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Making use of the peaks over threshold (POT) estimation method, we propose a semiparametric
estimator for the renewal function of interoccurrence times of heavy-tailed insurance claims with
infinite variance. We prove that the proposed estimator is consistent and asymptotically normal,
and we carry out a simulation study to compare its finite-sample behavior with respect to the
nonparametric one. Our results provide actuaries with confidence bounds for the renewal function
of dangerous risks.

1. Introduction

Let X1, X2, . . . be independent and identically distributed (iid) positive random variables
(rvs), representing claim interoccurrence times of an insurance risk, with common
distribution function (df) F having finite mean μ and variance σ2. Let

Sm :=

⎧
⎨

⎩

X1 + · · · +Xm, m = 1, 2, . . . ,

0, m = 0
(1.1)

be the claim occurrence times, and define the number of claims recorded over the time
interval [0, t] by

N(t) := max{m ≥ 0, Sm ≤ t}. (1.2)
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The corresponding renewal function is defined by

R(t) := E[N(t)] =
∞∑

k=1

F(k)(t), t > 0, (1.3)

where F(k) is the k-fold convolution of F for k ≥ 1.
The renewal theory has proved to be a powerful tool in stochastic modeling in a wide

variety of applications such as reliability theory, where a renewal process is used to model the
successive repairs of a failed machine (see [1]), risk theory, where a renewal process is used
to model the successive occurrences of risks (see [2, 3]), inventory theory, where a renewal
process is used to model the successive times between demand points (see [4]), manpower
planning, where a renewal process is used to model the sequence of resignations from a
given job (see [5]), and warranty analysis, where a renewal process is used to model the
successive purchases of a new item following the expiry of a free-replacement warranty (see
[6]). Therefore, the need for renewal function estimates seems more than pressing in many
practical problems. For a summary of renewal theory, one refers to Feller [7], Asmussen [8],
and Resnick [9].

Statistical estimation of the renewal function has been considered in several ways.
Using a nonparametric approach, Frees [10] introduced two estimators based on the
empirical counterparts of F and F(k) by suitably truncating the sum in (1.3). Zhao and Subba
Rao [11] proposed an estimation method based on the kernel estimate of the density and the
renewal equation. A histogram-type estimator, resembling to the second estimator of Frees,
was given by Markovich and Krieger [12].

When E[X2] = ∞, Sgibnev [13] gave an asymptotic approximation of (1.3) as follows:

R(t) − t

μ
∼ 1

E[X2]

∫ t

0

(∫∞

y

F(x)dx

)

dy, (1.4)

with F := 1 − F being the tail of F.
By replacing F by its empirical counterpart Fn in (1.4), Bebbington et al. [14] recently

proposed a nonparametric estimator for R(t) in the case where F is of infinite variance, given
by

R̃n(t) :=
t

μ̃
+

1
μ̃2

∫ t

0

(∫∞

y

Fn(x)dx

)

dy, (1.5)

where μ̃ and μ̃2, respectively, represent the first and second sample moments of F. Their main
result says that whenever F belongs to the domain of attraction of a stable law Sα with 1/2 <
α < 1 (see, e.g., [15]), the df of R̃n(t) converges, for suitable normalizing constants, to Sα. This
result provides confidence bounds for R(t) with respect to the quantiles of Sα.

In general, people prefer estimators having simple formulas and carrying some kind
of asymptotic normality property in order to facilitate confidence interval construction. From
this point of view, the estimator R̃n(t) may not be as satisfactory to the users as it should be.
Then an alternative estimator to R̃n(t) would be more useful in practice. Our task is to use the
extreme value theory tools to construct such an alternative estimator.
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Indeed, an important class of models having infinite second-order moments is the set
of heavy-tailed distributions (e.g., Pareto, Burr, Student, etc.). A df F is said to be heavy-tailed
with tail index ξ > 0 if

F(x) = cx−1/ξ
(

1 + x−δ
L(x)

)
, as x −→ ∞, (1.6)

for ξ ∈ (0, 1), δ > 0, and some real constant c, with L a slowly varying function at infinity,
that is, L(tx)/L(x) → 1 as x → ∞ for any t > 0. For details on these functions, see Chapter 0
in Resnick [16] or Seneta [17]. Notice that when ξ ∈ (1/2, 1) we have μ < ∞ and E[X2] = ∞.
In this case, an asymptotic approximation of the renewal function R(t) is given in (1.4).

