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We conduct a systematic comparison of the performance of four commonly used P value
combination methods applied to panel unit root tests: the original Fisher test, the modified inverse
normal method, Simes test, and the modified truncated product method (TPM). Our simulation
results show that under cross-section dependence the original Fisher test is severely oversized, but
the other three tests exhibit good size properties. Simes test is powerful when the total evidence
against the joint null hypothesis is concentrated in one or very few of the tests being combined,
but the modified inverse normal method and the modified TPM have good performance when
evidence against the joint null is spread among more than a small fraction of the panel units. These
differences are further illustrated through one empirical example on testing purchasing power
parity using a panel of OECD quarterly real exchange rates.

1. Introduction

Combining significance tests, or P values, has been a source of considerable research in
statistics since Tippett [1] and Fisher [2]. (For a systematic comparison of methods for
combining P values from independent tests, see the studies by Hedges and Olkin [3] and
Loughin [4].) Despite the burgeoning statistical literature on combining P values, these
techniques have not been used much in panel unit root tests until recently. Maddala and
Wu [5] and Choi [6] are among the first who attempted to test unit root in panels by
combining independent P values. More recent contributions include those by Demetrescu
et al. [7], Hanck [8], and Sheng and Yang [9]. Combining P values has several advantages
over combination of test statistics in that (i) it allows different specifications, such as different
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deterministic terms and lag orders, for each panel unit, (ii) it does not require a panel to be
balanced, and (iii) observed P values derived from continuous test statistics have a uniform
distribution under the null hypothesis regardless of the test statistic or distribution from
which they arise, and thus it can be carried out for any unit root test derived.

While the formulation of the joint null hypothesis (H0: all of the time series in the panel
are nonstationary) is relatively uncontroversial, the specification of the alternative hypothesis
critically depends on what assumption one makes about the nature of the heterogeneity of
the panel. (Recent contributions include O’Connell [10], Phillips and Sul [11], Bai and Ng
[12], Chang [13], Moon and Perron [14] and Pesaran [15].) The problem of selecting a test
is complicated by the fact that there are many different ways in which H0 can be false. In
general, we cannot expect one test to be sensitive to all possible alternatives, so that no single
P value combinationmethod is uniformly the best. The goal of this paper is tomake a detailed
comparison, via both simulations and empirical examples, of some commonly used P value
combination methods, and to provide specific recommendation regarding their use in panel
unit root tests.

The plan of the paper is as follows. Section 2 briefly reviews the methods of
combining P values. Small sample performance of these methods is investigated in Section 3
using Monte Carlo simulations. Section 4 provides the empirical applications, and Section 5
concludes the paper.

2. P Value Combination Methods

Consider the model

yit = (1 − αi)μi + αiyi,t−1 + εit, i = 1, . . . ,N; t = 1, . . . , T. (2.1)

Heterogeneity in both the intercept and the slope is allowed in (2.1). This specification is
commonly used in the literature, see the work of Breitung and Pesaran [16] for a recent
review. Equation (2.1) can be rewritten as

Δyit = −φiμi + φiyi,t−1 + εit, (2.2)

where Δyit = yit − yi,t−1 and φi = αi − 1.
The null hypothesis is

H0 : φ1 = φ2 = · · · = φN = 0, (2.3)

and the alternative hypothesis is

H1 : φ1 < 0, φ2 < 0, . . . , φN0 < 0, N0 ≤ N. (2.4)

Let Si,Ti be a test statistic for the ith unit of the panel in (2.2), and let the corresponding
P value be defined as pi = F(Si,Ti), where F(·) denotes the cumulative distribution function
(c.d.f.) of Si,Ti . We assume that, under H0, Si,Ti has a continuous distribution function.
This assumption is a regularity condition that ensures a uniform distribution of the P
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values, regardless of the test statistic or distribution from which they arise. Thus, P value
combinations are nonparametric in the sense that they do not depend on the parametric form
of the data. The nonparametric nature of combined P values gives them great flexibility in
applications.

In the rest of this section, we briefly review the P value combination methods in the
context of panel unit root tests. The first test, proposed by Fisher [2], is defined as

P = −2
N∑

i=1

ln
(
pi
)
, (2.5)

which has an χ2 distribution with 2N degrees of freedom under the assumption of cross-
section independence of the P values. Maddala and Wu [5] introduced this method to the
panel unit root tests, and Choi [6]modified it to the case of infinite N.

Inverse normal method, attributed to Stouffer et al. [17], is another often used method
defined as

Z =
1√
N

N∑

i=1

Φ−1(pi
)
, (2.6)

where Φ(·) is the c.d.f. of the standard normal distribution. Under H0, Z ∼ N(0, 1). Choi [6]
first applied this method to the panel unit root tests assuming cross-section independence
among the panel units. To account for cross-section dependence, Hartung [18] developed a
modified inverse normal method by assuming a constant correlation across the probits ti,

cov
(
ti, tj

)
= ρ, for i /= j, i, j = 1, . . . ,N, (2.7)

where ti = Φ−1(pi). He proposed to estimate ρ in finite samples by

ρ̂� = max
(
− 1
N − 1

, ρ̂

)
, (2.8)

where ρ̂ = 1 − (1/N − 1)
∑N

i=1(ti − t)2 and t = (1/N)
∑N

i=1 ti. The modified inverse normal test
statistic is formed as

Z∗ =
∑N

i=1 ti√
N +N(N − 1)

