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Some strong laws of large numbers and strong convergence properties for arrays of rowwise
negatively associated and linearly negative quadrant dependent random variables are obtained.
The results obtained not only generalize the result of Hu and Taylor to negatively associated and
linearly negative quadrant dependent random variables, but also improve it.

1. Introduction

Let {Xn}n∈N
be a sequence of independent distributed random variables. The Marcinkiewicz-

Zygmund strong law of large numbers (SLLN) provides that

1
n1/α

n∑

i=1

(Xi − EXi) −→ 0 a.s. for 1 ≤ α < 2,

1
n1/α

n∑

i=1

Xi −→ 0 a.s. for 0 < α < 1 as n −→ ∞
(1.1)

if and only if E|X|α < ∞. The case α = 1 is due to Kolmogorov. In the case of independence
(but not necessarily identically distributed), Hu and Taylor [1] proved the following strong
law of large numbers.

Theorem 1.1. Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be a triangular array of rowwise independent random
variables. Let {an}n∈N

be a sequence of positive real numbers such that 0 < an ↑ ∞. Let ψ(t)
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be a positive, even function such that ψ(t)/|t|p is an increasing function of |t| and ψ(t)/|t|p+1 is a
decreasing function of |t|, respectively, that is,

ψ(t)
|t|p ↑, ψ(t)

|t|p+1
↓, as |t| ↑, (1.2)

for some positive integer p. If p ≥ 2 and

EXni = 0,

∞∑

n=1

n∑

i=1

E
ψ(|Xni|)
ψ(|an|) <∞,

∞∑

n=1

(
n∑

i=1

E

(
Xni

an

)2
)2k

<∞,

(1.3)

where k is a positive integer, then

1
an

n∑

i=1

Xni −→ 0 a.s. (1.4)

Definition 1.2 (cf. [2]). A finite family of random variables {Xn}n∈N
is said to be negatively

associated (NA, in short) if, for any disjoint subsets A and B of {1, 2, . . . , n} and any real
coordinate-wise nondecreasing functions f on on R

A and g on R
B,

Cov
(
f(Xi, i ∈ A), g

(
Yj, j ∈ B

)) ≤ 0, (1.5)

whenever the covariance exists. An infinite family of random variables is NA if every finite
subfamily is NA. This concept was introduced by Joag-Dev and Proschan [2].

Definition 1.3 (cf. [3, 4]). Two random variables X and Y are said to be negative quadrant
dependent (NQD, in short) if, for any x, y ∈ R,

P
(
X < x, Y < y

) ≤ P(X < x)P
(
Y < y

)
. (1.6)

A sequence {Xn}n∈N
of random variables is said to be pairwise NQD if Xi and Xj are NQD

for all i, j ∈ N
+ and i /= j.

Definition 1.4 (cf. [5]). A sequence {Xn}n∈N
of random variables is said to be linearly negative

quadrant dependent (LNQD, in short) if, for any disjoint subsets A,B ∈ Z
+ and positive r ′js,

∑

k∈A
rkXk,

∑

j∈B
rjXj are NQD. (1.7)
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Remark 1.5. It is easily seen that if {Xn}n∈N
is a sequence of LNQD random variables, then

{aXn + b}n∈N
is still a sequence of LNQD random variables, where a and b are real numbers.

The NA property has aroused wide interest because of numerous applications in
reliability theory, percolation theory, and multivariate statistical analysis. In the past decades,
a lot of effort was dedicated to proving the limit theorems of NA random variables. A
Kolmogorov-type strong law of large numbers of NA random variables was established by
Matuła in [6], which is the same as I.I.D. sequence, and Marcinkiewicz-type strong law of
large Numbers was obtained by Su and Wang [7] for NA random variable sequence with
assumptions of identical distribution; Yang et al. [8] gave the strong law of large Numbers of
a general method.

The concept of LNQD sequence was introduced by Newman [5]. Some applications
for LNQD sequence have been found. See, for example, Newman [5] who established the
central limit theorem for a strictly stationary LNQD process. Wang and Zhang [9] provided
uniform rates of convergence in the central limit theorem for LNQD sequence. Ko et al. [10]
obtained the Hoeffding-type inequality for LNQD sequence. Ko et al. [11] studied the strong
convergence for weighted sums of LNQD arrays, and so forth.

