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We consider two well-known facts in econometrics: (i) the failure of the orthogonality assumption
(i.e., no independence between the regressors and the error term), which implies biased and
inconsistent Least Squares (LS) estimates and (ii) the consequences of using nonstationary
variables, acknowledged since the seventies; LS might yield spurious estimates when the variables
do have a trend component, whether stochastic or deterministic. In this work, an optimistic
corollary is provided: it is proven that the LS regression, employed in nonstationary and
cointegrated variables where the orthogonality assumption is not satisfied, provides estimates that
converge to their true values. Monte Carlo evidence suggests that this property is maintained in
samples of a practical size.

1. Introduction

Two well-known facts lie behind this work: (i) the behavior of LS estimates whenever
variables are nonstationary and (ii) the failure of the orthogonality assumption between
independent variables and the error term, also in an LS regression.

(1) The reappraisal of the impact of unit roots in time-series observations, initiated in
the late seventies, had profound consequences for modern econometrics. It became
clear that (i) insufficient attention was being paid to trending mechanisms and (ii)
most macroeconomic variables are probably nonstationary; such an appraisal gave
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rise to an extraordinary development that substantially modified the way empirical
studies in time-series econometrics are carried out. Research into nonstationarity
has advanced significantly since it was reassessed in several important papers, such
as those of [1–5].

(2) The orthogonality problem constitutes another significant research program in
econometrics; its formal seed can be traced back to [6], where a proposal to solve the
identification problem is made in the estimation of demand and supply curves (see
[7]). Typically, in textbooks, the method of Instrumental Variables (IVs) is proposed
as a solution to the problem of simultaneous equations and, broadly speaking,
whenever there is no independence between the error term and the regressors, that
is, when the orthogonality assumption is not satisfied.

This paper aims to study the consequences of using nonstationary variables in an LS
regression when the regressor is related to the error term; this is done in a simple regression
framework. The specification under particular scrutiny is

yt = α + βxt + ut. (1.1)

To the best of our knowledge, the asymptotics—and the finite-sample properties—of the
combination of nonstationarity, nonorthogonality between xt and uy,t, and LS estimates,
have been scarcely studied (but see [8]). That said, we acknowledge that there are several
comprehensive studies concerning the use of IV in the presence of nonstationarity [9, 10], for
example, studied the asymptotics as well as the finite-sample properties of the IV estimator
in the context of a cointegrated relationship, and proved that even spurious instruments
(i.e., I(1) instruments not structurally related to the regressors) provide consistent estimates.
Phillips [11] proved that, when there is no structural relationship between the regressand
and a single regressor, that is, when there is no cointegration between y and x, the use of
spurious instruments does not prevent the phenomenon (this is a simple extension of [5]). We
derive the asymptotic behavior of LS estimates, where the data generating processes (DGPs)
consist of two cointegrated variables in which the regressor bears a relationship with the error
term. In this case, LS provide consistent estimates. Additionally, some Monte Carlo evidence
is presented to account for the adequacy of asymptotic results in finite samples. In other
words, LS estimates of the true DGP parameters, μy and βy (see (2.4) in the next section), do
not require the information on the parameters of x, that is, xt is weakly exogenous for the
estimation of μy and βy as defined by [12].

2. Relevant DGPs

This work aims to study the asymptotic properties of LS estimates when neither the
orthogonality nor the stationarity assumptions are satisfied. Our approach is twofold:
we assume (i) the variable x is statistically related to the innovations of y, as in the
problem of independent variables measured with error and (ii) the DGPs of both variables
are interdependent, as in the problem of simultaneity. All the cases studied consider
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nonstationary and cointegrated variables (DGP (2.1) is included because it eases the
comprehension of the paper)

xt = μx + ux,t, (2.1)

xt = μx + xt−1 + ux,t, (2.2)

xt = X0 +
(
μx + ρy1

)
t + ξx,t−1 + ρy2ξy,t−1, (2.3)

yt = μy + βyxt +
(
uy,t + ρxux,t

)

︸ ︷︷ ︸
innovations

,
(2.4)

where uz,t, for z = x, y, are independent white noises with zero-mean and constant variance
σ2
z , ξzt =

∑t
i=0 uzi and Z0 is an initial condition. We may relax the assumptions made for

the innovations; for example, we could force them to obey the general level conditions in
[5, Assumption 1]. Nevertheless, although the asymptotic results would still hold in this
case, our primary target concerns the problem of orthogonality between the regressor and
the error term, not those of autocorrelation or heteroskedasticity. These DGPs allow for an
interesting variety of cases (note that the asymptotics of the LS estimates when x and y
have been independently generated by any of first three DGPs can be found, e.g., in [13];
notwithstanding, the authors can provide these cases as mathematica code upon request).