[
ρ̂� + κ

√
2/(n + 1)

(
1 − ρ̂�

)]
, (2.9)

where κ = 0.1(1 + 1/(N − 1) − ρ̂�) is a parameter designed to improve the small sample
performance of the test statistic. Under the null hypothesis, Z∗ ∼ N(0, 1). Demetrescu et al.
[7] showed that this methodwas robust to certain deviations from the assumption of constant
correlation between probits in the panel unit root tests.
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A third method, proposed by Simes [19] as an improved Bonferroni procedure, is
based on the ordered P values, denoted by p(1) ≤ p(2) ≤ · · · ≤ p(N). The joint hypothesis
H0 is rejected if

p(i) ≤ iα

N
, (2.10)

for at least one i = 1, . . . ,N. This procedure has a type I error equal to αwhen the test statistics
are independent. Hanck [8] showed that Simes test was robust to general patterns of cross-
sectional dependence in the panel.

The fourth method is Zaykin et al.’s [20] truncated product method (TPM), which
takes the product of all those P values that do not exceed some prespecified value τ . The
TPM is defined as

W =
N∏

i=1

p
I(pi≤τ)
i , (2.11)

where I(·) is the indicator function. Note that setting τ = 1 leads to Fisher’s original
combination method, which could lose power in cases when there are some very large P
values. This can happen when some series in the panel are clearly nonstationary such that
the resulting P -values are close to 1, and some are clearly stationary such that the resulting
P values are close to 0. Ordinary combination methods could be dominated by the large P
values. The TPM removes these large P values through truncation, thus eliminating the effect
that they could have on the resulting test statistic.

When all the P values are independent, there exists a closed form of the distribution
for W under H0. When the P values are dependent, Monte Carlo simulation is needed to
obtain the empirical distribution of W . Sheng and Yang [9] modify the TPM to allow for a
certain degree of correlation among the P values. Their procedure is as follows.

Step 1. Calculate W∗ using (2.11). Set A = 0.

Step 2. Estimate the correlation matrix, Σ, for P values. Following Hartung [18] and
Demetrescu et al. [7], they assume a constant correlation between the probits ti and tj ,

cov
(
ti, tj

)
= ρ, for i /= j, i, j = 1, . . . ,N, (2.12)

where ti = Φ−1(pi) and tj = Φ−1(pj). ρ can be estimated in finite samples according to (2.8).

Step 3. The distribution of W∗ is calculated based on the following Monte Carlo simulations.

(a) Draw pseudorandom probits from the normal distribution with mean zero and the
estimated correlation matrix, Σ̂, and transform them back through the standard
normal c.d.f., resulting in N P -values, denoted by p̃1, p̃2, . . . , p̃N .

(b) Calculate W̃ =
∏N

i=1p̃
I(p̃i≤τ)
i .

(c) If W̃ ≤ W∗, increment A by one.

(d) Repeat steps (a)–(c) B times.

(e) The P value for W∗ is given by A/B.



Journal of Probability and Statistics 5

3. Monte Carlo Study

In this sectionwe compare the finite sample performance of the P value combinationmethods
introduced in Section 2.We consider “strong” cross-section dependence, driven by a common
factor, and “weak” cross-section dependence due to spatial correlation.

3.1. The Design of Monte Carlo

First we consider dynamic panels with fixed effects but no linear trends or residual serial
correlation. The data-generating process (DGP) in this case is given by

yit = (1 − αi)μi + αiyi,t−1 + εit, (3.1)

where

εit = γift + ξit, (3.2)

for i = 1, . . . ,N, t = −50,−49, . . . , T . The initial values yi,−50 are set to be 0 for all i. The
individual fixed effect μi, the common factor ft, the factor loading γi, and the error term ξit
are independent of each other with μi ∼ i.i.d N(0, 1), ft ∼ i.i.d N(0, σ2

f), γi ∼ i.i.d U[0, 3], and
ξit ∼ i.i.dN(0, 1).

Remark 3.1. Setting σ2
f = 0, we explore the properties of the tests under cross-section

independence, and, with σ2
f

= 10, we explore the performance of the tests under “high”
cross-section dependence. In the latter case, the average pairwise correlation coefficient of εit
and εjt is 70%, representing a strong cross-section correlation in practice.

Next we allow for deterministic trends in the DGP and the Dickey-Fuller (DF)
regressions. For this case yit is generated as follows:

yit = κi + (1 − αi)λit + αiyi,t−1 + εit, (3.3)

with κi ∼ i.i.d U[0, 0.02] and λi ∼ i.i.d U[0, 0.02]. This ensures that yit has the same average
trend properties under the null and the alternative hypotheses. The errors εit are generated
according to (3.2) with σ2

f
= 10, representing the scenario of high cross-section correlation.

To examine the impact of residual serial correlation, we consider a number of
experiments, where the errors ξit in (3.2) are generated as

ξit = ρiξi,t−1 + eit, (3.4)

with eit ∼ i.i.d N(0, 1). Following Pesaran [15], we choose ρi ∼ i.i.d U[0.2, 0.4] for positive
serial correlations and ρi ∼ i.i.d U[−0.4,−0.2] for negative serial correlations. We use this
DGP to check the robustness of the tests to alternative residual correlation models and to the
heterogeneity of the coefficients, ρi.

