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We find necessary and sufficient conditions for the weighted strong law of large numbers for
independent random variables with multidimensional indices belonging to some sector.

1. Introduction and the Notation

Let N
d, d ≥ 1, be a d-dimensional lattice. The points of this lattice will be denoted by m =

(m1, . . . , md), n = (n1, . . . , nd), and so forth. The set N
d is partially ordered by the relation

m ≤ n if and only if for every i = 1, . . . , d we have mi ≤ ni. We will also write m < n if for
every i = 1, . . . , d, mi ≤ ni and for at least one i0 we havemi0 < ni0 . LetW be an infinite subset
of N

d; moreover, assume that a nonnegative, increasing real function δ : W → R
+ is given,

and set TW,δ(m) := card{k ∈ W : δ(k) ≤ m}, τW, δ(m) := TW,δ(m)−TW,δ(m−1),m ∈ N. Assume
that TW,δ(m) < ∞, for each m ∈ N and TW,δ(m) → ∞ as m → ∞. Moreover, put |n| =∏d

i= 1ni

and ‖n‖ = max1≤ i≤d|ni|. We aim to study the convergence of sequences indexed by lattice
points. For this means let us recall that n → ∞may have different meanings; in other words,
the term “n tends to infinity” may be understood as |n| → ∞ (equivalently ‖n‖ → ∞) or
min1≤ i≤d(ni) → ∞, we will be using the first meaning. Thus, for a field (an)n∈Nd of real
numbers indexed by positive lattice points, we write an → a, n → ∞ if and only if for every
ε > 0 there exist a n0 ∈ N

d such that for each n � n0 we have |an − a| < ε.
Our setting is an extension of the one investigated by Klesov and Rychlik [1] or

Indlekofer and Klesov [2], that is, of the so called “sectorial convergence”. Let fi,j , Fi,j : R+ →
R+, 1 ≤ i < j ≤ d, be nondecreasing nonnegative real functions such that fi,j(x) ≤ x ≤ Fi,j(x),
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1 ≤ i < j ≤ d, x ∈ R+. Let us denote byAf,F a d-dimensional sector defined by these functions
in the following way:

Af,F :=
{
n ∈ N

d : fi,j
(
nj

) ≤ ni ≤ Fi,j

(
nj

)
, 1 ≤ i < j ≤ d

}
. (1.1)

Moreover, for m = 1, 2, . . ., let us consider the Dirichlet divisors τf, F(m) for the sector Af,F

defined by

τf, F(m) = card
{
n ∈ Af,F :

∣
∣n
∣
∣ = m

}
, (1.2)

and set

Tf, F(m) =
m∑

k=1

τf, F(k) = card
{
n ∈ Af,F :

∣
∣n
∣
∣ ≤ m

}
. (1.3)

For x ∈ R+ we extend the function Tf, F by defining the step function Tf, F(x) = Tf, F([x])
where [x] denotes the integer part of x.

We consider a modified version of “sectorial convergence” in which we say that a field
of real numbers (an) indexed by lattice points in N

d converge in the setW to a ∈ R, and write
limWan = a if and only if for every ε > 0 the inequality |an − a| < ε holds for all but finite
number of n ∈ W . It was Gut (see [3]), who for the first time considered sectorial convergence
for random fields, with the sector defined as

Aθ :=
{

n ∈ N
d : θnj ≤ ni ≤

nj

θ
, 1 ≤ i, j ≤ d, i /= j

}

, (1.4)

and τθ(m) = card{n ∈ Aθ : |n| = m}, Tθ(m) =
∑m

k=1 τθ(k), m = 1, 2, . . . , θ ∈ [0, 1), where
A0 = N

d. For recent results in this area, see [1, 2, 4]. Our aim is to extend the results of [2] in
the spirit considered by Lagodowski and Matuła in [4].

We will be studying necessary and sufficient conditions for the weighted strong law
of large numbers (WSLLN for short) for random fields of independent random variables
for a general class of weights (defined by Feller in [5] and Jajte in [6]). The case of such
summability methods in the multi-index setting was considered in [4].

Let us recall the definition of the class of transformations considered by Lagodowski
and Matuła (see [4]). Let g, h : R

+ → R
+ be nonnegative real functions; moreover, let g be

increasing with range (0,∞), and set φ(x) := g(x)h(x), x > 0. We will say that the functions
g, h satisfy the Feller-Jajte condition if the following two conditions are satisfied.

