 1)|α|−γ for α/= 0 and f(0) = 1/2 if γ = 2, and f(0) = 0 if 1 ≤ γ < 2. It can
be easily verified that the function f is continuous, even, and increases on (0,∞). Note that
|X∗

k
− EX∗

k
| ≤ 2c for all k = 1, . . . , n. With these remarks, we obtain

cosh
(
h
(
X∗

k − EX∗
k

)) − 1 =
(
cosh

(
h
(
X∗

k − EX∗
k

)) − 1
)∣∣h(X∗

k − EX∗
k)
∣∣−γ ∣∣h

(
X∗

k − EX∗
k

)∣∣γ

≤ (cosh(2hc) − 1)(2c)−γE
∣∣X∗

k − EX∗
k

∣∣γ ,
(3.13)

and hence

Eeh(S
∗
n−ES∗

n) ≤ exp
{
(cosh(2hc) − 1)(2c)−γBn,γ

}
. (3.14)

In the same way, one can prove the inequality

Ee−h(S
∗
n−ES∗

n) ≤ exp
{
(cosh(2hc) − 1)(2c)−γBn,γ

}
. (3.15)

From these inequalities and from (3.11), it follows that

P

{
max
1≤k≤n

|Sk − ESk| > x

}
≤ 4 exp

{−hx + (cosh(2hc) − 1)(2c)−γBn,γ

}

≤ 4 exp
{
−hx + 2

(
e2hc − 1

)
(2c)−γBn,γ

}
.

(3.16)

Put h = (2c)−1 ln(xcγ−1/Bn,γ + 1) . As a result we obtain (3.2).

Lemma 3.2. Let h(x), x ∈ [0,∞), be a nondecreasing nonnegative function, ξ be a nonnegative
random variable, r ≥ 1, and q > 0. Then

∞∑

n=1

nr−1h(n)P
{
ξ > n1/q

}
≤ E(ξrqh(ξq)). (3.17)

Proof. It can be found in Kruglov and Volodin [7].
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Lemma 3.3. Let h(x), x ∈ [0,∞), be a nondecreasing nonnegative function possessing property
(2.1), ξ be a nonnegative random variable, r ≥ 1, q > 0, and {bn}n≥1 an unbounded nondecreasing
sequence of positive numbers such that bn+1 ≤ bbn for all n ∈ N and for some number b > 0, b0 = 0.
Then there exist numbers k0 ∈ N and d > 0 such that

dE
(
ξrqh(ξq) )I{ξ≥bk0}

)
≤

∞∑

n=1

br−1n h(bn)(bn − bn−1)P
{
ξ > b

1/q
n

}
. (3.18)

Proof. It can be found in Kruglov and Volodin [7].

The next lemma was proved in Kruglov and Volodin [7] under an additional
restriction.

Lemma 3.4. Let Xn, n ∈ N, be identically distributed random variables such that E|X1|q < ∞ for
some q ∈ (0, 2) and EX1 = 0 if 1 ≤ q < 2. Define the function f(x) = −εn1/qI(−∞,−εn1/q)(x) +
xI[−εn1/q,εn1/q](x) + εn1/qI(εn1/q,∞)(x), x ∈ R, where ε > 0 is a fixed number. Then

lim
n→∞

1
n1/q

max
1≤k≤n

∣∣∣∣∣∣

k∑

j=1

Ef
(
Xj

)
∣∣∣∣∣∣
= 0. (3.19)

Proof. Note that

max
1≤k≤n

∣∣∣∣∣∣

k∑

j=1

Ef
(
Xj

)
∣∣∣∣∣∣
= n
∣∣Ef(X1)

∣∣ ≤ n
∣∣E
(
X1I{|X1|≤εn1/q}

)∣∣ + εn1/qP
{
|X1| > εn1/q

}
,

lim
n→∞

1
n1/q

n1/q+1P
{
|X1| > εn1/q

}
= lim

n→∞
nP
{|X1|q > εqn

}
= 0.

(3.20)

It suffices to prove that

lim
n→∞

n

n1/q
E
(
X1I{|X1|≤εn1/q}

)
= 0. (3.21)

Suppose that 0 < q < 1. For any δ > 0, there exist n0 ∈ N such that E(|X1|qI{|X1|>εn1/q}) < δ. We
get, for any n ≥ n0,

n

n1/q
E
(|X1|I{|X1|≤εn1/q}

) ≤ n

n1/q
E
(
|X1|I{|X1|≤εn1/q

0 }
)
+ ε1−qE

(
|X1|qI{εn1/q

0 <|X1|≤εn1/q}
)
, (3.22)

and hence

lim sup
n→∞

n

n1/q
E
(|X1|I{|X1|≤n1/q}

) ≤ ε1−qδ. (3.23)

This implies (3.21), since δ > 0 can be chosen arbitrarily small.
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If 1 ≤ q < 2 and EX1 = 0, then we get

n

n1/q

∣
∣E
(
X1I{|X1|≤εn1/q}

)∣∣ =
n

n1/q

∣
∣E
(
X1I{|X1|>εn1/q}

)∣∣ ≤ ε1−qE
(|X1|qI{|X1|>εn1/q}

) −→ 0. (3.24)
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