Finally we explore the performance of the tests under spatial dependence. We consider
two commonly used spatial error processes: the spatial autoregressive (SAR) and the spatial
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moving average (SMA). Let εt be the N × 1 error vector in (3.1). In SAR, it can be expressed
as

εt = θ1WNεt + υt = (IN − θ1WN)−1υt, (3.5)

where θ1 is the spatial autoregressive parameter, WN is an N × N known spatial weights
matrix, and υt is the error component which is assumed to be distributed independently
across cross-section dimension with constant variance σ2

υ. Then the fullNT ×NT covariance
matrix is

ΩSAR = σ2
υ

[
IT ⊗ (

B′
NBN

)−1]
, (3.6)

where BN = IN − θ1WN . In SMA, the error vector εt can be expressed as

εt = θ2WNυt + υt = (IN + θ2WN)υt, (3.7)

with θ2 being the spatial moving average parameter. Then the fullNT×NT covariance matrix
becomes

ΩSMA = σ2
υ

[
IT ⊗

(
IN + θ2

(
WN +W ′

N

)
+ θ2

2WNW ′
N

)]
. (3.8)

Without loss of generality, we let σ2
υ = 1. We consider the spatial dependence with θ1 = 0.8

and θ2 = 0.8. The average pairwise correlation coefficient of εit and εjt is 4%–22% for SAR
and 2%–8% for SMA, representing a wide range of cross-section correlations in practice. The
spatial weight matrix WN is specified as a “1 ahead and 1 behind” matrix with the ith row,
1 < i < N, of this matrix having nonzero elements in positions i + 1 and i − 1. Each row of this
matrix is normalized such that all its nonzero elements are equal to 1/2.

For all of DGPs considered here, we use

αi

⎧
⎨

⎩
∼ i.i.d. U[0.85, 0.95] for i = 1, . . . ,N0, where N0 = δ ·N,

= 1 for i = N0 + 1, . . . ,N,
(3.9)

where δ indicates the fraction of stationary series in the panel, varying in the interval 0-1.
As a result, changes in δ allow us to study the impact of the proportion of stationary series
on the power of tests. When δ = 0, we explore the size of tests. We set δ = 0.1, 0.5 and 0.9
to examine the power of the tests under heterogeneous alternatives. The tests are one-sided
with the nominal size set at 5% and conducted for all combinations of N and T = 20, 50, and
100. (We also conduct the simulations with the nominal size set at 1% and 10%. The results
are qualitatively similar to those at the 5% level, and thus are not reported here.) The results
are obtained with MATLAB using M = 2000 simulations. To calculate the empirical critical
value for the modified TPM, we run additional B = 1000 replications within each simulation.

We calculate the augmented Dickey-Fuller (ADF) t statistics. The number of lags in the
ADF regressions is selected according to the recursive t-test procedure. (Start with an upper
bound, kmax = 8, on k. If the last included lag is significant, choose k = kmax, if not, reduce k
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Table 1: Size and power of panel unit root tests: cross-section independence.

N T P Z∗ S W∗

δ = 0

20
20 0.059 0.056 0.052 0.063
50 0.054 0.046 0.053 0.050
100 0.047 0.047 0.053 0.052

50
20 0.040 0.044 0.050 0.045
50 0.048 0.045 0.048 0.045
100 0.057 0.054 0.047 0.058

100
20 0.051 0.050 0.050 0.047
50 0.047 0.051 0.048 0.057
100 0.052 0.045 0.049 0.049

δ = 0.1

20
20 0.066 0.072 0.052 0.056
50 0.087 0.080 0.062 0.083
100 0.172 0.144 0.112 0.0174

50
20 0.074 0.081 0.054 0.065
50 0.123 0.128 0.064 0.102
100 0.303 0.251 0.121 0.276

100
20 0.080 0.085 0.048 0.066
50 0.167 0.165 0.060 0.126
100 0.464 0.366 0.130 0.435

δ = 0.5

20
20 0.120 0.144 0.066 0.083
50 0.417 0.489 0.106 0.253
100 0.951 0.931 0.360 0.860

50
20 0.181 0.261 0.058 0.108
50 0.749 0.838 0.119 0.454
100 1.000 1.000 0.417 0.998

100
20 0.292 0.422 0.059 0.142
50 0.950 0.979 0.108 0.683
100 1.000 1.000 0.447 1.000

δ = 0.9

20
20 0.182 0.283 0.058 0.105
50 0.816 0.933 0.127 0.495
100 1.000 1.000 0.580 0.994

50
20 0.358 0.562 0.054 0.154
50 0.994 1.000 0.151 0.817
100 1.000 1.000 0.649 1.000

100 20 0.591 0.834 0.069 0.257
50 1.000 1.000 0.156 0.969
100 1.000 1.000 0.676 1.000

Note. Rejection rates of panel unit root tests at nominal level α = 0.05, using 2000 simulations. P is Maddala and Wu’s [5]
original Fisher test, Z∗ is Demetrescu et al.’s [7] modified inverse normal method, S is Hanck’s [8] Simes test, and W∗ is
Sheng and Yang’s [9]modified TPM.

by one until the last lag becomes significant. If no lag is significant, set k = 0. The 10 percent
level of the asymptotic normal distribution is used to determine the significance of the last
lag.)As shown in the work of Ng and Perron [21], this sequential testing procedure has better
size properties than those based on information criteria in panel unit root tests. The P values
in this paper are calculated using the response surfaces estimated in the study by Mackinnon
[22].
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Table 2: Size and power of panel unit root tests: no serial correlation, cross-section dependence driven by
a common factor.

