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Seasonal Autoregressive Fractionally Integrated Moving Average (SARFIMA) models are used in
the analysis of seasonal long memory-dependent time series. Two methods, which are conditional
sum of squares (CSS) and two-staged methods introduced by Hosking (1984), are proposed to
estimate the parameters of SARFIMA models. However, no simulation study has been conducted
in the literature. Therefore, it is not known how these methods behave under different parameter
settings and sample sizes in SARFIMA models. The aim of this study is to show the behavior
of these methods by a simulation study. According to results of the simulation, advantages and
disadvantages of both methods under different parameter settings and sample sizes are discussed
by comparing the root mean square error (RMSE) obtained by the CSS and two-staged methods.
As a result of the comparison, it is seen that CSS method produces better results than those
obtained from the two-staged method.

1. Introduction

In the recent years, there have been a lot of studies about Autoregressive Fractionally
Integrated Moving Average (ARFIMA) models in the literature. However, most of time
series in real life may have seasonality, in addition to long-term structure. Therefore,
SARFIMA models have been introduced to model such time series. Generally, SARFIMA
(p,d,q)(P,D,Q), process is given in the following form:

$(B)D(B)(1 - B)*(1 - B*)"X; = ©(B)0(B)e, (1.1)

where X; is a time series, B is the back shift operator, such as BiX; = X,_;, s is the seasonal
lag, d and D represent the nonseasonal and seasonal fractionally differences; respectively, e; is
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a white noise process and has normal distribution (N (0, ¢2)), and ¢(B), ®@(B), 0(B), and ©(B)
are given by

(B = (1= 1B+~ $,B"),

6(B) = (1+6:B+---+6,B), 12)

®(B) = (1-®,B° - --- - ®,B"),

O(B) = (1+©1B +---+©,B%),

where p, g and P, Q are the orders of the nonseasonal and seasonal parameters, respectively.

Baillie [1] and Hassler and Wolters [2] examined the basic characteristics of ARFIMA
models, while some significant contributions to the SARFIMA models were presented by
Giraitis and Leipus [3], Arteche and Robinson [4], Chung [5], Velasco and Robinson [6],
Giraitis et al. [7], and Haye [8]. When all parameters are different from zero in (1.1) and
when some parameters such as p, g, P,Q are equal to zero, different parameter estimation
methods are compared by performing simulation studies in the literature [9-11].

Seasonal long-term structure exists in time series in various study fields such as the
cumulative money series in Porter-Hudak [12], the IBM input series in Ray [13], and the Nile
River data in Montanari et al. [14]. Candelon and Gil-Alana [15] forecasted the industrial
production index of countries in South America by employing the SARFIMA models. Gil-
Alana [16] found that the GDP series in Germany, Italy, and Denmark had a structure which
was suitable to use SARFIMA models.

Brietzke et al. [17] utilized Durbin-Levinson algorithm forthep=g=P=Q =d =0
model. Ray [13] modified the method proposed by Hosking [18] and used this modified
method for a special SARFIMA process having two different seasonal difference parameters.
Darné et al. [19] adapted the method, proposed for ARFIMA by Chung and Baillie [20], to
SARFIMA models. However, the properties of the CSS method employed in Darné et al. [19]
have not been examined by a simulation study yet.

Arteche and Robinson [4] introduced a semiparametric method based on spectral
density functions while estimating parameters for SARFIMA model in the case of d = 0. GPH
method used in ARFIMA is extended to be used in SARFIMA modelsforp=q=P=Q =d =
0 by Porter-Hudak [12], and GPH estimator has been modified by Ooms and Hassler [21].
Also, a simulation study for different values of d, D, s, and sample size has been conducted
using GPH, Whittle and Exact Maximum likelihood (EML) by Reisen et al. [9, 10] and Palma
and Chan [11]. In addition to these studies, many methods for determining seasonal long-
term structure have been proposed by Hassler and Wolters [22], Gil-Alafia and Robinson
[23], Arteche [24], and Gil-Alana [25, 26].