(1) Bookcase no. 1: DGP of x is (2.1) and DGP of y is (2.4) with ρx = 0. When the
variables are generated in this manner, we fulfill the classical assumptions made
in most basic econometrics textbooks. The variables are stationary, the innovations
are homoskedastic and independent, and so forth. It is straightforward to show
that: α̂

p
→ μy , β̂

p
→ βy and σ̂2 p

→ σ2
y.

(2) Bookcase no. 2: DGP of x is (2.1) and DGP of y is (2.4) with ρx /= 0. These DGPs
also represent a typical example of a problem of orthogonality in most basic
econometrics textbooks. Although the variables are stationary and the innovations
are homoskedastic and independent, the explanatory variable is related to the
innovations of y. It is well known that the estimates do not converge to their true
value. In particular, it is straightforward to show that: α̂

p
→ μy − μxρx, β̂

p
→ βy + ρx

and σ̂2 p
→ σ2

y.

(3) Bookcase no. 3: DGP of x is (2.2) and DGP of y is (2.4) with ρx = 0. These DGPs
allow the relationship between x and y to be cointegrated à la [14]. Once again,
asymptotic results have been known for a long time, obtaining these does not entail
any particular difficulty: α̂

p→ μy , β̂
p→ βy, σ̂2 p→ σ2

y and 1 − R2 = Op(T−2).

(4) Nonstationarity and non-orthogonality case no. 1: DGP of x is (2.2) and DGP of y
is (2.4). Notwithstanding, the obvious problem of orthogonality between x and the
error term, the variables remain cointegrated. The artifact employed to induce the
orthogonality problem can be considered as, for example, measurement errors in
the explanatory variable. One should expect that, in the presence of this problem,
estimates would not converge to their true value. We prove below that, contrary to
expectations, this is not the case.

(5) Nonstationarity and non-orthogonality case no. 2: DGP of x is (2.3) and DGP of
y is (2.4). As in the previous case, we have a cointegrated relationship between x
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and y, only in this case, the problem of orthogonality between the regressor and the
error term is even more explicit; the artifact employed to induce the orthogonality
problem can be related to the typical simultaneous equations case. We also prove
below that Least Squares (LS) provide consistent estimates.

The common belief as regards the last two cases is that the failure of the orthogonality
assumption induces LS to generate inconsistent estimates, even in a cointegrated relationship.
In fact, when the variables are generated as in (2.2)–(2.4), the estimates of the parameter
converge to their true value (note that we did not consider the case where the orthogonality
assumption is not satisfied because of the omission of a relevant variable; [15] studied the
later case and proved that the LS estimates do not converge to their true values). This is
proven in Theorem 2.1:

Theorem 2.1. Let yt be generated by (2.4).

(i) Let xt be generated by (2.2). The innovations of both DGPs, uz,t, for z = y, x, are
independent white noises with zero-mean and constant variance σ2

z ; use yt and xt to
estimate regression (1.1) by LS. Hence, as T → ∞,

(a) α̂
p
→ μy ,

(b) β̂
p
→ βy,

(c) T−3/2tβ = Op(1),

(d) σ̂2 p
→ σ2

y + ρ2
xσ

2
x,

(e) T2(1 − R2)
p
→ 12(σ2

y + ρ
2
xσ

2
x)/(βyμx)

2.

(ii) Let xt be generated by (2.3). The innovations of both DGPs, uz,t, for z = y, x, are
independent white noises with zero-mean and constant variance σ2

z ; use yt and xt to
estimate regression (1.1) by LS. Hence, as T → ∞,

(a) α̂
p→ μy ,

(b) β̂
p→ βy,

(c) T−3/2tβ = Op(1),

(d) σ̂2 p→ σ2
y + ρ

2
xσ

2
x,

(e) T2(1 − R2)
p→ 12(σ2

y + ρ
2
xσ

2
x)/[βy(μx + ρy1)]2.

Proof. See Appendix A.

These asymptotic results show that a relationship between the innovations of yt
and xt—as stated by DGPs (2.2), (2.3), and (2.4)—does not obstruct the consistency of LS
estimates when the variables are nonstationary and cointegrated (our results are in line with
those of [8]). In other words, the failure of the orthogonality assumption does not preclude
adequate asymptotic properties of LS. Furthermore, it can be said that xt is weakly exogenous
for the estimation of μy and βy but not for the estimation of σ2. The formula of the variance
is noteworthy and the asymptotic expression of tβ depends on the values of σ2

x, σ2
y, and ρx.