Intercept only Intercept and trend
N T P Z∗ S W∗ P Z∗ S W∗

δ = 0

20
20 0.239 0.076 0.035 0.054 0.233 0.072 0.041 0.061
50 0.234 0.070 0.034 0.049 0.259 0.074 0.032 0.062
100 0.243 0.070 0.036 0.049 0.243 0.075 0.035 0.061

50
20 0.280 0.070 0.042 0.049 0.297 0.069 0.033 0.063
50 0.290 0.069 0.030 0.046 0.291 0.061 0.028 0.055
100 0.290 0.066 0.031 0.047 0.275 0.063 0.031 0.054

100
20 0.311 0.076 0.048 0.051 0.326 0.082 0.038 0.074
50 0.305 0.070 0.029 0.050 0.340 0.070 0.024 0.061
100 0.305 0.068 0.029 0.048 0.300 0.062 0.028 0.054

δ = 0.1

20
20 0.244 0.078 0.034 0.054 0.238 0.067 0.031 0.057
50 0.263 0.078 0.043 0.054 0.243 0.063 0.036 0.057
100 0.303 0.099 0.094 0.073 0.272 0.083 0.057 0.078

50
20 0.301 0.074 0.044 0.050 0.280 0.068 0.031 0.058
50 0.315 0.070 0.035 0.048 0.310 0.085 0.037 0.075
100 0.373 0.100 0.090 0.082 0.333 0.080 0.047 0.077

100
20 0.318 0.077 0.064 0.054 0.319 0.070 0.032 0.059
50 0.364 0.084 0.041 0.062 0.319 0.068 0.027 0.057
100 0.410 0.094 0.088 0.084 0.350 0.078 0.051 0.079

δ = 0.5

20
20 0.281 0.093 0.042 0.074 0.251 0.083 0.040 0.075
50 0.406 0.150 0.065 0.116 0.314 0.102 0.052 0.096
100 0.679 0.396 0.229 0.351 0.476 0.221 0.125 0.228

50
20 0.338 0.101 0.053 0.075 0.288 0.068 0.029 0.061
50 0.486 0.166 0.063 0.127 0.373 0.097 0.047 0.096
100 0.759 0.433 0.212 0.368 0.565 0.225 0.113 0.237

100
20 0.402 0.106 0.075 0.086 0.352 0.082 0.031 0.075
50 0.501 0.158 0.058 0.116 0.405 0.098 0.039 0.094
100 0.792 0.437 0.196 0.384 0.598 0.223 0.104 0.240

δ = 0.9

20
20 0.314 0.094 0.046 0.069 0.260 0.070 0.036 0.064
50 0.529 0.172 0.091 0.115 0.368 0.107 0.047 0.100
100 0.872 0.510 0.305 0.382 0.660 0.282 0.163 0.268

50
20 0.377 0.088 0.058 0.064 0.298 0.073 0.033 0.066
50 0.590 0.171 0.076 0.117 0.442 0.107 0.051 0.096
100 0.913 0.514 0.305 0.390 0.742 0.282 0.148 0.270

100
20 0.432 0.098 0.078 0.064 0.372 0.077 0.028 0.068
50 0.655 0.176 0.090 0.122 0.491 0.118 0.054 0.111
100 0.935 0.508 0.276 0.373 0.769 0.291 0.139 0.270

Note. See Table 1.

3.2. Monte Carlo Results

We compare the finite sample size and power of the following tests: Maddala and Wu’s
[5] original Fisher test (denoted by P), Demetrescu et al.’s [7] modified inverse normal
method (denoted by Z∗), Hanck’s [8] Simes test (denoted by S), and Sheng and Yang [9]’s
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Table 3: Size and power of panel unit root tests: serial correlation, intercept only, cross-section dependence
driven by a common factor.

Positive serial correlation Negative serial correlation
N T P Z∗ S W∗ P Z∗ S W∗

δ = 0

20
20 0.250 0.116 0.085 0.081 0.255 0.097 0.077 0.075
50 0.240 0.105 0.063 0.071 0.246 0.076 0.044 0.050
100 0.224 0.090 0.048 0.054 0.237 0.071 0.033 0.048

50
20 0.309 0.148 0.126 0.112 0.306 0.096 0.090 0.076
50 0.289 0.091 0.063 0.068 0.288 0.080 0.050 0.063
100 0.283 0.087 0.043 0.062 0.285 0.076 0.034 0.051

100
20 0.335 0.141 0.149 0.114 0.308 0.103 0.100 0.078
50 0.317 0.100 0.057 0.071 0.301 0.078 0.052 0.056
100 0.308 0.094 0.042 0.066 0.331 0.074 0.037 0.049

δ = 0.1

20
20 0.256 0.139 0.111 0.116 0.260 0.108 0.079 0.082
50 0.241 0.104 0.070 0.076 0.263 0.091 0.063 0.064
100 0.282 0.109 0.093 0.082 0.278 0.091 0.096 0.073

50
20 0.302 0.141 0.117 0.105 0.303 0.114 0.101 0.087
50 0.308 0.113 0.072 0.083 0.327 0.087 0.064 0.066
100 0.354 0.125 0.096 0.099 0.368 0.104 0.098 0.081

100
20 0.330 0.134 0.139 0.106 0.340 0.117 0.120 0.090
50 0.363 0.118 0.073 0.088 0.331 0.086 0.063 0.064
100 0.399 0.133 0.110 0.111 0.394 0.100 0.098 0.085