(A1) There exists p > 0 such that the function φ is increasing in the interval (p,∞) with
range (0,∞) and limn→∞φ(n) = ∞.

(A2) There exists a constant a > 0 such that

∞∑

k=s

τθ(k)
φ2(k)

≤ a
s

φ2(s)
, s > p, θ ∈ (0, 1),

∞∑

k=s

τ0(k)
φ2(k)

≤ a
s logd−1s
φ2(s)

, s > p.

(1.5)
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The first assumption is technical, and it is required in order for the inverse function φ−1 to
exist. In our present work we will consider a modification of this class. Instead of (A2) we
will consider the following condition.

(A2’) There exists a constant a > 0 such that

∞∑

k=s

τW, δ(k)
φ2(k)

≤ a
TW,δ(s)
φ2(s)

, s > p. (1.6)

Making use of the well-known asymptotics (see [7, 8]) for τθ and Tθ, that is, the relations

c1k ≤ Tθ(k) ≤ c2k, θ ∈ (0, 1),

c1k log
d−1k ≤ T0(k) ≤ c2k log

d−1k,
(1.7)

where c1, c2 are nonnegative constants, we see that, in the case of the sector considered by
Gut, the conditions (A2) and (A2’) coincide. It is worth noting that the number τW, δ(k) does
not exceed τ0(k).

Let (Xn)n∈Nd be a field of independent random variables. The aim of the paper is to
find the necessary and sufficient conditions for the almost sure convergence of

lim
W

1
g
(
δ
(
n
))
∑ Xk − ak

h
(
δ
(
k
)) = 0, (1.8)

where the summation is extended over all k ≤ n or W � k ≤ n, and the centering constants
ak are either the moments or truncated moments of Xk. Our main results, the necessary and
sufficient conditions for the WSLLN for independent random fields, may also be seen as an
extension of the previous results of [2, 4].

2. Main Results

Let (Xn)n∈Nd be a field of independent random variables; moreover, let W ⊂ N
d and the

functions δ : W → R
+, TW, δ, τW, δ be as before. For simplicity we impose some regularity

condition on the function TW,δ; namely,

TW,δ(k + 1)
TW,δ(k)

≤ B, for some B > 0 and every k ∈ N. (2.1)

Note—similarly as in [2]—that, if (2.1) holds, then ETW,δ(|X|) < ∞ is equivalent to

∑

n∈W

P
(|X| ≥ δ

(
n
))

< ∞. (2.2)
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Furthermore,

∑

n∈W

P
(|X| ≥ δ

(
n
))

=
∞∑

k=1

τW, δ(k)P(|X| ≥ k)

=
∞∑

k=1

TW,δ(k)P(k ≤ |X| < k + 1).

(2.3)

Let us observe that (2.1) is satisfied for standard sectors Aθ and if Aθ1 ⊂ W ⊂ Aθ2 , for some
θ1 and θ2. Let the functions g, h satisfy the conditions (A1) and (A2’). We will also be using a
well-known truncation technique with

Yn := XnI
{∣
∣Xn

∣
∣ ≤ φ

(
δ
(
n
))}

, mn := EYn. (2.4)

In the next theorem we give sufficient conditions for the WSLLN of the form:

lim
W

1
g
(
δ
(
n
))

∑

W � k ≤n

Xk −mk

h
(
δ
(
k
)) = 0, almost surely. (2.5)

In the first theorem we will not assume that the random variables Xn have the same distri-
bution. Instead we will use the notion of weak domination.

Definition 2.1. A random field (Xn)n∈Nd is said to be weakly dominated on the average in the
set A by the random variable Y if there exists a constant C > 0 such that, for every k ∈ N and
t ≥ 0,

∑

n∈A : δ(n)= k

P
(∣
∣Xn

∣
∣ ≥ t

) ≤ CτA, δ(k)P(|Y | ≥ t), (2.6)

where τA, δ(k) := card{n ∈ A : δ(n) = k} and obviously TA, δ(k) := τA, δ(1) + τA, δ(2) + · · · +
τA, δ(k).