In order to emphasize the relevance of this result, we modified the DGPs of
the variables in an effort to strengthen the link between the DGPs and the literature
on simultaneous equations. The modifications are twofold and appear in the following
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propositions. As in Theorem 2.1, the results in proposition 1 are made under the assumption
that innovations are i.i.d processes.

Proposition 2.2. Let yt and xt be generated by

yt − βyxt − μy = uy,t,

−βxyt + xt − μx − γxt = ux,t,
(2.5)

where uz,t, for z = x, y, are independent white noises with zero mean and variance σ2
z . Let these

variables be used to estimate regression (1.1) by LS. Hence, as T → ∞,

(1) α̂
p
→ μy,

(2) β̂
p
→ βy ,

(3) T−3/2tβ = Op(1),

(4) σ̂2 p
→ σ2

y,

(5) T2(1 − R2)
p
→ 12σ2

y(1 − βxβy)
2/(βyγx)2.

Proof. See Appendix A.

Proposition 2.3. Let yt and xt be generated by

yt − βyxt − μy = uy,t,

−βxyt + xt −X0 − μxt = ξx,t,
(2.6)

where uz,t, for z = x, y, are independent white noises with zero mean and variance σ2
z , and ξx,t =∑t

i=0 ux,i. Let these variables be used to estimate regression (1.1) by LS. Hence, as T → ∞,

(1) α̂
p→ μy,

(2) β̂
p→ βy ,

(3) T−3/2tβ = Op(1),

(4) σ̂2 p
→ σ2

y,

(5) T2(1 − R2)
p
→ 12σ2

y(1 − βxβy)
2/(μxβy)

2.

Proof. See Appendix A.

The two systems, represented in (2.5) and (2.6), bear a striking resemblance to classical
examples of simultaneous equations in econometrics. The fundamental variations are, (i)
a deterministic trend in the variable xt in system (2.5) and (ii) a stochastic as well as a
deterministic trend in system (2.6). The asymptotics of LS estimates do not show significant
differences from those in Theorem 2.1. Note, however, that xt is weakly exogenous for the
estimation of μy , βy , and σ2

y. The main result is in fact identical, that is, the failure of
orthogonality between xt and the error term does not preclude the estimates from converging
to their true values.
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Asymptotic properties of LS estimators clearly provide an encouraging perspective
in time-series econometrics. Notwithstanding, we should bear in mind that asymptotic
properties may be a poor finite-sample approximation. In order to observe the behavior of LS
estimates in finite samples, we present two Monte Carlo experiments. Firstly, we represent
graphically the convergence process of β̂ towards its true value, β. In accordance with
asymptotic results, β̂ − β p→ 0 as T → ∞. We reproduce the behavior of the later difference
in figure 1. The variables x and y are generated according to (2.3) and (2.4), respectively.
The sample size varies from 50 to 700 whilst βy goes from −5 to 5. The remaining parameters
appear below the figure.

A brief glance at Figure 1 reveals that the asymptotic results stated in Theorem 2.1
approximate conveniently the finite-sample results for T > 150. For smaller sample sizes, it
can be seen that the difference between the parameter and its estimates corresponds usually
to approximately 1.5% or less of the value of the former (we tried different variables in the y
axis (ρx, ρy1, ρy2, σ2

y, σ
2
y, . . .); all of these trials produced similar figures).

The second Monte Carlo is built upon the same basis. In Table 1, each cell indicates
the sample mean of β̂ − βy and, below, its estimated standard deviation (in parentheses).
The number of replications is 10,000. The parameter values used in the simulation are
explicit within the table. The variables, x and y, are generated according to (2.3) and (2.4),
respectively. Sample size ranges from T = 50–700; ρy1 = −0.15; ρx = 4; σ2

y = σ2
x = 1; μy = 4.20;

the error term is a white noise with variance σ2
ε = 1.

Table 1 shows that LS estimates of a nonstationary relationship with a nonorthog-
onality problem quickly converge to their true value; with a sample size as small as 50
observations, the difference between βy and its estimate averages, at most, 0.015, and
represents a deviation from the true value of 1.5%; in many other cases, the deviation
is even smaller, of order 10−3–10−4. These differences tend to diminish further as the
sample size grows. In fact, when there are 700 observations, the order of magnitude of
such differences oscillates between 10−5–10−8. We performed the same experiment with
autocorrelated disturbances AR(1) with φ = 0.7 (data available upon request); using such
disturbances severely deteriorates the efficiency of the LS estimates although β̂ − βy still
converges to zero; we do not focus on this issue because, as mentioned earlier, neither
autocorrelation nor heteroskedasticity are under scrutiny in this work.