Prior to Sgibnev [13], Teugels [18] obtained an approximation of R(t) when F is heavy-
tailed with tail index ξ ∈ (1/2, 1):

R(t) − t

μ
∼ ξ2t2F(t)

μ2(1 − ξ)(2ξ − 1)
, as t −→ ∞. (1.7)

Extreme value theory allows for an accurate modeling of the tails of any unknown
distribution, making the (semiparametric) statistical inference more accurate for heavy-tailed
distributions. Indeed, the semiparametric approach permits extrapolating beyond the largest
value of a given sample while the nonparametric one does not since the empirical df vanishes
outside the sample. This represents a big handicap for those dealing with heavy-tailed data.

Extreme value theory has two aspects. The first one consists in approximating the tail
distribution by the generalized extreme value (GEV) distribution, thanks to Fisher-Tippett
theorem (see [19, 20]). The second aspect (commonly known as POT method) is based on
Balkema-de Haan result which says that the distribution of the excesses over a fixed threshold
is approximated by the generalized Pareto distribution (GPD) (see [21, 22]). Those interested
in extreme value theory and its applications are referred to the textbooks of de Haan and
Ferriera [23] and Embrechts et al. [24]. In our situation, we have a fixed threshold equal
to the horizon t = tn (see Section 3). Therefore, the POT method would be the appropriate
choice to derive an estimator for R(t) by exploiting the heavy-tail property of df F used in
approximation (1.4). The asymptotic normality of our estimator is established under suitable
assumptions.

The remainder of the paper is organized as follows. In Section 2, we introduce the GPD
approximation, mostly known as the POT method. A new estimator of the renewal function
R(t) is proposed in Section 3, along with two main results on its limiting behavior. Section 4
is devoted to a simulation study. The proofs are postponed until Section 5.

2. GPD Approximation

The distribution of the excesses, over a “fixed” threshold t, pertaining to df F is defined by

Ft

(
y
)

:= P
(
X1 − t ≤ y | X1 > t

)
, for y > 0. (2.1)
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It is shown, in Balkema and de Haan [21] and Pickands [22], that Ft is approximated by a
generalized Pareto distribution (GPD) function Gξ,β with shape parameter ξ ∈ R and scale
parameter β = β(t) > 0, in the following sense:

sup
y>0

∣
∣Ft

(
y
) − Gξ,β

(
y
)∣
∣ = O

(
t−δL(t)

)
, as t −→ ∞, (2.2)

where t−δL(t) → 0 as t → ∞ for any δ > 0. The GPD function Gξ,β is a two-parameter df
defined by

Gξ,β

(
y
)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 −
(

1 + ξ
y

β

)−1/ξ

, ξ /= 0,

1 − exp
(

−y
β

)

, ξ = 0,

(2.3)

for 0 ≤ y < ∞ if ξ ≥ 0 and 0 ≤ y < −β/ξ if ξ < 0.
Let Y1, . . . , YN be iid rvs with exact GPD Gξ,β. It is well known by standard arguments

(see, e.g., [25, Chapter 9]) that there exists, with probability 1 as N tends to infinity, a local
maximum (ξ̂N, β̂N) for the Log-Likelihood of Gξ,β’s density based on the sample (Y1, . . . , YN).
In this case, by Theorem 3.7 page 447 in the work of Lehmann and Casella [26], we infer that
ξ̂N and β̂N are consistent estimators of ξ and β. Moreover, these estimators are asymptotically
normal provided that ξ > −1/2. The extension to ξ ≤ −1/2 was investigated by Smith [27].