This condition, to the best of our knowledge, was introduced in [9], where it is also
discussed that this condition is independent of the notion of weak mean domination (see
also [10]). In the rest of our work we will write “weakly dominated on the average” without
indicating the set A on which we consider the domination condition (unless it causes any
confusion). The price to pay for weakening the condition of identically distributed random
variables to the weakly dominated on the average is to only be able to prove sufficient
conditions. In some cases we will also consider a narrower class of summability methods;
that is, for a given set W , apart from the conditions (A1) and (A2’), we will assume that

(A3) there exists a constant a > 0 such that, for each k > 1,

k∑

n= 1

τW, δ(n)
φ(n)

≤ a
TW,δ(k)
φ(k)

. (2.7)

With such preparations we can formulate our first main result.
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Theorem 2.2. Let (Xn)n∈Nd be a field of independent random variables weakly dominated on the
average in the setW by the random variable Y . Moreover, let (A1), (A2’), and (2.1) be satisfied. If

E
(
TW,δ

(
φ−1(|Y |)

))
< ∞, (2.8)

then

lim
W

1
g
(
δ
(
n
))

∑

W � k ≤n

Xk −mk

h
(
δ
(
k
)) = 0, almost surely. (2.9)

If additionally φ(n)/n → 0 as n → ∞ and the function φ satisfies the condition (A3), then

lim
W

1
g
(
δ
(
n
))

∑

W � k ≤n

Xk − E
(
Xk

)

h
(
δ
(
k
)) = 0, almost surely. (2.10)

Proof. From the Kolmogorov-type maximal inequality and the strong law of large numbers
which is due to Christofides and Serfling (see [11, Corollary 2.5 and Theorem 2.8]), it follows
that the sufficient condition for the convergence of series of independent random fields is
analogous to the one-dimensional case. Therefore, it suffices to prove that the series

∑

n∈W

E

(
Yn

φ
(
δ
(
n
))

)2

, (2.11)

is convergent. We have

∑

n∈W

E
(
Yn

)2

φ2
(
δ
(
n
)) =

∑

n∈W

1
φ2
(
δ
(
n
))

∫∞

0
P
(
Y 2
n ≥ t

)
dt

≤
∑

n∈W

1
φ2
(
δ
(
n
))

∫φ2(δ(n))

0
P
(
X2

n ≥ t
)
dt

=
∞∑

k=1

1
φ2(k)

∫φ2(k)

0

∑

{n∈W :δ(n)=k}
P
(
X2

n ≥ t
)
dt

≤ C
∞∑

k=1

1
φ2(k)

τW, δ(k)
∫φ2(k)

0
P
(
t ≤ Y 2 < φ2(k)

)
dt

+ C
∞∑

k=1

1
φ2(k)

τW, δ(k)
∫φ2(k)

0
P
(
φ2(k) ≤ Y 2

)
dt
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= C
∞∑

k=1

1
φ2(k)

τW, δ(k)
∫φ2(k)

0
P
(
t ≤ Y 2 < φ2(k)

)
dt

+ C
∞∑

k=1

τW, δ(k)P
(
φ2(k) ≤ Y 2

)
dt.

(2.12)

Now

∞∑

k=1

τW, δ(k)P
(
φ2(k) ≤ Y 2

)
≤

∞∑

m=1

P
(
φ2(m) ≤ Y 2 ≤ φ2(m + 1)

) m∑

k=1

τW, δ(k)

=
∞∑

m=1

TW,δ(m)P
(
φ2(m) ≤ Y 2 ≤ φ2(m + 1)

)
,

(2.13)

which is equivalent to ETW,δ(φ−1(|Y |)) < ∞ since the function TW,δ satisfies (2.1). It is clear

that
∫φ2(k)
0 P(t ≤ Y 2 < φ2(k))dt = EY 2I{|Y | ≤φ(k)}, and from the relation (A2’) we have

∞∑

k=1

1
φ2(k)

τW, δ(k)
∫φ2(k)

0
P
(
t ≤ Y 2 < φ2(k)

)
dt

=
∞∑

k=1

1
φ2(k)

τW, δ(k)EY 2I{|Y |<φ(k)}

=
∞∑

m=1

EY 2I{φ(m−1)≤|Y |<φ(m)}
∞∑

k=m

τW,δ(k)
φ2(k)

≤ a
∞∑

m=1

EY 2I{φ(m−1)≤|Y |<φ(m)}
TW,δ(m)
φ2(m)

≤ a
∞∑

m=1

TW,δ(m)P
(
φ(m − 1) ≤ |Y | < φ(m)

)
,

(2.14)

which again is equivalent to ETW,δ(φ−1(|Y |)) < ∞ by (2.1). Therefore, the first part of the
theorem is proved. In order to prove the second part of the theorem, let us observe that

1
g
(
δ
(
n
))

∑

W � k ≤n

Xk − EXk

h
(
δ
(
k
)) =

1
g
(
δ
(
n
))

∑

W � k ≤n

Yk − EYk

h
(
δ
(
k
)) − 1

g
(
δ
(
n
))

∑

W � k ≤n

EXk − EYk

h
(
δ
(
k
))

+
1

g
(
δ
(
n
))

∑

W � k ≤n

Xk − Yk

h
(
δ
(
k
)) .