3. Concluding Remarks

Using cointegrated variables in an LS regression where the regressor is not independent of
the error term does not preclude the method from yielding consistent estimates. In other
words, it is proven that, under these circumstances, the regressor remains weakly exogenous
for the estimation of μy and βy (and for σ2

y in systems (2.5) and (2.6)) as defined by [12].
Furthermore, the finite-sample evidence indicates that LS provide good estimates even in
samples of a practical size.

Notwithstanding, one should note the striking resemblance between the properties
of the DGPs used in the propositions and those of variables belonging to a classical
simultaneous-equation model. It may be possible that the estimation of such models, even if
the macroeconomic variables they are nourished with are not stationary, would yield correct
estimates. Of course, such a possibility rules out the existence of structural shifts, parameter
instability, omission of a relevant variable, or any other major assumption failure.



Journal of Probability and Statistics 7

−0.03
−0.02
−0.01

0
0.01
0.02
0.03
0.04
0.05
0.06

β̂
−
β
y

Sample size (T)
βy

50 100 200 300 400 500 600 700
2.5

0
−2.5

−5

Figure 1: Finite-sample behavior of β̂ − βy: sample size and βy range from T = 50–700 and −5 to 5,
respectively; ρy1 = −0.15; ρy2 = 1.5; ρx = 4; σ2

y = σ2
x = 1; μy = 4.20; μx = 0.70. Number of replications

(for each coordinate): 20; grid density: 70 × 30.

Table 1: Finite-sample behavior of β̂ − βy: mean and standard deviation.

DGP parameters Sample size
βy μx Statistic 50 100 200 500 700

−0.9

−1.5 Mean 1.5 · 10−2 3.1 · 10−3 7.8 · 10−4 8.6 · 10−5 5.6 · 10−5

Stand.dev. (1.8 · 10−3) (1.7 · 10−4) (1.8 · 10−5) (1.1 · 10−6) (3.9 · 10−7)

−0.75 Mean 1.5 · 10−2 3.3 · 10−3 7.6 · 10−4 1.0 · 10−4 5.3 · 10−5

Stand.dev. (1.9 · 10−3) (1.6 · 10−4) (1.8 · 10−5) (1.1 · 10−6) (3.9 · 10−7)

0.75 Mean 1.4 · 10−2 3.2 · 10−3 8.0 · 10−4 1.0 · 10−4 5.8 · 10−5

Stand.dev. (1.7 · 10−3) (1.6 · 10−4) (1.8 · 10−5) (1.0 · 10−6) (3.9 · 10−7)

1.5 Mean 1.5 · 10−2 3.0 · 10−3 7.2 · 10−4 1.0 · 10−4 5.8 · 10−5

Stand.dev. (1.8 · 10−3) (1.6 · 10−4) (1.8 · 10−5) (1.1 · 10−6) (3.9 · 10−7)

0.9

−1.5 Mean 2.2 · 10−3 6.2 · 10−4 1.4 · 10−4 2.1 · 10−5 1.1 · 10−5

Stand.dev. (2.4 · 10−4) (2.8 · 10−5) (3.4 · 10−6) (2.1 · 10−7) (8.0 · 10−8)

−0.75 Mean 2.4 · 10−3 6.0 · 10−4 1.5 · 10−4 1.9 · 10−5 1.7 · 10−5

Stand.dev. (2.3 · 10−4) (2.8 · 10−5) (3.4 · 10−6) (2.2 · 10−7) (7.9 · 10−8)

0.75 Mean 2.4 · 10−3 5.8 · 10−4 1.3 · 10−4 2.2 · 10−5 5.4 · 10−6

Stand.dev. (2.3 · 10−4) (2.9 · 10−5) (3.5 · 10−6) (2.2 · 10−7) (8.0 · 10−8)

1.5 Mean 2.2 · 10−3 5.6 · 10−4 1.2 · 10−4 2.1 · 10−5 1.1 · 10−5

Stand.dev. (2.4 · 10−4) (2.9 · 10−5) (3.4 · 10−6) (2.2 · 10−7) (7.9 · 10−8)

Appendix

A. Proof of Theorem 2.1 and Propositions 2.2 and 2.3

The estimated specification in Theorem 2.1 and Propositions 2.2 and 2.3 is yt = α+ βxt + ut. In
all three cases, we employ the following classical LS formulae (all sums run from t = 1 to T
unless otherwise specified):

(i) B = (X′X)−1X′Y ,

(ii) σ̂2 = T−1 ∑ û2
t = T

−1[
∑
y2
t + α̂

2T + β̂2 ∑x2
t − 2α̂

∑
yt − 2β̂

∑
ytxt + 2α̂β̂

∑
xt],

(iii) tβ = β̂((X′X)−1
22 σ̂

2)
−1/2

,

(iv) R2 = 1 − RSS/TSS,
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where