δ = 0.5

20
20 0.285 0.152 0.117 0.117 0.294 0.136 0.099 0.111
50 0.383 0.174 0.104 0.132 0.393 0.169 0.093 0.136
100 0.629 0.382 0.221 0.342 0.636 0.348 0.200 0.315

50
20 0.351 0.164 0.129 0.135 0.338 0.146 0.112 0.124
50 0.483 0.190 0.110 0.152 0.463 0.184 0.106 0.157
100 0.757 0.435 0.231 0.367 0.731 0.388 0.210 0.344

100
20 0.398 0.175 0.169 0.144 0.387 0.153 0.137 0.130
50 0.529 0.195 0.108 0.157 0.486 0.162 0.100 0.133
100 0.781 0.439 0.219 0.382 0.740 0.368 0.204 0.336

δ = 0.9

20
20 0.323 0.151 0.128 0.113 0.327 0.132 0.110 0.104
50 0.511 0.199 0.124 0.146 0.505 0.182 0.116 0.133
100 0.858 0.505 0.324 0.393 0.833 0.464 0.276 0.355

50
20 0.376 0.152 0.139 0.116 0.316 0.144 0.111 0.108
50 0.598 0.208 0.135 0.152 0.572 0.180 0.108 0.130
100 0.901 0.494 0.300 0.361 0.614 0.185 0.117 0.135

100
20 0.415 0.157 0.179 0.121 0.413 0.127 0.131 0.093
50 0.633 0.185 0.128 0.125 0.613 0.185 0.122 0.138
100 0.918 0.523 0.320 0.392 0.902 0.478 0.291 0.370

Note. See Table 1.

modified TPM (denoted by W∗). The results in Table 1 are obtained for the case of cross-
section independence for a benchmark comparison. Tables 2 and 3 consider the cases of
cross-section dependence driven by a single common factor with the trend and residual serial
correlation. Table 4 reports the results with spatial dependence. Given the size distortions of
some methods, we also include the size-adjusted power in Tables 5, 6, and 7. Major findings
of our experiments can be summarized as follows.
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Table 4: Size and power of panel unit root tests: intercept only, spatial dependence.

Spatial autoregressive Spatial moving average
N T P Z∗ S W∗ P Z∗ S W∗

δ = 0

20
20 0.121 0.059 0.040 0.046 0.079 0.050 0.051 0.034
50 0.126 0.063 0.044 0.048 0.086 0.054 0.050 0.039
100 0.133 0.066 0.044 0.049 0.091 0.060 0.047 0.043

50
20 0.140 0.054 0.040 0.038 0.081 0.030 0.042 0.020
50 0.142 0.063 0.058 0.042 0.089 0.038 0.057 0.024
100 0.123 0.052 0.051 0.038 0.089 0.039 0.042 0.025

100
20 0.143 0.046 0.053 0.021 0.095 0.026 0.055 0.010
50 0.152 0.046 0.051 0.022 0.092 0.027 0.060 0.013
100 0.136 0.047 0.049 0.023 0.089 0.023 0.052 0.012

δ = 0.1

20
20 0.144 0.068 0.049 0.048 0.089 0.060 0.050 0.040
50 0.167 0.089 0.057 0.058 0.128 0.073 0.063 0.055
100 0.244 0.135 0.104 0.119 0.196 0.135 0.113 0.105

50
20 0.160 0.071 0.053 0.039 0.095 0.043 0.052 0.023
50 0.198 0.092 0.057 0.056 0.159 0.075 0.069 0.038
100 0.353 0.189 0.124 0.158 0.320 0.166 0.133 0.129

100
20 0.161 0.048 0.052 0.024 0.113 0.032 0.050 0.011
50 0.264 0.097 0.058 0.038 0.203 0.064 0.065 0.018
100 0.479 0.231 0.121 0.171 0.499 0.217 0.141 0.148

δ = 0.5

20
20 0.199 0.095 0.056 0.064 0.155 0.082 0.053 0.048
50 0.414 0.217 0.098 0.141 0.425 0.239 0.099 0.132
100 0.857 0.626 0.318 0.505 0.903 0.745 0.355 0.585

50
20 0.272 0.098 0.052 0.054 0.224 0.085 0.059 0.033
50 0.669 0.308 0.118 0.166 0.710 0.369 0.107 0.163
100 0.989 0.855 0.380 0.732 0.999 0.938 0.402 0.833

100
20 0.356 0.101 0.068 0.037 0.289 0.076 0.055 0.019
50 0.848 0.383 0.109 0.166 0.929 0.446 0.117 0.159
100 1.000 0.967 0.418 0.888 1.000 0.987 0.460 0.955

δ = 0.9

20
20 0.281 0.117 0.072 0.067 0.222 0.090 0.055 0.049
50 0.687 0.264 0.141 0.163 0.752 0.297 0.152 0.161
100 0.992 0.754 0.482 0.578 1.000 0.850 0.558 0.652

50
20 0.407 0.116 0.067 0.057 0.379 0.102 0.067 0.037
50 0.934 0.276 0.145 0.147 0.980 0.279 0.140 0.131
100 1.000 0.904 0.579 0.737 1.000 0.958 0.618 0.792

100
20 0.538 0.108 0.065 0.031 0.541 0.092 0.067 0.027
50 0.996 0.295 0.145 0.146 1.000 0.247 0.144 0.100
100 1.000 0.984 0.661 0.846 1.000 0.997 0.675 0.901

Note. See Table 1.