Suppose now that Y1, . . . , YN are drawn not from Gξ,β, but from Ft. In view of
the asymptotic approximation (2.2), Smith [27] has proposed estimates for (ξ, β) via the
Maximum Likelihood approach. The obtained estimators (ξ̂N, β̂N) are solutions of the
following system:

1
N

N∑

i=1

log
(

1 + ξ
yi

β

)

= ξ,

1
N

N∑

i=1

yi/β

1 + yi/β
=

1
1 + ξ

,

(2.4)

where (y1, . . . , yN) is a realization of (Y1, . . . , YN).
Letting t = tN → ∞ as N → ∞ and βN = tNξ and making use of (2.2), Smith [28]

established, in Theorem 3.2, the asymptotic normality of (ξ̂N, β̂N) as follows:

√
N

⎛

⎜
⎜
⎝

β̂N
βN

− 1

ξ̂N − ξ

⎞

⎟
⎟
⎠

D−→ N2

(
0,Q−1

)
as N −→ ∞, (2.5)
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where

Q
−1 = (1 + ξ)

(
2 −1

−1 1 + ξ

)

, (2.6)

provided that
√
Nt−δN L(tN) → 0 as N → ∞ and x 	→ x−δ

L(x) is nonincreasing near infinity.

In the case
√
Nt−δN L(tN) � 0, the limiting distribution in (2.5) is biased. Here D−→ denotes

convergence in distribution and N2(ω,Σ) stands for the bivariate normal distribution with
mean vector ω and covariance matrix Σ.

3. Estimating the Renewal Function in Infinite Time

Since we are interested in the renewal function in infinite time, we must assume that time
t is large enough and for asymptotic considerations, we will assume that t depends on the
sample size n. That is, t = tn, with tn → ∞ as n → ∞. Relation (1.7) suggests that in order
to construct an estimator of R(tn), we need to estimate μ, ξ and F(tn). Let n = n(t) be the
number of Xis, which are observed on horizon tn and denoted by

Ntn := card({Xi > tn : 1 ≤ i ≤ n}), (3.1)

the number of exceedances over tn, with card(K) being the cardinality of set K. Notice that
Ntn is a binomial rv with parameters n and pn := F(tn) for which the natural estimator is
p̂n := Nt/n.

Select, from the sample (X1, . . . , Xn), only those observations Xi1 , . . . , XiNtn
that exceed

tn. The Nt excesses

Ej:n := Xij − tn, j = 1, . . . ,Ntn (3.2)

are iid rvs with common df Ftn . As seen in Section 2, the maximum likelihood estimators
(ξ̂n, β̂n) are solutions of the following system:

1
vn

vn∑

j1

log
(

1 + ξ
ej:n

β

)

= ξ,

1
v

vn∑

j=1

ej:n/β

1 + ej:n/β
=

1
1 + ξ

,

(3.3)

where vn is an observation of Ntn and the vector (e1:n, . . . , evn:n) a realization of
(E1:n, . . . , ENtn :n). Regarding the distribution mean μ = E[X1], we know that, for ξ ∈
(0, 1/2], X1 has finite variance and therefore μ could naturally be estimated by the sample
mean X := n−1Sn which, by the Central Limit Theorem (CLT), is asymptotically normal.
Whereas for ξ ∈ (1/2, 1), X1 has infinite variance, in which case the CLT is no longer
valid. This case is frequently met in real insurance data (see, e.g., [29]). Using the GPD
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approximation, Johansson [30] has proposed an alternative estimator for μ =
∫∞

0 xdF(x). For
each n ≥ 1, we write μ as the sum of two components:

μ∗
n :=
∫ tn

0
xdF(x), τn :=

∫∞

tn

xdF(x) = −
∫∞

0
(tn + s)dF(tn + s). (3.4)

Johansson [30] defined his estimator of μ, by estimating both F(x) and F(tn + s), as follows:

μ̂
(J)
n :=

∫ tn

0
xdFn(x) −

∫∞

0
(tn + s)d̂F(tn + s), (3.5)

where Fn is the empirical df based on the sample (X1, . . . , Xn) and ̂F(tn + s) is an estimate of
F(tn + s) obtained from the relation

Ftn(s) =
F(tn + s)

F(tn)
, s > 0, (3.6)

which implies that F(tn + s) = pnFtn(s), s > 0. Approximation (2.2) motivates us to estimate

Ftn(s) by ̂Ftn(s) := Gξ̂n,β̂n
(s), s > 0. Hence, an estimate of F(tn + s) is

̂
F(tn + s) := p̂nGξ̂n,β̂n

(s), s > 0. (3.7)

By integrating (3.5), we get

μ̂
(J)
n =

1
n

n∑

i=1

Xi1{Xi≤tn} + p̂n

(

tn +
β̂n

1 − ξ̂n

)

=: μ̂∗
n + τ̂n,

(3.8)

with ξ̂n ∈ (0, 1) with large probability. Here, 1K denotes the indicator function of set K.