X′X =

(
T

∑
xt

∑
xt

∑
x2
t

)

,

X′Y =

( ∑
yt

∑
ytxt

)

,

B =

(
α̂

β̂

)

,

(A.1)

SSR =
∑
û2
t , TSS =

∑
(yt − y)2 =

∑
y2
t − T−1(

∑
yt)

2, and (X′X)−1
22 is the element in row 2,

column 2, of the (X′X)−1 matrix.
To obtain the asymptotics of α̂, β̂, σ̂2, tβ, and R2 we need to ascertain the behaviour of

the following expressions when T → ∞:
∑
xt,

∑
yt,

∑
x2
t ,
∑
y2
t , and

∑
xtyt. The behavior of

these expressions varies depending on the DGP of the variables xt and yt. We present such
behavior for the DGPs underlying Theorem 2.1 and Propositions 2.2 and 2.3. All of the orders
in probability stated in the underbraced sums can be found in [5, 13, 16–18]. It is important to
clarify that the computation of the asymptotics follows [5] and was assisted by Mathematica;
we thus rewrote below the expressions written as Mathematica code.

A.1. Theorem 2.1: First Result

The expressions needed to compute the asymptotic values of α̂, β̂, σ̂2, and R2 are

∑
xt = X0T + μx

∑
t +

∑
ξx,t−1

︸ ︷︷ ︸
Op(T3/2)

,

∑
x2
t = X

2
0T + μ2

x

∑
t2 +

∑
ξ2
x,t−1︸ ︷︷ ︸

Op(T2)

+ 2X0μx
∑

t + 2X0

∑
ξx,t−1 + 2μx

∑
ξx,t−1t

︸ ︷︷ ︸
Op(T5/2)

,

∑
xtux,t = X0

∑
ux,t

︸ ︷︷ ︸
Op(T1/2)

+ μx
∑

ux,tt
︸ ︷︷ ︸
Op(T3/2)

+
∑

ξx,t−1ux,t
︸ ︷︷ ︸

Op(T)

,

∑
xtuy,t = X0

∑
uy,t + μx

∑
uy,tt +

∑
ξx,t−1uy,t,

∑
yt = μyT + βy

∑
xt +

∑
uy,t + ρx

∑
ux,t,

∑
y2
t = μ

2
yT + β2

y

∑
x2
t + ρ

2
x

∑
u2
x,t +

∑
u2
y,t + 2μyβy

∑
xt

+ 2μy
(
ρx

∑
ux,t +

∑
uy,t

)
+ 2βy

(
ρx

∑
xtux,t +

∑
xtuy,t

)
+ 2ρx

∑
ux,tuy,t

︸ ︷︷ ︸
Op(T1/2)

,

∑
xtyt = μy

∑
xt + βy

∑
x2
t +

∑
xtuy,t + ρx

∑
xtux,t,

(A.1)
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Table 2: Glossary of the Mathematica code.

Term Represents Term Represents Term Represents Term Represents
St

∑
t St2

∑
t2 Sξx,t

∑
ξx,t−1t Sξy,t

∑
ξy,t−1t

Sx
∑
xt Sx2

∑
x2
t Sux

∑
ux,t Suy

∑
uy,t

Sy
∑
yt Sy2

∑
y2
t Sux2

∑
u2
x,t Suy2

∑
u2
y,t

Sxux
∑
xtux,t Sxuy

∑
xtuy,t Sux,t

∑
ux,tt Suy,t

∑
uy,tt

Sxy
∑
xtyt Mx (X′X)−1 Sξxξy

∑
ξx,t−1ξy,t−1 Suxuy

∑
ux,tuy,t

Sξx
∑
ξx,t−1 Sξy

∑
ξy,t−1 Sξxux

∑
ξx,t−1ux,t Sξyux

∑
ξy,t−1ux,t

Sξx2
∑
ξ2
x,t−1 Sξy2

∑
ξ2
y,t−1 Sξxuy

∑
ξx,t−1uy,t Sξyuy

∑
ξy,t−1uy,t

where ξy,t =
∑t

i=1 uy,i and Y0 is an initial condition. The sums including solely the deter-
ministic trend component are

∑
t =

1
2

(
T2 + T

)
,

∑
t2 =

1
6

(
2T3 + 3T2 + T

)
.

(A.2)

The code in this case is represented below. To understand it, a brief glossary is required and
appears in Table 2.

These expressions were written as Mathematica 7.0 code.