(1) In the absence of clear guidance regarding the choice of τ , we try 10 different values,
ranging from 0.05, 0.1, 0.2, . . ., up to 0.9. Our simulation results show thatW∗ tends
to be slightly oversized with a small τ but moderately undersized with a large τ
and that its power does not show any clear patterns. We also note that W∗ yields
similar results as τ varies between 0.05 and 0.2. In our paper we select τ = 0.1. (To
save space, the complete simulation results are not reported here, but are available
upon request.)
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Table 5: Size-adjusted power of panel unit root tests: no serial correlation, cross-section dependence driven
by a common factor.

Intercept only Intercept and trend
N T P Z∗ W∗ P Z∗ W∗

δ = 0.1

20
20 0.043 0.046 0.044 0.038 0.052 0.037
50 0.048 0.056 0.049 0.049 0.050 0.050
100 0.062 0.084 0.063 0.066 0.062 0.064

50
20 0.061 0.063 0.061 0.047 0.046 0.047
50 0.053 0.054 0.054 0.042 0.046 0.040
100 0.066 0.080 0.058 0.056 0.062 0.053

100
20 0.099 0.121 0.094 0.052 0.058 0.052
50 0.043 0.051 0.042 0.046 0.045 0.046
100 0.065 0.069 0.065 0.058 0.067 0.055

δ = 0.5

20
20 0.044 0.071 0.042 0.045 0.056 0.046
50 0.070 0.116 0.068 0.062 0.075 0.058
100 0.200 0.349 0.207 0.123 0.163 0.110

50
20 0.057 0.080 0.057 0.052 0.056 0.047
50 0.085 0.133 0.076 0.051 0.062 0.041
100 0.161 0.348 0.160 0.116 0.182 0.099

100
20 0.114 0.154 0.119 0.048 0.053 0.047
50 0.069 0.123 0.064 0.057 0.068 0.054
100 0.189 0.355 0.189 0.099 0.169 0.086

δ = 0.9

20
20 0.059 0.050 0.058 0.061 0.061 0.060
50 0.140 0.114 0.137 0.088 0.077 0.084
100 0.456 0.433 0.431 0.250 0.201 0.231

50
20 0.084 0.073 0.082 0.054 0.053 0.053
50 0.150 0.114 0.144 0.087 0.073 0.081
100 0.453 0.424 0.422 0.243 0.225 0.222

100
20 0.144 0.151 0.131 0.054 0.051 0.054
50 0.143 0.129 0.136 0.088 0.070 0.086
100 0.446 0.395 0.414 0.208 0.198 0.191

Note. The power is calculated at the exact 5% level. The 5% critical values for these tests are obtained from their finite sample
distributions generated by 2000 simulations for sample sizes T = 20, 50, and 100. P is Maddala and Wu’s [5] original Fisher
test, Z∗ is Demetrescu et al.’s [7] modified inverse normal method, and W∗ is Sheng and Yang’s [9] modified TPM.

(2) With no cross-section dependence, all the tests yield good empirical size, close to the
5% nominal level (Table 1). As expected, P test shows severe size distortions under
cross-section dependence driven by a common factor or by spatial correlations.
For a common factor with no residual serial correlation, while Z∗ test is mildly
oversized and S test is slightly undersized, W∗ test shows satisfactory size
properties (Table 2). The presence of serial correlation leads to size distortions for
all statistics when T is small, which even persist when T = 100 for P and Z∗ tests.
On the contrary, S and W∗ tests exhibit good size properties with T = 50 and 100
(Table 3). Under spatial dependence, S test performs the best in terms of size, while
Z∗ and W∗ tests are conservative for large N (Table 4).

(3) All the tests become more powerful as N increases, which justifies the use of panel
data in unit root tests. When a linear time trend is included, the power of all the
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Table 6: Size-adjusted power of panel unit root tests: serial correlation, intercept only, cross-section
dependence driven by a common factor.

Positive correlation Negative correlation
N T P Z∗ W∗ P Z∗ W∗

δ = 0.1

20
20 0.041 0.051 0.043 0.042 0.048 0.041
50 0.053 0.054 0.050 0.043 0.054 0.042
100 0.062 0.065 0.057 0.067 0.077 0.066

50
20 0.042 0.058 0.043 0.050 0.053 0.048
50 0.059 0.069 0.063 0.053 0.058 0.053
100 0.058 0.075 0.052 0.056 0.066 0.054

100
20 0.045 0.058 0.041 0.044 0.051 0.044
50 0.056 0.061 0.052 0.063 0.061 0.065
100 0.054 0.067 0.053 0.069 0.083 0.065

δ = 0.5

20
20 0.040 0.056 0.040 0.045 0.064 0.039
50 0.072 0.100 0.069 0.069 0.117 0.059
100 0.188 0.255 0.199 0.158 0.298 0.150

50
20 0.049 0.059 0.048 0.051 0.093 0.045
50 0.081 0.120 0.083 0.068 0.127 0.058
100 0.207 0.302 0.210 0.168 0.309 0.150

100
20 0.051 0.054 0.046 0.037 0.084 0.033
50 0.100 0.124 0.095 0.071 0.121 0.063
100 0.209 0.330 0.221 0.148 0.345 0.127

δ = 0.9

20
20 0.058 0.060 0.056 0.066 0.066 0.065
50 0.153 0.083 0.148 0.119 0.110 0.114
100 0.424 0.242 0.391 0.390 0.384 0.376

50
20 0.068 0.054 0.066 0.065 0.069 0.061
50 0.162 0.078 0.156 0.136 0.130 0.134
100 0.454 0.262 0.415 0.376 0.376 0.352

100
20 0.062 0.052 0.061 0.058 0.063 0.057
50 0.169 0.088 0.157 0.135 0.114 0.135
100 0.431 0.268 0.411 0.358 0.371 0.326

Note. See Table 5.

tests decreases substantially. Also notable is the fact that the power of tests increases
when the proportion of stationary series increases in the panel.