Respectively, substituting μ̂
(J)
n , ξ̂n, and p̂n for μ, ξ and F(tn) in (1.7) yields the following

estimator for the renewal function R(tn)

R̂n(tn) :=
tn

μ̂
(J)
n

+
ξ̂2
nt

2
np̂n

μ̂
(J)2
n

(
1 − ξ̂n

)(
2ξ̂n − 1

) . (3.9)

The asymptotic behavior of R̂n(tn) is given by the following two theorems.
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Theorem 3.1. Let F be a df fulfilling (1.6) with ξ ∈ (1/2, 1). Suppose that L is locally bounded in
[x0,+∞) for x0 ≥ 0 and x 	→ x−δ

L(x) is nonincreasing near infinity, for some δ > 0. Then, for any
tn = O(nαξ/4) with α ∈ (0, 1), one has

R̂n(tn) − R(tn) = OP

(
n(α/2)(ξ−1/4)−1/2

)
, as n −→ ∞. (3.10)

Theorem 3.2. Let F be as in Theorem 3.1. Then for any tn = O(nαξ/4) with α ∈ (4/(1 + 2ξδ), 1), we
have

√
n

sntn

(
R̂n(tn) − R(tn)

) D−→ N(0, 1), as n −→ ∞, (3.11)

where

s2
n := θ2

1 +
pn
(
1 − pn

)

γ2
n

(

θ2 + θ1

(

tn +
βn

1 − ξ

))2

+
pn

γ2
n

(

θ3 +
θ1pnβn

(1 − ξ)2

)2

+
θ2

1β
2
np

3
n

γ2
n(1 − ξ)2

− θ1βnp
2
n

γ2
n

(

θ3 +
θ1pnβn

(1 − ξ)2

) (3.12)

with

θ1 := − 1
μ2

− 2ξ2tnpn

μ3(1 − ξ)(2ξ − 1)
,

θ2 :=
ξ2tn

μ2(1 − ξ)(2ξ − 1)
,

θ3 :=
tnpn

μ2(1 − ξ)(2ξ − 1)

(

2ξ +
4ξ3 − 3ξ2

(1 − ξ)(2ξ − 1)

)

,

(3.13)

pn := F(tn), βn := tnξ, and γ2
n := Var(X11{X1≤tn}).

4. Simulation Study

In this section, we carry out a simulation study (by means of the statistical software R, see
[31]) to illustrate the performance of our estimation procedure, through its application to
sets of samples taken from two distinct Pareto distributions F(x) = 1 − x−1/ξ, x > 1 (with tail
indices ξ = 3/4 and ξ = 2/3). We fix the threshold at 4, which is a value above the intermediate
statistic corresponding to the optimal fraction of upper-order statistics in each sample. The
latter is obtained by applying the algorithm of Cheng and Peng [32]. For each sample size,
we generate 200 independent replicates. Our overall results are then taken as the empirical
means of the values in the 200 repetitions.

A comparison with the nonparametric estimator is done as well. In the graphical
illustration, we plot both estimators versus the sample size ranging from 1000 to 20000.
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Figure 1: Plots of the new and sample estimators of the renewal function, of interoccurrence times of
Pareto-distributed claims with tail indices 2/3 (a) and 3/4 (b), versus the sample size. The horizontal line
represents the true value of the renewal function R(t) evaluated at t = 4.

Table 1: Semiparametric and nonparametric estimates of the renewal function of interoccurrence times
of Pareto-distributed claims with shape parameter 3/4. Simulations are repeated 200 times for different
sample sizes.