(2.15)



Journal of Probability and Statistics 7

The first summand converges to 0 by the first part of the theorem applied to the random
variables Yk defined by (2.4). The convergence of the third one follows from the Borel-Cantelli
lemma since

∑

n∈W

P
(
Xn /=Yn

) ≤
∞∑

k=1

TW,δ(k)P
(
φ(k − 1) ≤ |Y | < φ(k)

)
< ∞. (2.16)

It remains to prove that the second summand converges to 0. In order to prove this let us put
Zn = Xn − Yn, and we will prove that the series

∑

n∈W

E

(
Zn

φ
(
δ
(
n
))

)

(2.17)

is absolutely convergent. We have

∑

n∈W

∣
∣
∣
∣
∣

EZn

φ
(
δ
(
n
))

∣
∣
∣
∣
∣
≤
∑

n∈W

1
φ
(
δ
(
n
))

∫∞

0
P
(∣
∣Zn

∣
∣ ≥ t

)
dt

=
∑

n∈W

1
φ
(
δ
(
n
))

∫∞

φ(δ(n))
P
(∣
∣Xn

∣
∣ ≥ t

)
dt

+
∑

n∈W

1
φ
(
δ
(
n
))φ
(
δ
(
n
))
P
(∣
∣Xn

∣
∣ ≥ φ

(
δ
(
n
)))

=
∞∑

m=1

1
φ(m)

∑

{n∈W : δ(n)=m}

∫∞

φ(m)
P
(∣
∣Xn

∣
∣ ≥ t

)
dt

+
∞∑

m=1

1
φ(m)

∑

{n∈W : δ(n)=m}
φ
(
δ
(
n
))
P
(∣
∣Xn

∣
∣ ≥ φ

(
δ
(
n
)))

≤ C
∞∑

m=1

1
φ(m)

τW, δ(m)
∫∞

φ(m)
P(|Y | ≥ t)dt

+ C
∞∑

m=1

τW, δ(m)P
(|Y | ≥ φ(m)

)
.

(2.18)

Now, since ETW,δ(φ−1(|Y |)) < ∞, the second series on the r.h.s. of the above inequality
is convergent by the same argument as in the proof of the first part, whereas for the second
series it is true that

∞∑

m=1

1
φ(m)

τW, δ(m)
∫∞

φ(m)
P(|Y | ≥ t)dt

=
∞∑

m=1

τW, δ(m)
φ(m)

∞∑

k=m

∫φ(k+1)

φ(k)
P(|Y | ≥ t)dt
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≤
∞∑

k=1

∫φ(k+1)

φ(k)
P(|Y | ≥ t)dt

k∑

m=1

τW, δ(m)
φ(m)

≤ a
∞∑

k=1

TW,δ(k)
φ(k)

∫φ(k+1)

φ(k)
P(|Y | ≥ t)dt

≤ a
∞∑

k=1

TW,δ(k)P
(|Y | ≥ φ(k)

)
,

(2.19)

which is convergent again by ETW,δ(φ−1(|Y |)) < ∞.

Under the assumption that the random variables are identically distributed, one may
obtain a necessary and sufficient condition for the WSLLN.

Theorem 2.3. Let (Xn)n∈N
d be a field of i.i.d. random variables with the same distribution as the

random variable Y . Moreover, let (A1), (A2’), and (2.1) be satisfied. Then (2.8) is equivalent to (2.9).