(4) Compared to the other three tests, the size-unadjusted power of S test is somewhat
disappointing here. An exception is that, when only very few series are stationary, S
test becomes most powerful. When the proportion of stationary series in the panel
increases, however, S test is outperformed by other tests. For example, in the case
of no cross-section dependence in Table 1 with δ = 0.9, N = 100, and T = 50, the
power of S test is 0.156, and, in contrast, all other tests have power close to 1.

(5) Because P test has severe size distortions, we only compare Z∗ and W∗ tests in
terms of size-adjusted power. (The power is calculated at the exact 5% level. The
5% critical values for these tests are obtained from their finite sample distributions
generated by 2000 simulations for sample size T = 20, 50, and 100. Since Hanck’s [8]
test does not have an explicit form of finite sample distribution, we do not calculate
its size-adjusted power.) With the cross-section dependence driven by a common
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Table 7: Size-adjusted power of panel unit root tests: intercept only, spatial dependence.

Autoregressive Moving average
N T P Z∗ W∗ P Z∗ W∗

δ = 0.1

20
20 0.046 0.048 0.046 0.059 0.056 0.049
50 0.085 0.083 0.078 0.072 0.069 0.067
100 0.108 0.096 0.102 0.144 0.142 0.148

50
20 0.055 0.055 0.060 0.058 0.061 0.047
50 0.098 0.101 0.096 0.098 0.095 0.089
100 0.165 0.151 0.190 0.234 0.207 0.235

100
20 0.069 0.071 0.066 0.065 0.068 0.062
50 0.103 0.091 0.088 0.125 0.119 0.105
100 0.283 0.247 0.311 0.360 0.334 0.369

δ = 0.5

20
20 0.088 0.067 0.081 0.117 0.094 0.076
50 0.238 0.178 0.190 0.298 0.211 0.211
100 0.669 0.557 0.640 0.852 0.760 0.785

50
20 0.114 0.093 0.093 0.141 0.104 0.085
50 0.442 0.298 0.321 0.593 0.381 0.379
100 0.957 0.850 0.922 0.995 0.961 0.984

100
20 0.168 0.114 0.116 0.211 0.146 0.121
50 0.654 0.393 0.465 0.859 0.578 0.615
100 0.999 0.974 0.996 1.000 1.000 1.000

δ = 0.9

20
20 0.100 0.066 0.087 0.158 0.105 0.100
50 0.519 0.223 0.359 0.644 0.272 0.438
100 0.968 0.636 0.918 0.999 0.845 0.977

50
20 0.218 0.113 0.143 0.284 0.142 0.135
50 0.812 0.269 0.578 0.958 0.371 0.709
100 1.000 0.864 0.998 1.000 0.987 1.000

100
20 0.329 0.124 0.174 0.472 0.143 0.227
50 0.977 0.285 0.795 0.999 0.569 0.930
100 1.000 0.988 1.000 1.000 1.000 1.000

Note. See Table 5.

factor, Z∗ test tends to deliver higher power for δ = 0.5 but lower power for δ = 0.9
than W∗ test (Tables 5 and 6). Under spatial dependence, however, the former is
clearly dominated by the latter in most of the time. This is especially true for SAR
process, where W∗ test exhibits substantially higher size-adjusted power than Z∗

test (Table 7).

4. Empirical Application

Purchasing Power Parity (PPP) is a key assumption in many theoretical models of
international economics. Empirical evidence of PPP for the floating regime period (1973–
1998) is, however, mixed. While several authors, such as Wu and Wu [23] and Lopez [24],
found supporting evidence, others [10, 15, 25] questioned the validity of PPP for this period.
In this section, we use the methods discussed in previous sections to investigate if the real
exchange rates are stationary among a group of OECD countries.



14 Journal of Probability and Statistics

Table 8: Unit root tests for 27 OECD real exchange rates.