True value R = 1.708

Sample size Semiparametric R̂ Nonparametric R̃

Mean Bias RMSE Mean Bias RMSE
1000 1.696 −0.013 0.250 2.141 0.433 0.553
2000 1.719 0.011 0.183 1.908 0.199 0.288
5000 1.705 −0.003 0.119 1.686 −0.022 0.168

Figure 1 clearly shows that the new estimator is consistent and that it is always
better than the nonparametric one. For the numerical investigation, we take samples of sizes
1000, 2000 and 5000. In each case, we compute the semiparametric estimate R̂ as well as the
nonparametric estimate R̃. We also provide the bias and the root mean squared error (rmse).

The results are summarized in Tables 1 and 2 for ξ = 3/4 and ξ = 2/3 respectively.
We notice that, regardless of the tail index value and the sample size, the semiparametric
estimation procedure is more accurate than the nonparametric one.

5. Proofs

The following tools will be instrumental for our needs.
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Table 2: Semiparametric and nonparametric estimates of the renewal function of interoccurence times
of Pareto-distributed claims with shape parameter 2/3. Simulations are repeated 200 times for different
sample sizes.

True value R = 2.222

Sample size Semiparametric R̂ Nonparametric R̃

Mean Bias RMSE Mean Bias RMSE
1000 2.265 0.042 0.185 2.416 0.193 0.229
2000 2.247 0.024 0.157 2.054 −0.167 0.223
5000 2.223 0.001 0.129 2.073 −0.149 0.192

Proposition 5.1. Let F be a df fulfilling (1.6) with ξ ∈ (1/2, 1), δ > 0, and some real c. Suppose that
L is locally bounded in [x0,+∞) for x0 ≥ 0. Then for n large enough and for any tn = O(nαξ/4), α ∈
(0, 1), one has

pn = c(1 + o(1))n−α/4,

γ2
n = O

(
n(α/2)(ξ−1/2)) ,

s2
n = O

(
n(α/2)(ξ−1/2)),

√
npnt

−δ
n L(tn) = O

(
n−α/8−αξδ/4+1/2),

(5.1)

where pn, γ2
n , and s2

n are those defined in Theorem 3.2.

Lemma 5.2. Under the assumptions of Theorem 3.2, one has, for any real numbers u1, u2, u3 and
u4,

E

⎡

⎢
⎣exp

⎧
⎪⎨

⎪⎩
iu1

√
n

γn

(
μ̂∗
n − μ∗

n

)
+ i
√
npn(u2, u3)

⎛

⎜
⎝

β̂n
βn

− 1

ξ̂n − ξ

⎞

⎟
⎠ + iu4

√
n
(
p̂n − pn

)

√

pn
(
1 − pn

)

⎫
⎪⎬

⎪⎭

⎤

⎥
⎦

−→ exp

{

−u
2
1

2
− 1

2
(u2, u3)Q−1

(
u2

u3

)

− u2
4

2

}

, as n −→ ∞,

(5.2)

where i2 = −1.

Proof of the Proposition. We will only prove the second result, the other ones are straightfor-
ward from (1.6). Let x0 > 0 be such that F(x) = cx−1/ξ (1 + x−δ

L(x)), for x > x0. Then for n
large enough, we have

E
[
X11{X1≤tn}

]
=
∫ tn

0
xdF(x) =

∫x0

0
xdF(x) +

∫ tn

x0

xdF(x). (5.3)

Recall that μ < ∞, hence
∫x0

0 xdF(x) < ∞. Making use of the proposition assumptions, we get
E[X11{X1≤tn}] = O(1) and E[X2

11{X1≤tn}] = O(t2−1/ξ
n ) and therefore γ2

n = O(nα/2(ξ/2−1)).

Proof of Lemma 5.2. See Johansson [30].
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Proof of Theorem 3.1. We may readily check that for all large n,

(
R̂n(tn) − Rn(tn)

)

tn
∼ An + Bn + Cn,

(5.4)

where

An :=

⎛

⎜
⎝− 1

μ̂
(J)
n μ

−
ξ2tnpn

(
μ̂
(J)
n + μ

)

μ̂
(J)2
n μ2(1 − ξ)(2ξ − 1)

⎞

⎟
⎠

(
μ̂
(J)
n − μ

)
,

Bn :=
ξ̂2
ntn

μ̂
(J)2
n

(
1 − ξ̂n

)(
2ξ̂n − 1

)
(
p̂n − pn

)
,

Cn :=
tnpn

μ̂
(J)2
n

(
1 − ξ̂n

)(
2ξ̂n − 1

) ×

⎛

⎜
⎝ξ̂n + ξ +

2ξ2
(
ξ̂n + ξ

)
− 3ξ2

(1 − ξ)(2ξ − 1)

⎞

⎟
⎠

(
ξ̂n − ξ

)
.