Clear All, St =
1
2

(
T2 + T

)
, St2 =

1
6

(
2T3 + 3T2 + T

)
,

Sx = X0T + μxSt + SξxT3/2,

Sx2 = X2
0T + μ2

xSt2 + Sξx2T
2 + 2X0μxSt + 2X0SξxT

3/2 + 2μxSξxtT5/2,

Sy = μyT + βySx + ρxSuxT1/2 + SuyT1/2,

Sxux = X0SuxT
1/2 + μxSuxtT3/2 + SξxuxT,

Sxuy = X0SuyT
1/2 + μxSuytT3/2 + SξxuyT,

Sy2 = μ2
yT + β2

ySx2 + ρ2
xSux2T + Suy2T + 2μyβySx

+ 2μy
(
ρxSuxT

1/2 + SuyT1/2
)

+ 2βy
(
ρxSxux + Sxuy

)
+ 2ρxSuxuyT1/2,

Sxy = μySx + βySx2 +
(
ρxSxux + Sxuy

)
.

(A.3)

A.2. Theorem 2.1: Second Result

The expressions needed to compute the asymptotic values of α̂, β̂, σ̂2, and R2 appear below.
Note that

∑
yt,

∑
y2
t , and

∑
ytxt are identical to the ones presented in the previous appendix
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and have been therefore omitted
∑

xt = X0T +
(
μx + ρy1

)∑
t +

∑
ξx,t−1 + ρy2

∑
ξy,t−1,

∑
x2
t = X

2
0T +

(
μx + ρy1

)2 ∑
t2 +

∑
ξ2
x,t−1 + ρ

2
y2

∑
ξ2
y,t−1

+ 2X0
(
μx + ρy1

)∑
t + 2X0

∑
ξx,t−1 + 2ρy2X0

∑
ξy,t−1

+ 2
(
μx + ρy1

)∑
ξx,t−1t + 2ρy2

(
μx + ρy1

)∑
ξy,t−1t + 2ρy2

∑
ξx,t−1ξy,t−1

︸ ︷︷ ︸
Op(T2)

,

∑
xtux,t = X0

∑
ux,t +

(
μx + ρy1

)∑
ux,tt +

∑
ξx,t−1ux,t + ρy2

∑
ξy,t−1ux,t,

∑
xtuy,t = X0

∑
uy,t +

(
μx + ρy1

)∑
uy,tt +

∑
ξx,t−1uy,t + ρy2

∑
ξy,t−1uy,t.

(A.1)

The code in this case is represented below.

Clear All, St =
1
2

(
T2 + T

)
, St2 =

1
6

(
2T3 + 3T2 + T

)
,

Sx = X0T +
(
μx + ρy1

)
St + SξxT3/2 + ρy2SξyT

3/2,

Sx2 = X2
0T +

(
μx + ρy1

)2
St2 + Sξx2T2 + ρ2

y2Sξy2T2

+ 2X0
(
μx + ρy1

)
St + 2X0SξxT

3/2 + 2X0ρy2SξyT
3/2

+ 2
(
μx + ρy1

)
SξxtT

5/2 + 2
(
μx + ρy1

)
ρy2SξytT

5/2 + 2ρy2SξyξxT
2,

Sy = μyT + βySx + ρxSuxT1/2 + SuyT1/2,

Sxux = X0SuxT
1/2 +

(
μx + ρy1

)
SuxtT

3/2 + SξxuxT + ρy2SξyuxT,

Sxuy = X0SuyT
1/2 +

(
μx + ρy1

)
SuytT

3/2 + SξxuyT + ρy2SξyuyT,

Sy2 = μ2
yT + β2

ySx2 + ρ2
xSux2T + Suy2T + 2μyβySx

+ 2μy
(
ρxSuxT

1/2 + SuyT1/2
)
+ 2βy

(
ρxSxux + Sxuy

)
+ 2ρxSuxuyT1/2,

Sxy = μySx + βySx2 +
(
ρxSxux + Sxuy

)
.

(A.2)

A.3. Proposition 2.2

First note that DGP (2.5) can be written as

yt = μy + βyxt + uy,t,

xt = C1 + C2t +
βx
C0
uy,t +

ux,t
C0

,

(A.1)
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where, C0 = 1 − βxβy, C1 = (μx + μyβx)/C0, and C2 = γx/C0. The expressions needed to
compute the asymptotic values of α̂, β̂, σ̂2, and R2 are

∑
xt = C1T +C2

∑
t +

βx
C0

∑
uy,t +

1
C0

∑
ux,t,

∑
x2
t = C

2
1T + C2

2

∑
t2 +

(
βx

C0

)2 ∑
u2
y,t +

(
1
C0

)2 ∑
u2
x,t

+ 2C1C2

∑
t + 2

C1βx

C0

∑
uy,t + 2

C1

C0

∑
ux,t

+ 2
C2βx

C0

∑
uy,tt + 2

C2

C0

∑
ux,tt + 2

βx

C2
0

∑
ux,tuy,t,

∑
xtuy,t = C1

∑
uy,t + C2

∑
uy,tt +

βx

C0

∑
u2
y,t +

1
C0

∑
ux,tuy,t,

∑
yt = μyT + βy

∑
xt +

∑
uy,t,

∑
y2
t = μ

2
yT + β2

y

∑
x2
t

∑
u2
y,t + 2μyβy

∑
xt + 2μy

∑
uy,t + 2βy

∑
xtuy,t,

∑
xtyt = μy

∑
xt + βy

∑
x2
t +

∑
xtuy,t.