We examine the properties of the CSS and two staged estimation methods by a
simulation study in which both methods are compared based on various parameter settings
and sample sizes. In the simulation study, a specific form of the model given in (1.1) in which
p, d, and q are equal to zero is examined by using the both CSS and two staged estimation
methods. This model can also be expressed as SARFIMA (P, D, Q),. After simulation study
was conducted, the results obtained from the CSS and two staged estimation methods are
compared, and it is observed that better results are obtained when the CSS method is
employed.
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The outline of this study is as follows. Section 2 contains brief information related to
SARFIMA models. The CSS method and two staged methods are explained in Sections 3 and
4, respectively. The outline of the simulation study and the results are given in Section 5.
Finally, the results obtained from the simulation study are summarized in the last section.

2. SARFIMA Models

When p, g, d, P, and Q are set to zero in model (1.1), this model is called as Seasonal
Fractionally Integrated (SFI) model. The SFI model was firstly introduced by Arteche and
Robinson [4], and basic information about the model can be found in Baillie [1]. SFI model
can be given by

(1-B)PX, = e. (2.1)

Infinite moving average presentation of the model (2.1) is as follows:

X =¥(B%)e; = Z PkCi-sk, (2.2)
k=0

where ¢ = T(k + D)/ (T(D)I'(k + 1)), (¢ ~ kP~1/T(D), for k — o0).
Infinite autoregressive presentation of the model (2.1) is as follows:

I(B)X; = > meXi-sk = e, (2.3)
k=0

where 7 =T'(k = D) /(I'(-D)I'(k + 1)), (7 = kP71 /T(-D), for k — ).
For model (2.1), autocovariance and autocorrelation functions can be, respectively,
written as follows:
(-1)*r(1 -2D)

= 2 = 2.4
YR = ta—D+nra-k-p)% K=l 24

_ T(1-D)I(k +D)

p(Sk)_F(D)F(k—D+1)' =1,2,..., (2.5)
when
k— o, p(sk)~ % k2P, (2.6)
For model (2.1), spectral density function is as follows:
f(w) = % [2 sin(%)]iw, 0O<w< . (27)

Note that the spectral density function is infinite at the frequencies 2rv/s, v =1, ..., [s/2].
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When p, g, d, D, P, and Q are different from zero in model (1.1), closed form
for autocovariances cannot be determined. However, some methods, such as the splitting
method presented by Bertelli and Caporin [27], employed to calculate autocovariances of
ARFIMA models, can also be used for those in SARFIMA models.

Let y1(-) denote the autocovariance function of SARFIMA (p,d, q)(P, D, Q), models.
Autocovariances are calculated in terms of splitting method as follows:

1k = S paysk-h). (2.8)
h=-m

¥2(+) and y3(:) are autocovariances functions for SARFIMA (p,0, 9)(P,0,Q), and SARFIMA
(0,d,0)(0,D,0), models, respectively. y3(-) is calculated using splitting method given in a
following expression:

Bk = S ya(h)ystk - h). 2.9)
h=-m

¥4(-) and y5(-) are autocovariances functions for SARFIMA (0,0,0)(0, D,0), and SARFIMA
(0,d,0) x (0,0,0), models, respectively. The closed form for y(:) is given in (2.4). The
autocovariances of ys(-) are autocovariances of fractionally integrated process and the closed
form is given by [28] as follows:

(-1)T(1 - 2d) )

r(k—d+1)r(1_k_d)oe‘ (2.10)

ys(k) =

To generate series, which are appropriate for SARFIMA (P, D, Q), models, the following
algorithm is applied.

Step 1. Generate Z = (z, ..., zn)Trandom variable vector with standard normal distribution.

Step 2. Obtain the matrix X, = [y(i - j)],i,j = 1,...,n by utilizing the expression (2.4).

Step 3. Split the covariance matrix as follows: = = LLT where, L is a lower triangular matrix.
This splitting is called Cholesky. It is possible to obtain Cholesky decomposition

of positive definite and symmetric matrices. Note that matrix X, is positive definite and

symmetric.

Step 4. Obtain series X = (Xl,...,Xn)T by using X = (Xl,...,Xn)T = LZ formula. X =
(Xi,...,Xy) has a suitable structure for SARFIMA (0, D, 0), model.