Proof. In view of Theorem 2.2, it suffices to prove the necessity of (2.8).
Similarly as in [4]we have

lim
W

mn

φ
(
δ
(
n
)) = 0, almost surely, (2.20)

from the Lebesgue dominated convergence criterion. Now—again analogously to [4]—for
n ∈ W write

Xn −mn

φ
(
δ
(
n
)) =

1
g
(
δ
(
n
))

⎛

⎝
∑

a∈ {0,1}d
(−1)d−

∑d
i=1 aiSn−a

⎞

⎠, (2.21)

where Sn =
∑

k ≤n, k ∈W((Xk − mk)/h(δ(k))) and a = (a1, . . . , ad) with ai = 0 or ai = 1 for
i = 1, . . . , d. (To see this one should simply put Xn = 0 for n /∈ W and apply a well-known
summation technique to the whole N

d.) From the relations (2.21) and (2.9), we easily obtain
that

lim
W

Xn −mn

φ
(
δ
(
n
)) = 0, almost surely, (2.22)

for details see [4, page 20]. Thus, from the above and (2.20), we obtain the necessity of
condition (2.9) via the Borel-Cantelli lemma.

Remark 2.4. In both of the above theorems, we do not need to assume that the function TW,δ is
regularly varying in the sense of (2.1) nor that the function φ is invertible (wemay omit (A1)).
If we omit both of these assumptions, then, instead of the condition E(TW,δ(φ−1(|Y |))) < ∞,
one ought to write

∞∑

k=1

TW,δ(k)P
(
φ(k − 1) ≤ |Y | < φ(k)

)
< ∞, (2.23)
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and, instead of E(φ−1(|Y |)) < ∞,

∞∑

k=1

P
(
φ(k − 1) ≤ |Y | < φ(k)

)
< ∞, (2.24)

with some minor technical changes in the proofs.

3. WSLLN in the Case d = 2

In this section we aim to extend the results of the papers [1, 2], which are “sectorial SLLN” for
fields of i.i.d. random variables in the case d = 2. In this section we will study the weighted
strong law of large numbers. Here we will use a less general definition of a sector than in the
previous section. In this case it is possible to obtain the necessary and sufficient conditions
for a stronger form of the WSLLN; in other words, we will set

S
(
n
)
=
∑

k ≤n

Xk − E
(
Xk

)

h
(∣
∣k
∣
∣
) (3.1)

and consider the almost sure convergence

lim
Af,F

S
(
n
)

g
(∣
∣n
∣
∣
) . (3.2)

Let us note that the main difference lies in the set over which we sum up the random
variables. In the former section we were performing the summation only over the indices
which belong to the sector, and now we sum up over all indices in N

d and the difference
between the present setting and the classical SLLN for random fields is in the very definition
of convergence. In order to be able to prove our main results, we have to adopt some
techniques form [2] to the setting of the WSLLN, but, for the sake of brevity, we will not
include all the justifications here, and instead we refer to proper lines of the proofs in [2] or
in [1]. In what follows, we will assume that the sector Af,F satisfies the conditions:

f is increasing, (3.3)

f(x) ≤ x ≤ F(x), f(1) ≤ x < F(1), (3.4)

f(x)
x

is nonincreasing,
F(x)
x

is nondecreasing. (3.5)

These conditions were originally introduced in [1]. Let us observe that from (3.5) it follows
that f(x)/x ≤ f(1) and F(x)/x ≥ F(1), for x ≥ 1. Thus, according to (3.4), f(x) ≤ xf(1) <
xF(1) ≤ F(x). From this inequality it follows that Aθ ⊂ Af,F , that is, that the nonlinear sector
Af,F contains a standard sector Aθ, where θ = max{f(1); 1/F(1)}. Moreover, we assume
that the functions g, h satisfy the assumption (A1) and (A2’). Since we are dealing with a
different problem now, then we have to use a modification of the definition of weakly mean
domination on the average.
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Let Af,F be an arbitrary, nonempty sector, defined by the functions f and F. Let us
divide the set N

2 into three parts:

Af,F,

Af :=
{
n ∈ N

2 : 1 ≤ ni < f(n2)
}
,

AF :=
{
n ∈ N

2 : n2 > F(n1)
}
.

(3.6)

A random field (Xn)n∈Nd is said to be weakly dominated on the average by the random
variable Y if (2.6) holds for A = Af,F,Af and AF .

Let us now state the main result of this section.