The aim of this paper is to establish a strong law of large numbers for arrays of NA and
LNQD random variables. The result obtained not only extends Theorem 1.1 for independent
sequence above to the case of NA and LNQD random variables sequence, but also improves
it.

Lemma 1.6 (cf. [12]). Let {Xn, n ≥ 1} be NA random variables, EXn = 0, E|Xn|q < ∞, n ≥ 1,
q ≥ 2. Then, there exists a positive constant c such that

Emax
1≤i≤n

∣∣∣∣∣

k∑

i=1

Xi

∣∣∣∣∣

q

≤ c
⎡

⎣
n∑

i=1

E|Xi|q +
(

n∑

i=1

EXi
2

)q/2
⎤

⎦, ∀n ≥ 1. (1.8)

Let c denote a positive constant which is not necessary the same in its each appearance.

Lemma 1.7 (cf. [3, 4]). Let random variables X and Y be NQD, then

(1) EXY ≤ EXEY ;
(2) P

(
X < x, Y < y

) ≤ P(X < x)P
(
Y < y

)
;

(3) if f and g are both nondecreasing (or both non increasing) functions, then f(X) and g(Y )

are NQD.
(1.9)

Lemma 1.8. Let {Xn, n ≥ 1} be LNQD random variables sequences with mean zero and 0 < Bn =∑n
k=1 EX

2
k. Then,

P(|Sn| ≥ x) ≤
n∑

k=1

P
(|Sk| ≥ y

)
+ 2 exp

(
x

y
− x

y
log
(
1 +

xy

Bn

))
, (1.10)

for any x > 0, y > 0.
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This lemma is easily proved by following Fuk and Nagaev [13]. Here, we omit the
details of the proof.

2. Main Results

Theorem 2.1. Let {Xni; i ≥ 1, n ≥ 1} be an array of rowwise NA random variables. Let {an}n∈N
be

a sequence of positive real numbers such that 0 < an ↑ ∞. Let ψ(t) be a positive, even function such
that ψ(t)/|t| is an increasing function of |t| and ψ(t)/|t|p is a decreasing function of |t|, respectively,
that is,

ψ(t)
|t| ↑, ψ(t)

|t|p ↓, as |t| ↑ (2.1)

for some nonnegative integer P . If p ≥ 2 and

EXni = 0,

∞∑

n=1

n∑

i=1

E
ψ(|Xni|)
ψ(|an|) <∞,

∞∑

n=1

(
n∑

i=1

E

(
Xni

an

)2
)v/2

<∞,

(2.2)

where v is a positive integer and v ≥ p, then

∞∑

n=1

P

(
max
1≤k≤n

∣∣∣∣∣
1
an

k∑

i=1

Xni

∣∣∣∣∣ > ε
)
<∞, for any ε > 0. (2.3)

Proof of Theorem 2.1. For all i ≥ 1, let X(n)
i = −anI(Xni < −an)+XniI(|Xni| ≤ an)+anI(Xni > an),

T
(n)
j = (1/an)

∑j

i=1(X
(n)
i − EX(n)

i ), then, for all ε > 0,

P

(
max
1≤k≤n

∣∣∣∣∣
1
an

k∑

i=1

Xni

∣∣∣∣∣ > ε
)

≤ P
(
max
1≤j≤n

∣∣Xnj

∣∣ > an
)
+ P

(
max
1≤j≤n

∣∣∣T (n)
j

∣∣∣ > ε −max
1≤j≤n

∣∣∣∣∣
1
an

j∑

i=1

EX
(n)
i

∣∣∣∣∣

)
.