US dollar real exchange rate Deutchemark real exchange rate
Country k P value Simes criterion Country k P value Simes criterion
New Zealand 8 0.008 0.002 Mexico 3 0.006 0.002
Sweden 8 0.053 0.004 Iceland 0 0.010 0.004
United Kingdom 7 0.055 0.006 Australia 3 0.012 0.006
Finland 7 0.058 0.007 Korea 0 0.014 0.007
Spain 8 0.061 0.009 Canada 7 0.040 0.009
Mexico 3 0.066 0.011 Sweden 0 0.074 0.011
Iceland 8 0.069 0.013 United States 4 0.148 0.013
Switzerland 4 0.071 0.015 New Zealand 0 0.171 0.015
France 4 0.080 0.017 Finland 6 0.232 0.017
Netherlands 4 0.099 0.019 Turkey 8 0.241 0.019
Austria 4 0.102 0.020 Netherlands 1 0.415 0.020
Italy 4 0.103 0.022 Norway 7 0.417 0.022
Belgium 4 0.135 0.024 Spain 0 0.459 0.024
Korea 0 0.138 0.026 France 0 0.564 0.026
Germany 4 0.148 0.028 Italy 0 0.565 0.028
Greece 4 0.150 0.030 Poland 5 0.579 0.030
Norway 7 0.167 0.031 Hungary 4 0.612 0.031
Denmark 3 0.206 0.033 Belgium 0 0.618 0.033
Ireland 7 0.235 0.035 Luxembourg 0 0.655 0.035
Japan 4 0.246 0.037 Japan 5 0.656 0.037
Luxembourg 3 0.276 0.039 United Kingdom 0 0.697 0.039
Portugal 8 0.332 0.041 Denmark 0 0.698 0.041
Australia 3 0.386 0.043 Ireland 0 0.708 0.043
Poland 0 0.414 0.044 Austria 0 0.720 0.044
Turkey 8 0.418 0.046 Switzerland 8 0.733 0.046
Canada 6 0.580 0.048 Portugal 0 0.786 0.048
Hungary 0 0.816 0.050 Greece 5 0.880 0.050
P 0.097 0.015
Z∗ 0.095 0.016
W∗ 0.257 0.002
Note. Simes criterion is calculated using the 5% significance level.

The log real exchange rate between country i and the US is given by

qit = sit − pus,t + pit, (4.1)

where sit is the nominal exchange rate of the ith country’s currency in terms of US dollar
and pus,t and pit are consumer price indices in the US and country i, respectively. All these
variables are measured in natural logarithms. We use quarterly data from 1973 : 1 to 1998 : 2
for 27 OECD countries, as listed in Table 8. (Two countries, Czech Republic and Slovak
Republic, are excluded from our analysis, since their data span a very limited period of time,
starting at 1993 : 1.) All data are obtained from the IMF’s International Financial Statistics.
(Note that, for Iceland, the consumer price indices are missing during 1982:Q1–1982:Q4 in
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the original data. We filled out this gap by calculating the level of CPI from its percentage
changes in the IMF database.)

As the first stage in our analysis we estimated individual ADF regressions:

Δqit = μi + φiqi,t−1 +
ki∑

j=1

ϕijΔqi,t−j + εit, i = 1, . . . ,N; t = ki + 2, . . . , T. (4.2)

The null and alternative hypotheses for testing PPP are specified in (2.3) and (2.4),
respectively. The selected lags and the P values are reported in Table 8. The results in the
left panel show that the ADF test does not reject the unit root null of real exchange rate at
the 5% level except for New Zealand. As a robustness check, we investigated the impact of
a change in numeraire on the results. The right panel reports the estimation results when
the Deutsche mark is used as the numeraire. Out of 27 countries, only 5—Mexico, Iceland,
Australia, Korea, and Canada—reject the null of unit root at the 5% level.

As is well known, the ADF test has low power with a short time span. Exploring the
cross-section dimension is an alternative. However, if a positive cross-section dependence is
ignored, panel unit root tests can also lead to spurious results, as pointed out by O’Connell
[10]. As a preliminary check, we compute the pairwise cross-section correlation coefficients
of the residuals from the above individual ADF regressions, ρ̂ij . The simple average of these
correlation coefficients is calculated, according to Pesaran [26], as

ρ̂ =
2

N(N − 1)

N−1∑

i=1

N∑

j=i+1

ρ̂ij . (4.3)

The associated cross-section dependence (CD) test statistic is calculated using

CD =

√
2T

N(N − 1)

N−1∑

i=1

N∑

j=i+1

ρ̂ij . (4.4)

In our sample ρ̂ is estimated as 0.396 and 0.513 when US dollar and Deutchemark are
considered as the numeraire, respectively. The CD statistics, 71.137 for the former and 93.368
for the latter, strongly reject the null of no cross-section dependence at the conventional
significance level.

Now turning to panel unit root tests, Simes test does not reject the unit root null,
regardless of which numeraire, US dollar or Deutchemark, is used. However, the evidence
is mixed, as illustrated by other test statistics. For 27 OECD countries as a whole, we find
substantial evidence against the unit root null with Deutchemark but not with US dollar. In
summary, our results from panel unit root tests are numeraire specific, consistent with Lopez
[24], and provide mixed evidence in support of PPP for the floating regime period.

5. Conclusion

We conduct a systematic comparison of the performance of four commonly used P -value
combination methods applied to panel unit root tests: the original Fisher test, the modified
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inverse normal method, Simes test, and the modified TPM.Monte Carlo evidence shows that,
in the presence of both “strong” and “weak” cross-section dependence, the original Fisher test
is severely oversized but the other three tests exhibit good size properties with moderate and
large T . In terms of power, Simes test is useful when the total evidence against the joint null
hypothesis is concentrated in one or very few of the tests being combined, and the modified
inverse normal method and the modified TPM perform well when evidence against the joint
null is spread amongmore than a small fraction of the panel units. Furthermore, under spatial
dependence, the modified TPM yields the highest size-adjusted power. We investigate the
PPP hypothesis for a panel of OECD countries and find mixed evidence.

The results of this work provide practitioners with guidelines to follow for selecting
an appropriate combination method in panel unit root tests. A worthwhile extension would
be to develop bootstrap P value combination methods that are robust to general forms of
cross-section dependence in panel data. This issue is currently under investigation by the
authors.
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