Theorem 3.1. Let the functions f, F, the sector Af,F , and the function Tf, F be as above and satisfy
(2.1), (3.3)–(3.5). Moreover, let the functions g, h satisfy the conditions (A1) and (A2’). If a field
(Xn)n∈N2 of independent random variables is weakly dominated on the average by the random variable

Y and E(Tf, F(φ−1(|Y |))) < ∞, then

lim
Af,F

Sn

g
(∣
∣n
∣
∣
) = 0, almost surely. (3.7)

Assume additionally that φ(n)/n → 0 as n → ∞ and the function φ satisfies the condition (A3). If
E(Tf, F(φ−1(|Y |))) < ∞, then

lim
Af,F

1
g
(∣
∣n
∣
∣
)
∑

k ≤n

Xk − E
(
Xk

)

h
(∣
∣k
∣
∣
) = 0, almost surely. (3.8)

Proof. Let us begin with the justification of the first assertion. Assume that ETf, F(φ−1(|Y |)) <
∞, then Eφ−1(|Y |) < ∞. Let us consider the truncated random variables (Yn)n∈N2 as defined

in (2.3). From the Borel-Cantelli lemma, we have that, since Eφ−1(|Y |) < ∞, then

P
(∣
∣Xn − Yn

∣
∣/= 0 i.o. n ∈ N

2
)
= 0, (3.9)

and this of course means that it suffices to prove that

lim
Af,F

1
g
(∣
∣n
∣
∣
)

∑

{n∈Nd :n≤ k}

Yn −mn

h
(∣
∣n
∣
∣
) = 0, almost surely. (3.10)

Now let us divide the partial sums into three terms as in [2, 12]; in other, words let us consider

Af ∩
{
n ∈ N

d : n ≤ k
}
, AF ∩

{
n ∈ N

d : n ≤ k
}
,

Af, F ∩
{
n ∈ N

d : n ≤ k
}
,

(3.11)
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where Af and AF are defined in (3.6). It is clear (see [2, 12] for details) that the families
(
Af ∩

{
n ∈ N

d : n ≤ k
})

k ∈Nd
,

(
AF ∩

{
n ∈ N

d : n ≤ k
})

k ∈Nd

(3.12)

are linearly ordered by inclusion, thus may be enumerated in an ascending order. We also
write

SB

(
k
)
:=

∑

B∩{n∈Nd :n≤ k}

Yk −mn

h
(∣
∣n
∣
∣
) , (3.13)

forB ⊂ N
2. By the above remark the partial sums SAf (k), SAF (k)may be seen as subsequences

of cumulative sums of weakly dominated random variables. Thus, we may use the sufficient
condition for the the Feller-Jajte WSLLN for weakly dominated random variables (see
Section 2) to conclude that the condition Eφ−1(|Y |) < ∞ is sufficient for SAf (k) → 0 a.s.
and SAF (k) → 0 a.s. Therefore, it remains to prove that SAf,F (k) → 0 a.s., which by the
results of Klesov [12, 13] is implied by the fact that

∑

Af,F∩{n∈N2 :n≤ k}
P
(∣
∣Yn

∣
∣ > φ

(∣
∣n
∣
∣
))

< ∞,
∑

Af,F∩{n∈N2 :n≤ k}
E

(
Yn −mn

φ
(∣
∣n
∣
∣
)

)

< ∞,

∑

Af,F∩{n∈N2 :n≤ k}
Var

(
Yn −mn

φ
(∣
∣n
∣
∣
)

)

< ∞.

(3.14)

The first summand is bounded by ETf, F(φ−1(|Y |)) < ∞; the second is bounded since EYn =
mn. The fact that, under the above assumptions on the functions g and h, the convergence
of the last summand follows from the assumption ETf, F(φ−1(|Y |)) < ∞ follows by the same
lines as in the proofs from the preceding section.

The proof of the second assertion of the theorem is much more the same as in the proof
of Theorem 2.2 from the former section. Let us first consider the division of the partial sums
of the random field (Xn)n∈Nd (weakly dominated on the average by the random variable Y )
into three terms as given in (3.21). Let us notice that by applying the beforehand defined
truncation technique we obtain again that

SB

(
k
)
=

∑

B∩{n∈N2:n≤ k}

Xn − EXn

h
(∣
∣n
∣
∣
)

=
∑

B∩{n∈N2 :n≤ k}

Yn − EYn

h
(∣
∣n
∣
∣
) −

∑

B∩{n∈N2 :n≤ k}

EXn − EYn

h
(∣
∣n
∣
∣
) +

∑

B∩{n∈N2 :n≤ k}

Xn − Yn

h
(∣
∣n
∣
∣
) ,

(3.15)

where B = Af,F,Af ,AF . We will only give the proof for B = Af,F , remembering that for
B = Af,AFSB(k) may be seen as a subsequence of a sequence of weakly mean dominated
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(see [10]) random variables (indexed by natural numbers), and; therefore, the same
techniques may be used to prove the convergence of SAf (k) and SAF (k) to zero (the same
as for the convergence of SAf,F (k)) with the change that d = 1. Now from the Borel-Cantelli
lemma we infer that, since