Step 5. Generate series according to SARMA (P,Q), model by taking X = (Xj,...,X,) as
error series. By this way, the new generated series have the structure of SARFIMA (P, D, Q),.
This algorithm is easily extended to SARFIMA (p, d, q)(P, D, Q), model.
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3. The Two-Staged Method

The two-staged method can be used to estimate the parameters of SARFIMA (P, D,Q),
model. In the first phase of this method, it is assumed that the time series has a suitable
structure to use the SARFIMA (0, D, 0), model, and seasonal fractionally difference parameter
D is estimated. In the second phase, estimation of the parameter, EML method given below,
can be employed.

Theoretical autocovariance and autocorrelation functions for SARFIMA (0, D,0),
model are shown in (2.4) and (2.5) respectively. Let time series X; have n observations
(x1,...,x,), and let Q represent the autocorrelation matrix of xi,...,x,. Therefore, the
likelihood function of x1, ..., x, is as follows:

L(D) = (2)™"?|Q/? eXp{—%X'9_1X}. (3.1)

Cholesky decomposition is used for the matrix © as multiplication of lower and upper
triangular matrices in calculation of the likelihood function. Instead of calculating the inverse
of matrix Q (nxmn), inverses of lower and upper triangular matrices are calculated by using the
decomposition. Thus, the decomposition decreases computational difficulty and calculation
time. Cholesky decomposition of the matrix € is written as follows:

Q-1L. (32)
Let W = L7'X, and it can be written

X'Q X = X (L) X = (LX) (LX) = ww
(LK) X = (LX) (L7X) )

-1/2

Q™2 = |LL| 7% = L™

Thus, (3.1) can be rewritten as
D 1
p<§> = exp (2) AL exp{—EW'W}. (3.4)

The likelihood function given in (3.4) is maximized in terms of seasonal fractionally differ-
ence parameter by using an optimization algorithm. After seasonal fractionally difference
parameter is estimated by using EML, the rest of the parameters of SARMA (P, Q), model
are estimated in the second phase by using the classic method. In the second phase, the order
of the seasonal model can be determined by using the Box-Jenkins approach. Therefore, the
two-staged method can be summarized as follows.

Phase 1. Estimate the parameter D by assuming the time series suitable for SARFIMA
(0,D,0),.

Phase 2. Estimate seasonal autoregressive and moving average parameters by using the Box-
Jenkins methodology.
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4. The CSS Method

Chung and Baillie [20] proposed a method based on minimization of conditional sum of
square. This method can be used for SARFIMA (p, d, q)(P, D, Q), models. Conditional sum
of square method for SARFIMA model is as follows:

2

o <%> log(F) + <212> S {07 Bre BpBIOE) 1 - B (- B)°x,)

£ t=1

(4.1)

In the CSS method, firstly, seasonal fractionally difference procedure is executed for X;.
Secondly, fractionally difference procedure is executed for (1 — B%)PX;. Thirdly, SARMA
filtering is applied to (1 - B)d(l - B)PX,. By calculating sum of squares of this obtained
series (871 (B)©1(B)¢(B)®(B)(1 - B)*(1 - B%)PX,), conditional sum of square is calculated
for a fixed value of 02 and D. Chung and Baillie [20] also emphasize that the estimations of
parameters obtained by the CSS method have less bias when the mean value of the series is
known. It is easy to use the CSS method because it does not need to calculate autocovariances.
In the literature, the CSS method for the SARFIMA (P, D, Q), model has been used only by
Darné et al. [19].

5. Simulation Study

In this section, the parameters of SARFIMA (P, D, Q), model are estimated by using the CSS
and the two-staged methods separately under different parameter settings and sample sizes.
Also, the advantages and the disadvantages of both methods are discussed.