(A.2)

The code in this case is represented below.

Clear All, St =
1
2

(
T2 + T

)
, St2 =

1
6

(
2T3 + 3T2 + T

)
,

C0 = 1 − βxβy, C1 =
μx + μyβx
1 − βxβy

, C2 =
γx

1 − βxβy
,

Sx = C1T + C2St +
βx
C0
SuyT

1/2 +
1
C0
SuxT

1/2,

Sx2 = C1
2T + C2

2St2 +
(
βx
C0

)2

Suy2T +
(

1
C0

)2

Sux2T + 2C1C2St + 2
C1βx
C0

SuyT
1/2

+ 2
C1

C0
SuxT

1/2 + 2
C2βx
C0

SuytT
3/2 + 2

C2

C0
SuxtT

3/2 + 2
βx

C0
2SuxuyT

1/2,

Sy = μyT + βySx + SuyT1/2,

Sxuy = C1SuyT
1/2 + C2SuytT

3/2 +
βx
C0
Suy2T +

1
C0
SuxuyT

1/2,

Sy2 = μy2T + βy2Sx2 + Suy2T + 2μyβySx + 2μySuyT1/2 + 2βySxuy,

Sxy = μySx + βySx2 + Sxuy.

(A.3)
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A.4. Proposition 2.3

As in the previous appendix, first rewrite DGP (2.5) as

yt = μy + βyxt + uy,t,

xt = D1 +D2t +
βx

D0
uy,t +

ξx,t−1

D0
,

(A.1)

where, D0 = 1 − βxβy , D1 = (X0 + μyβx)/D0, and D2 = μx/D0. The expressions needed to
compute the asymptotic values of α̂, β̂, σ̂2, and R2 appear below. Note that

∑
yt,

∑
y2
t , and∑

ytxt are identical to the ones presented in the previous appendix and have been therefore
omitted

∑
xt = D1T +D2

∑
t +

βx
D0

∑
uy,t +

1
D0

∑
ξx,t−1,

∑
x2
t = D

2
1T +D2

2

∑
t2 +

(
βx
D0

)2 ∑
u2
y,t +

(
1
D0

)2 ∑
ξ2
x,t−1

+ 2D1D2

∑
t + 2

D1βx

D0

∑
uy,t + 2

D1

D0

∑
ξx,t−1

+ 2
D2βx

D0

∑
uy,t−1t + 2

D2

D0

∑
ξx,t−1t + 2

βx

D2
0

∑
ξx,t−1uy,t,

∑
xtuy,t = D1

∑
uy,t +D2

∑
uy,tt +

βx
D0

∑
u2
y,t +

1
D0

∑
ξx,t−1uy,t.

(A.2)

The code in this case is represented below:

Clear All, St =
1
2

(
T2 + T

)
, St2 =

1
6

(
2T3 + 3T2 + T

)
,

D0 = 1 − βxβy, D1 =
X0 + μyβx
1 − βxβy

, D2 =
μx

1 − βxβy
,

Sx = D1T +D2St +
βx
D0

SuyT
1/2 +

1
D0

SξxT
3/2,

Sx2 = D1
2T +D2

2St2 +
(
βx
D0

)2

Suy2T +
(

1
D0

)2

Sξx2 T2 + 2D1D2St

+ 2
D1βx
D0

SuyT
1/2 + 2

D1

D0
SξxT

3/2 + 2
D2βx
D0

SuytT
3/2 + 2

D2

D0
SξxtT

5/2 + 2
βx

D0
2SξxuyT ;
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Sy = μyT + βySx + SuyT1/2,

Sxuy = D1SuyT
1/2 +D2SuytT

3/2 +
βx
D0

Suy2T +
1
D0

SξxuyT,

Sy2 = μy2T + βy2Sx2 + Suy2T + 2μyβySx + 2μySuyT1/2 + 2βySxuy,

Sxy = μySx + βySx2 + Sxuy.