∑

n∈Af,F

P
(
Xn /=Yn

) ≤
∞∑

k=1

Tf, F(k)P
(
φ(k − 1) ≤ |Y | < φ(k)

)
< ∞, (3.16)

then

1
g
(∣
∣n
∣
∣
)

∑

Af,F∩{n∈N2 : n ≤ k}

Xn − Yn

h
(∣
∣n
∣
∣
) −→ 0, almost surely. (3.17)

Now, the almost sure convergence to zero of the first term on the r.h.s. of (3.15) follows by
the same lines as in the first part of the proof. Therefore, it remains to prove that

lim
k→∞

1
g
(∣
∣k
∣
∣
)

∑

Af,F∩{n∈N2 :n≤ k}

EXn − EYn

h
(∣
∣n
∣
∣
) = 0, (3.18)

which follows from the proof of the Theorem 2.2 in the preceding section.

As before, below we show that under the assumption that the random variables are
i.i.d. the sufficient conditions in the above proofs become necessary.

Theorem 3.2. For f, F, the sector Af,F , the function Tf, F , the functions g, h as above, and the field
(Xn)n∈N2 of i.i.d. random variables, the following conditions are equivalent:

(1) limAf,F (Sn/g(|n|)) = 0, almost surely,

(2) E(Tf, F(φ−1(|X1|))) < ∞.

Proof. As obviously i.i.d. random variables are weakly dominated on the average for each
sector in N

2, then only the necessity needs justification. Let us, therefore, assume that
limAf,F (Sn/g(|n|)) = 0, a.s. From this it immediately follows that

lim
k→∞

1
g(k2)

∑

n≤k

Xn −mn

h
(∣
∣n
∣
∣
) = 0 a.s., (3.19)

where

N
2 � k = (k, k). (3.20)
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Therefore, from the Feller-Jajte WSLLN (see [5, 6]), we infer that Eφ−1(|X1|) < ∞. As in (3.6)
divide the set {n ∈ N

2 : n ≤ k} into three subsets Af,F , Af , AF and—as before—write

S
(
k
)
=

∑

{n∈N2 :n≤ k}

Xn −mn

h
(∣
∣n
∣
∣
) = SAf,F

(
n
)
+ SAf

(
k
)
+ SAF

(
k
)
. (3.21)

Since, as we have noted, the last two sums may be seen as subsequences of a sequence of i.i.d.
random variables with the same distribution as X1, then from the fact that Eφ−1(|X1|) < ∞
we obtain SAf (k) → 0 and SAF (k) → 0 as k → ∞; thus, SAf,F (k) → 0 as k → ∞. As in
the proof of Theorem 2.3 in the preceding section we have mn/φ(|n|) → 0 as k → ∞, and in
turn this implies that

P

( ∣
∣Xn

∣
∣

h
(∣
∣n
∣
∣
) > g

(∣
∣n
∣
∣
)
i.o. for n ∈ Af,F

)

= 0, (3.22)

(for details see [4]). Since the X′
ns are independent, then the Borel-Cantelli lemma implies

that ETf, F(φ−1(|X1|)) < ∞ and the necessary part of the Theorem is proved.

4. Examples

The aim of the present section is to show some examples of functions Φ for which the
condition (A2’) is satisfied. In the case d = 2 and for Φ(x) = x, Klesov and Rychlik proved
that (see [1, Lemma 2])

∞∑

k=n

τf,F(k)
k2

≤ C
Tf,F(n)

n2
, (4.1)

where the sector Af,F is defined by the functions f and F such that

f(x) ≤ x ≤ F(x),
f(x)
x

is nonincreasing,
F(x)
x

is nondecreasing. (4.2)

We will extend this result to more general classes of functions Φ satisfying some additional
technical conditions. We will apply the theory of regularly varying functions (we refer the
reader to [14] for details), and in order to use integrals and sums interchangeably we impose
the following conditions:

Φ is positive, nondecreasing on [1,∞], (4.3)

Φ(k + 1)
Φ(k)

≤ C1, for some C1 > 0 and every k ∈ N. (4.4)
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Furthermore, let Φ be differentiable with the derivative such that

Φ′(y
)

Φ′(x)
≤ C2, for some C2 > 0 and every 1 ≤ x ≤ y ≤ x + 1,

kΦ′(k)
Φ(k)

≤ C3, for some C3 > 0 and every k ∈ N.