(5.5)

Johansson [30] proved that there exists a bounded sequence kn such that

μ̂
(J)
n − μ = OP

⎛

⎝γn

√

kn
n

⎞

⎠, (5.6)

hence μ̂
(J)
n − μ = OP(n(α/4)(ξ−1/2)−1/2). The first result of the proposition yields that

tnpn
(
μ̂
(J)
n − μ

)
= OP

(
n(α/4)(2ξ−3/2)−1/2

)
. (5.7)

Since (α/4)(2ξ − 3/2) − 1/2 < 0, then tnpn (μ̂(J)
n − μ) = oP(1). On the other hand, by the CLT

we have

p̂n − pn = OP

(√
pn
n

)

, (5.8)

then tn(p̂n − pn) = OP(n(α/4)(ξ−1/2)−1/2) = oP(1). On the other hand, Smith [28], yields

ξ̂n − ξ = OPt
−δ
n L(tn), (5.9)
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it follows that, ξ̂2
ntn (p̂n − pn) = OP(n(α/4)(ξ(1−2δ)−1/2)−1/2) = oP(1), therefore

ξ̂2
ntn
(
p̂n − pn

)

μ̂
(J)2
n

(
1 − ξ̂n

)(
2ξ̂n − 1

) = oP(1),

tnpn
(
ξ̂n − ξ

)
= OP

(
n(α/4)(ξ(1−δ)−1)

)
= oP(1),

ξ̂ntnpn
(
ξ̂n − ξ

)
= OP

(
n(α/4)(ξ(1−2δ)−1)

)
= oP(1),

pn
(
ξ̂n − ξ

)
= OP

(
n(−α/4)((1+ξδ))

)
= oP(1).

(5.10)

Thus,

(
ξ̂n + ξ

)

μ̂
(J)2
n

(
1 − ξ̂n

)(
2ξ̂n − 1

) tnpn
(
ξ̂n − ξ

)
P−→ 0,

tnpn
(

2ξ2
(
ξ̂n + ξ

)
− 3ξ2

)

μ̂
(J)2
n

(
1 − ξ̂n

)(
2ξ̂n − 1

)
(1 − ξ)(2ξ − 1)

(
ξ̂n − ξ

)
P−→ 0 as n −→ ∞.

(5.11)

Therefore for all large n, we get R̂(tn) − R(tn) = OP(n(α/2)(ξ−1/4)−1/2), as sought.

Proof of Theorem 3.2. From the proof of Theorem 3.1, for all large n, it is easy to verify that

(
R̂n(tn) − Rn(tn)

)

tn
= θ1(1 + oP(1))

(
μ̂
(J)
n − μ

)

+ θ2(1 + oP(1))
(
p̂n − pn

)

+ θ3(1 + oP(1))
(
ξ̂n − ξ

)
,

(5.12)

where

θ1 = − 1
μ2

− 2ξ2tnpn

μ3(1 − ξ)(2ξ − 1)
,

θ2 =
ξ2tn

μ2(1 − ξ)(2ξ − 1)
,

θ3 =
tnpn

μ2(1 − ξ)(2ξ − 1)

(

2ξ +
4ξ3 − 3ξ2

(1 − ξ)(2ξ − 1)

)

.

(5.13)
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Multiplying by
√
n/γn and using the proposition and the lemma together with the continuous

mapping theorem, we find that

√
n

γntn

(
R̂n(tn) − Rn(tn)

)
= θ1(1 + oP(1))

√
n

γn

(
μ̂
(J)
n − μ

)

+ θ2(1 + oP(1))
√
n

γn

(
p̂n − pn

)

+ θ3(1 + oP(1))
√
n

γn

(
ξ̂n − ξ

)
.