The algorithm, whose steps are given in Section 2, is used to generate various
SARFIMA (P,D,Q), models. SARFIMA (1,D,0), and SARFIMA (0,D,1), models are
emphasized in the simulation study. For SARFIMA (1, D, 0), model, 36 different cases are
examined such as seasonal fractionally difference D = 0.1,0.2,0.3, seasonal autoregressive
parameter @ = 0.3,0.7,(-0.3), (-0.7), sample sizes n = 120,240,360, and period s = 4.
Similarly, the same parameters are also used for SARFIMA (0, D, 1), model by taking © =
0.3,0.7,(=0.3), (=0.7). For each case, 1000 time series are generated, so totally we generate
72000 time series. The parameters of the generated time series are estimated by using both
the CSS and two-staged methods whose results are summarized in Tables 1 and 2. For each
1000 time series, the mean, standard deviation, and root mean square error (RMSE) values of
estimated parameters are exhibited in these tables. RMSE values are computed by

~\2
RMSE - J I ([51' - ﬁi) (5.1)
1000 ’

where f; and ﬁi denote the real and estimated values of parameter, respectively.

In Table 1, for SARFIMA (1, D, 0), model, the simulation results for different values
of @ and sample size n are shown when the CSS and the two-stage methods are executed.
From this table, for CSS method, we observe that RMSE values have sharply decreased for
the estimated parameters of seasonal fractional difference and seasonal autoregressive, when
the sample size increases. It is also seen that the values of RMSE do not change much whether
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Table 1: Simulation results of the CSS and two-stage method in SARFIMA (1, D, 0),.
D Sample Mean (D) Mean (®) Std. dev. (D) Std. dev. (®) RMSE(D) RMSE(®D)
size CSS TSM CSS TSM CSS TSM (CSS TSM (CSS TSM CSS TSM
0.3 006 014 028 028 006 009 012 009 0,08 0,10 012 0,09
120 07 008 015 068 048 0,07 008 009 007 008 009 010 0,23
-0.3 005 0,02 -030 -026 006 005 011 009 008 009 0,11 0,10
-0.7 004 000 -069 -046 006 001 008 007 008 010 008 025
03 005 015 029 029 004 007 007 006 007 008 0,07 0,06
0.1 240 07 006 016 069 048 005 006 005 005 006 008 005 0,23
-0.3 004 001 -030 -026 004 003 007 006 007 009 007 0,07
-0.7 0,04 000 -069 -047 004 000 005 005 008 010 005 0,24
03 004 015 030 029 004 006 006 005 007 008 0,06 0,05
360 07 005 016 070 048 004 005 004 004 006 008 004 0,22
-03 004 001 -030 -026 004 002 005 005 007 010 0,05 0,06
-0.7 0,04 000 -069 -046 004 000 004 004 007 010 004 0,24
0.3 012 021 029 1033 008 007 012 009 0,11 0,07 012 0,09
120 07 014 020 069 051 009 006 009 007 011 006 0,09 0,21
-0.3 0,10 0,07 -029 -023 008 007 012 009 0,13 0,15 0,12 0,11
-0.7 008 000 -069 -045 007 002 008 007 014 020 0,08 0,26
03 011 021 030 033 006 005 007 006 011 005 0,07 0,07
02 9240 07 012 021 070 051 006 004 006 005 010 0,04 0,06 0,19
-0.3 0,10 006 -030 -023 006 006 007 007 012 0,15 0,07 0,09
-0.7 0,09 0,00 -069 -045 005 000 005 005 0,12 020 005 025
03 011 022 030 033 005 004 006 005 010 0,04 0,06 0,06
360 07 011 022 070 051 005 003 004 004 010 003 0,04 0,19
-0.3 0,10 0,06 -0,29 -024 005 005 005 005 0411 0,15 005 0,08
-0.7 0,10 0,00 -0,69 -045 005 000 004 004 0,11 020 004 025
0.3 021 0,27 031 042 009 004 o011 011 013 005 0,11 0,16
120 07 025 026 070 058 009 004 009 009 010 006 0,09 0,15
-0.3 020 016 -028 -0,16 009 007 011 010 0,14 0,16 0,12 0,17
-0.7 018 0,02 -068 -043 009 004 009 008 015 028 0,09 0,28
03 022 027 031 043 006 003 007 008 011 004 0,07 0,5
03 940 07 023 027 071 059 007 003 006 006 010 004 006 0,13
-03 021 017 -029 -0,16 006 006 007 008 011 0,14 0,07 0,16
-0.7 020 0,01 -069 -043 006 002 005 005 012 029 005 0,27
03 021 027 031 043 005 002 006 007 010 004 006 0,14
360 07 022 027 072 059 005 003 004 005 010 004 005 0,12
-03 021 017 -029 -0,16 005 005 006 006 0711 0,14 006 0,15
-0.7 020 0,01 -069 -043 005 002 004 004 011 029 004 027