(4.5)

Proposition 4.1. Let d = 2 and the sector Af,F be defined by the functions f and F satisfying (4.2).
Assume that the function Φ is regularly varying with index δ > 1/2 and the conditions (4.3)–(4.5)
are satisfied. Then

∞∑

k=n

τf,F(k)
Φ2(k)

≤ C
Tf,F(n)
Φ2(n)

, for some C > 0 and every n ∈ N. (4.6)

Proof. We will make use of the Abel transform:

∞∑

k=n

τf, F(k)
Φ2(k)

= lim
N→∞

(
Tf, F(N)

Φ2(N + 1)
− Tf, F(n − 1)

Φ2(n − 1)
+

N∑

k=n−1
Tf, F(k)

(
1

Φ2(k)
− 1
Φ2(k + 1)

))

.

(4.7)

From Lemma 4 of [1], we have

c1ml∗(m) ≤ Tf, F(m) ≤ c2ml∗(m), (4.8)

where l∗(m) = log
√
m− logxm and l∗(t) = l∗([t]) is a slowly varying function (even belonging

to the Zygmund class). Since Φ is regularly varying with index δ, we have

Φ(N) = Nδl(N), (4.9)

for some slowly varying function l. Thus, from (4.8) and (4.9) we get

Tf,F(N)
Φ2(N + 1)

≤ Tf,F(N)
Φ2(N)

≤ c2Nl∗(N)
N2δl2(N)

−→ 0, (4.10)

since 2δ > 1 and l∗(N)/l(N) is slowly varying. By mean value theorem and (4.4)–(4.5), we
get

N∑

k=n−1
Tf,F(k)

(
1

Φ2(k)
− 1
Φ2(k + 1)

)

≤ C
∞∑

k=n−1
Tf,F(k)

Φ′(θk)
Φ3(θk)

≤ C
∞∑

k=n−1

l∗(k)
Φ2(k)

,

(4.11)
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where θk ∈ (k, k + 1). Let us note that the function f(t) = l∗(t)/Φ2(t) is regularly varying with
index −2δ < −1; therefore, by Theorem 1.5.11 in [14] with σ = 0, we get

yf
(
y
)

∫∞
y f
(
y
) −→ 2δ − 1, as y −→ ∞. (4.12)

In consequence, for some C > 0,

∫∞

y

l∗(t)
Φ2(t)

dt ≤ Cy
l∗
(
y
)

Φ2
(
y
) , (4.13)

from this it follows that

∞∑

k=n−1

l∗(k)
Φ2(k)

≤ C
(n − 1)l∗(n − 1)

Φ2(n − 1)
≤ C

c1

Tf,F(n − 1)
Φ2(n − 1)

≤ C

c1C1

Tf,F(n)
Φ2(n)

.

(4.14)

Now, from (4.7) and (4.10), the conclusion follows.

The above proof was essentially based on the inequality (4.8) and may be repeated
in higher dimensions for any sector with such asymptotics for Tf, F(n). This is the case for
nonlinear sectors such that Aθ1 ⊂ Af,F ⊂ Aθ2 , for some θ1 and θ2. Therefore, we may state
the following proposition (in view of the remark following (3.5), the first inclusion holds
automatically).

Proposition 4.2. Let Af,F be any sector in N
d, d ≥ 2 such that Aθ1 ⊂ Af,F ⊂ Aθ2 , for some θ1

and θ2. Assume that Φ is a regularly varying function with index δ > 1/2 satisfying the conditions
(4.3)–(4.5). Then (4.6) holds.

Remark 4.3. It is well known (see [14]) that a function Φ(x) on [1,∞), regularly varying with
index δ, may be represented in the form Φ(x) = xδl(x), where l(x) is slowly varying and
admits the representation:

l(x) = c(x) exp
(∫x

1

ε(u)
u

du

)

, (4.15)

where c(x) → c > 0 and ε(u) → 0 as u → ∞. To prove (4.6) it suffices to consider the case
c(x) ≡ c, and it is easy to see that (4.3)–(4.5) are satisfied if ε(u) is positive, continuous, and
nonincreasing function which tends to 0 as u → ∞.
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