(5.14)

On the other hand, from Johansson [30], we have for all large n

√
n

γn

(
μ̂
(J)
n − μ

)
=

√
n

γn

(
μ̂∗
n − μ∗

n

)
+
(

tn +
βn

1 − ξn

)√
n

γn

(
p̂n − pn

)

+
pnβn

(1 − ξ)2

√
n

γn

(
ξ̂n − ξ

)
+

pn
1 − ξ

√
n

γn

(
β̂n − βn

)
+ oP(1).

(5.15)

This enables us to rewrite (
√
n/γntn)(R̂n(tn) − Rn(tn)) into

θ1

√
n

γn

(
μ̂∗
n − μ∗

n

)
+

√

pn
(
1 − pn

)

γn

(

θ2 + θ1

(

tn +
βn

1 − ξ

))√
n
(
p̂n − pn

)

√

pn
(
1 − pn

)

+ θ1
βnpn

√
pn

γn(1 − ξ)

√
n

pn

(
β̂n
βn

− 1

)

+
√
pn

γn

(

θ3 + θ1
pnβn

(1 − ξ)2

)√
n

pn

(
ξ̂n − ξ

)
+ oP(1),

Q
−1 = (1 + ξ)

(
2 −1

−1 1 + ξ

)

.

(5.16)

In view of Lemma 5.2, we infer that for all large n, the previous quantity is

θ1W1 +

√

pn
(
1 − pn

)

γn

(

θ2 + θ1

(

tn +
βn

1 − ξ

))

W2

+

√
2(1 + ξ)θ1βnpn

√
pn

γn(1 − ξ)
W3 +

(1 + ξ)√pn

γn

(

θ3 +
θ1pnβn

(1 − ξ)2

)

W4 + oP(1),

(5.17)
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where (Wi)i=1,4 are standard normal rvs with E[WiWj] = 0 for every i, j = 1, . . . , 4 with i /= j,
except for

E[W3W4] = E

[
√

2(1 + ξ)

√
n

pn

(
β̂n
βn

− 1

)

(1 + ξ)

√
n

pn

(
ξ̂n − ξ

)
]

=
√

2(1 + ξ)(1 + ξ)E

[√
n

pn

(
β̂n
βn

− 1

)√
n

pn

(
ξ̂n − ξ

)
]

= −
√

2(1 + ξ)(1 + ξ)2.

(5.18)

Therefore, the rv (
√
n/γntn)(R̂n(tn) − Rn(tn)) is Gaussian with mean zero with asymptotic

variance

K2
n := θ2

1 +
pn
(
1 − pn

)

γ2
n

(

θ2 + θ1

(

tn +
βn

1 − ξ

))2

+
2(1 + ξ)θ2

1β
2
np

3
n

γ2
n(1 − ξ)2

+
(1 + ξ)2pn

γ2
n

(

θ3 +
θ1pnβn

(1 − ξ)2

)2

− 2θ1βnp
2
n(1 + ξ)4

(1 − ξ)γ2
n

(

θ3 +
θ1pnβn

(1 − ξ)2

)

+ oP(1).

(5.19)

Observe now that K2
n = s2

n + oP(1), where s2
n is that in (3.12), this completes the proof of

Theorem 3.2.

6. Conclusion

In this paper, we have proposed a new estimator for the renewal function of heavy-tailed
claim interoccurence times, via a semiparametric approach. Our considerations are based on
one aspect of the extreme value theory, namely, the POT method. We have proved that our
estimator is consistent and asymptotically normal. Moreover, simulations show that it is more
accurate than the nonparametric estimator given by Bebbington et al. [14].
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Mathematics, vol. 44, pp. 423–453, 1943.

[21] A. A. Balkema and L. de Haan, “Residual life time at great age,” Annals of Probability, vol. 2, pp.
792–804, 1974.

[22] J. Pickands III, “Statistical inference using extreme order statistics,” The Annals of Statistics, vol. 3, pp.
119–131, 1975.

[23] L. de Haan and A. Ferreira, Extreme Value Theory: An Introduction, Springer Series in Operations
Research and Financial Engineering, Springer, New York, NY, USA, 2006.
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