the sign of parameter of seasonal autoregressive is positive or not. In the case of having
larger value of seasonal autoregressive parameter in absolute, RMSE values of seasonal
autoregressive (RMSE(®)) parameters get smaller. When D = 0.1 and D = 0.2 are compared,
the values of RMSE(D) in D = 0.1 are smaller than those in D = 0.2, whereas the values of
RMSE(®) in D = 0.1, D = 0.2, and D = 0.3 are close with each other. Note that the values of
RMSE(D) in D = 0.3 are larger than those in D = 0.1.
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According to Table 1, when the two-staged method is executed, it is observed that
the sample size does not affect significantly the values of RMSE, especially for RMSE(®)
when @ = -0.7. However, when the absolute value estimated of seasonal autoregressive
parameter increases, the values of RMSE(®) increase dramatically in D = 0.1 and D =
0.2. The values of RMSE(D) are not affected by both the sign and magnitude of seasonal
autoregressive parameter, especially in D = 0.1. It is worth to point out that the values of
RMSE(D) are quite larger for the negative values of seasonal autoregressive parameters in
both D = 0.2 and D = 0.3. It can be inferred from the comparison between D = 0.1 and
D = 0.2 that for the negative values of seasonal autoregressive parameter, both the values
of RMSE(D) and RMSE(®) increase gradually while D is increasing. Especially, the values
of RMSE(®) in D = 0.3 get the biggest values when the seasonal autoregressive parameter
is negative. Therefore, for the negative values of seasonal autoregressive parameters, we can
say that the estimation error gets bigger while the order of seasonal fractional difference is
increasing.

In Table 2, for the SARFIMA (0, D, 1), model, the simulation results for different values
of parameter © and sample size n are shown for the CSS and two-staged methods. From this
table, we observe that RMSE values have decreased for the estimated parameters of seasonal
fractional difference and seasonal moving average, when the sample size increases, the CSS
method is executed. It is also seen that the values of RMSE do not change much whether
the sign of parameter of seasonal moving average is positive or not. In the case of having
larger value of seasonal moving average parameter for the negative values, RMSE values
for seasonal fractionally difference (RMSE(D)) are smaller. When we compare D = 0.1 with
D = 0.2, the values of RMSE(D) in D = 0.1 are smaller than those in D = 0.2, whereas the
values of RMSE(©) among D = 0.1, D = 0.2, and D = 0.3 are close with each other. Note that
the values of RMSE(D) in D = 0.3 are larger than those in D = 0.1.

When Table 2 is examined, it is observed that the values of RMSE(®) decrease when
sample size increases for two-staged method. However, there is no positive or negative
relations between the value of seasonal moving average parameter and the values of
RMSE(D) and RMSE(©) when two-stage method is executed. We would like to remark that
RMSE(©) has the smallest value in each sample size for © = 0.7 and that values of RMSE(D)
are quite big for the negative values of seasonal moving average parameter with respect to
its positive values when D = 0.2, and 0.3 in Table 2.

6. Discussions

In the literature, the two-staged method is a widely used method to estimate parameters of
SARFIMA models. Although there is another method called CSS, this method has not been
employed to estimate the parameters of SARFIMA model. In this study, the CSS and the two-
staged methods are employed to estimate parameters of the SARFIMA models by conducting
a simulation study, and by this way the properties of these two methods are examined under
different parameter settings and sample sizes.

From the results of the simulation, we deduce that when the sample size increases,
the CSS method gives more accurate estimates. Besides, we can infer that when seasonal
autoregressive parameter in SARFIMA (1, D, 0), model gets close to 1 or —1, the parameter
estimates of the CSS method have less error. The CSS method produces quite good estimates
for D when the seasonal autoregressive parameter in SARFIMA (1, D,0), model and the
seasonal moving average parameter in SARFIMA (0, D, 1), model are positive.
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Table 2: Simulation results of CSS and two-stage method in SARFIMA (0, D, 1),.