(A.3)

A.5. Computation of the Asymptotics

The previous three appendices provide the Mathematica code of
∑
xt,

∑
yt,

∑
x2
t ,

∑
y2
t ,

and
∑
xtyt for different DGP combinations. We now present the code that computes the

asymptotics of (1.1) in any such combination. Note that the code computes the asymptotics
in the following order: the matrix (X′X)−1, (X′X)−1

22 , α̂, β̂, σ̂2, tβ, and 1−R2. Comments appear
inside parentheses (∗—∗).

(∗Matrix (X′X)∗)

Mx =
(

T Sx
Sx Sx2

)
;

(∗Inverse of Matrix (X′X)∗)iMx = Inverse[Mx];

(∗Element 1, 1 of (X′X)−1 ∗) R1 = Extract[iMx, {1, 1}];
(∗Element 1, 2 of (X′X)−1 ∗) R2 = Extract[iMx, {1, 2}];
(∗Element 2, 1 of (X′X)−1 ∗) R3 = Extract[iMx, {2, 1}];
(∗Element 2, 2 of (X′X)−1 ∗) R4 = Extract[iMx, {2, 2}];

(∗Factorization∗) R40 = Factor [R4];
(∗Numerator∗) R4num = Numerator [R40];
(∗Denominator∗) R4den = Denominator [R40];

(∗Highest power of T in numerator∗)

K1 = Exponent [R4num, T],

(∗Highest power of T in denominator∗)

K2 = Exponent [R4den, T];
(∗Limit of the numerator divided by TK1 ∗)

R4num2 = Limit [Expand [R4num/TK1],T → ∞];

(∗Limit of the denominator divided by TK2 ∗)
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R4den2 = Limit [Expand [R4den/TK2], T → ∞];
(∗Limit of the Element 2, 2 of (X′X)−1 multiplied by Tk1/TK2 ∗)
R42 = Factor [Expand [(R4num2/R4den2) ∗ TK1/TK2]];

(∗Parameter α̂∗)

P10 = Factor [Expand [R1Sy + R2Sxy]];
P11num = Numerator [P10];
K5 = Exponent [P11num, T];
Anum = Limit [Expand [P11num/TK5], T → ∞];
P12den = Denominator [P10];
K6 = Exponent [P12den, T];
Aden = Limit [Expand [P12den/TK6], T → ∞];
Apar = Factor [Expand [(Anum/Aden) ∗ TK5/TK6]]

(∗Parameter β̂∗)

P20 = Factor [Expand [R3Sy + R4Sxy]];
P21num = Numerator [P20];
K7 = Exponent [P21num, T];
Bnum = Limit [Expand [P21num/TK7], T → ∞];
P22den = Denominator [P20];
K8 = Exponent [P22den, T];
Bden = Limit [Expand [P22den/TK8], T → ∞];
Bpar = Factor [Expand [(Bnum/Bden) ∗ TK7/TK8]]

(∗Parameter σ̂2 ∗)

P40 = Factor [Expand [Sy2 + P102T + P202Sx2 − 2P10Sy − 2P20Sxy + 2P10P20Sx]];
P41num = Numerator [P40];
K11 = Exponent [P41num, T];
Vnum = Factor [Limit [Expand [P41num/TK11], T → ∞]];
P42den = Denominator [P40];
K12 = Exponent [P42den, T];
Vden = Factor [Limit [Expand [P42den/TK12], T → ∞]];
Vpar = Factor [Expand [T−1 ∗ (Vnum/Vden) ∗ TK11/TK12]]

(∗SSR/TSS∗)

P50 = Factor [Expand [P40/(Sy2 − T(Sy/T)2)]];
P51num = Numerator [P50];
K13 = Exponent [P51num, T];
Rcnum = Factor [Limit [Expand [P51num/TK13], T → ∞]];
P52den = Denominator [P50];
K14 = Exponent [P52den, T];
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Rcden = Factor [Limit [Expand [P52den/TK14], T → ∞]];
Rc = Factor [Expand [(Rcnum/Rcden) ∗ TK13/TK14]];

(∗tβ∗)

tβ = Full Simplify [Bpar/(Vpar ∗ R42)−1/2]
(∗1 − R2 ∗)

P70 = Full Simplify [Rc].
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[11] D. Ventosa-Santaulària, “Spurious instrumental variables,” Communications in Statistics—Theory and

Methods, vol. 39, no. 11, pp. 1997–2007, 2010.
[12] R. F. Engle, D. F. Hendry, and J. F. Richard, “Exogeneity,” Econometrica, vol. 51, no. 2, pp. 277–304,

1983.
[13] J. D. Hamilton, Time Series Analysis, Princeton University Press, Princeton, NJ, USA, 1994.
[14] R. F. Engle and C. W. J. Granger, “Cointegration and error correction: representation, estimation, and

testing,” Econometrica, vol. 55, pp. 251–276, 1987.
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