D S.arnple o Mean (D) Mean (©) Std. dev. (D) Std.dev. (©) RMSE(D) RMSE(©)
size CSS TSM CSS TSM (CSS TSM CSS TSM CSS TSM CSS TSM

03 006 014 029 031 006 009 0712 0,10 0,08 0,10 0,12 0,10

120 07 006 015 061 064 007 008 0,09 008 008 009 013 0,10

-0.3 0,05 0,02 -031 -028 006 005 011 0,10 0,08 0,09 0,12 0,10

-0.7 0,03 0,00 -062 -062 005 0,01 009 008 009 010 0,12 0,11

03 005 015 029 031 004 007 007 006 007 008 007 0,07

01 240 07 005 016 066 067 005 006 006 005 007 008 0,07 0,06
-0.3 0,04 001 -030 -028 004 0,03 007 006 007 009 007 0,07

-0.7 0,03 0,00 -066 -066 004 0,00 006 005 008 010 0,07 0,07

03 004 015 030 031 004 006 006 005 007 008 0,06 0,05

360 07 005 016 068 069 004 005 004 004 007 0,08 0,05 0,04

-0.3 0,04 001 -030 -028 004 002 006 005 007 010 0,06 0,05

-0.7 0,03 0,00 -0,67 -067 003 0,00 0,04 004 008 010 0,05 0,05

03 011 021 03 034 008 007 012 0,10 0,12 0,07 0,12 0,11

120 07 013 021 062 065 008 006 009 008 011 0,06 0,12 0,09

-03 0,09 0,07 -029 -024 008 007 0,12 0,10 013 0,15 0,12 0,12

-0.7 0,06 0,00 -061 -060 007 0,01 009 009 016 020 0,13 0,13

03 011 021 03 034 006 005 007 006 011 0,05 0,07 0,08

0.2 240 0.7 0,11 021 067 068 006 004 005 0,05 0,10 0,04 0,06 0,05
-0.3 0,10 0,06 -029 -024 006 006 0,07 007 012 0,15 0,07 0,09

-0.7 0,08 0,00 -065 -063 006 001 006 005 014 0,20 0,07 0,09

0.3 0,11 022 030 034 005 0,04 006 005 0,10 0,04 0,06 0,06

360 07 011 022 068 070 005 003 004 004 010 0,03 0,05 0,04

-0.3 0,10 0,06 -0,29 -024 005 005 005 005 0,11 0,15 0,06 0,08

-0.7 0,08 0,00 -066 -064 005 000 0,04 0,05 0,13 0,20 0,06 0,08

0.3 021 026 030 040 009 0,05 0412 0,10 0,13 0,06 012 0,14

120 07 023 026 062 068 009 004 009 007 011 006 0,12 0,07

-03 0,19 016 -028 -015 0,10 0,07 0,12 0,11 0,15 0,16 0,12 0,18

-0.7 0,14 0,02 -060 -055 009 004 010 010 0,19 0,28 0,14 0,18

03 021 027 031 040 006 003 0,07 007 011 0,04 0,07 0,12

03 240 07 022 026 067 071 006 003 005 005 010 0,05 0,06 0,05
-0.3 0,20 0,17 -028 -0,15 0,07 0,06 007 008 012 0,15 0,07 0,17

-0.7 016 0,01 -064 -055 006 002 006 007 015 029 0,09 0,16

03 022 027 031 040 005 0,02 006 005 010 0,04 006 0,11

360 07 022 027 068 073 005 003 004 004 010 0,05 0,05 0,05

-03 020 017 -028 -0,16 005 005 006 006 011 0,14 006 0,16
-0.7 018 001 -065 -056 005 002 004 006 013 029 0,07 0,15

When the CSS method is compared with the two-staged method, the CSS method
has lower RMSE values than the two-staged method under different parameter settings and
sample sizes, especially in autoregressive models. Two-staged method generates misleading
results when @ is chosen near —1 (® = —-0.7). However, this is not the case for the CSS method.
Based on the obtained results and simplicity of the method, for forthcoming studies it can be
easily suggested that the CSS method should be preferred rather than the two-staged method
in the parameter estimation for SARFIMA models.
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