(2.4)

First, we show that

max
1≤j≤n

∣∣∣∣∣
1
an

j∑

i=1

EX
(n)
i

∣∣∣∣∣ −→ 0, as n −→ ∞. (2.5)
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In fact, by EXni = 0, ψ(t)/|t| ↑ as |t| ↑ and Σ∞
n=1Σ

n
i=1E(ψ(|Xni|)/ψ(an)) <∞, then

max
1≤j≤n

∣∣∣∣∣
1
an

j∑

i=1

EX
(n)
i

∣∣∣∣∣ ≤ max
1≤j≤n

1
an

(∣∣∣∣∣

j∑

i=1

EXniI(|Xni| ≤ an)
∣∣∣∣∣ +

∣∣∣∣∣

j∑

i=1

E(anI(|Xni| > an))
∣∣∣∣∣

)

≤ max
1≤j≤n

1
an

(
j∑

i=1

|EXniI(|Xni| ≤ an)| +
∣∣∣∣∣

j∑

i=1

E(anI(|Xni| > an))
∣∣∣∣∣

)

= max
1≤j≤n

1
an

(
j∑

i=1

|EXniI(|Xni| > an)| +
∣∣∣∣∣

j∑

i=1

E(anI(|Xni| > an))
∣∣∣∣∣

)

≤ 2
n∑

i=1

E|Xni|I(|Xni| > an)
an

≤ 2
n∑

i=1

Eψ(|Xni|)I(|Xni| > an)
ψ(an)

≤ 2
n∑

i=1

Eψ(|Xni|)
ψ(an)

−→ 0, as n −→ ∞.

(2.6)

From (2.4) and (2.5), it follows that, for n sufficiently large,

P

(
max
1≤k≤n

∣∣∣∣∣
1
an

k∑

i=1

Xni

∣∣∣∣∣ > ε
)

≤
n∑

j=1

P
(∣∣Xnj

∣∣ > an
)
+ P
(
max
1≤j≤n

∣∣∣T (n)
j

∣∣∣ >
ε

2

)
. (2.7)

Hence, we need only to prove that

I =:
∞∑

n=1

n∑

j=1

P
(∣∣Xnj

∣∣ > an
)
<∞,

II =:
∞∑

n=1

P

(
max
1≤j≤n

∣∣∣T (n)
j

∣∣∣ >
ε

2

)
<∞.

(2.8)

From the fact that Σ∞
n=1Σ

n
i=1E(ψ(|Xni|)/ψ(an)) <∞, it follows easily that

I =
∞∑

n=1

n∑

j=1

P
(∣∣Xnj

∣∣ > an
) ≤

∞∑

n=1

n∑

j=1

E
ψ
(∣∣Xnj

∣∣)

ψ(an)
<∞. (2.9)

By v ≥ p and ψ(t)/|t|p ↓ as |t| ↑, then ψ(t)/|t|v ↓ as |t| ↑.
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By the Markov inequality, Lemma 1.6, and
∑∞

n=1 (
∑n

i=1 E(Xni/an)
2)
v/2

<∞, we have

II =
∞∑

n=1

P

(
max
1≤j≤n

∣∣∣T (n)
j

∣∣∣ >
ε

2

)
≤

∞∑

n=1

(ε
2

)−v
Emax
1≤j≤n

∣∣∣T (n)
j

∣∣∣
v

≤ c
(ε
2

)−v ∞∑

n=1

1
avn

⎡
⎢⎣

⎛

⎝
n∑

j=1

E
∣∣∣X(n)

j

∣∣∣
2

⎞

⎠
v/2

+
n∑

j=1

E
∣∣∣X(n)

j

∣∣∣
v

⎤
⎥⎦

≤ c
∞∑

n=1

1
avn

n∑

j=1

E
∣∣∣X(n)

j

∣∣∣
v
+ c

∞∑

n=1

1
avn

⎛

⎝
n∑

j=1

E
∣∣∣X(n)

j

∣∣∣
2

⎞

⎠
v/2

≤ c
⎛

⎝
∞∑

n=1

1
avn

n∑

j=1

E
∣∣Xnj

∣∣vI
(∣∣Xnj

∣∣ ≤ an
)
+ I

⎞

⎠ + c
∞∑

n=1

1
avn

⎛

⎝
n∑

j=1

E
∣∣∣X(n)

j

∣∣∣
2

⎞

⎠
v/2

≤ c
∞∑

n=1

n∑

i=1

E
ψ(|Xni|)
ψ(an)

+ c
∞∑

n=1

1
avn

⎛

⎝
n∑

j=1

E
∣∣∣X(n)

j

∣∣∣
2

⎞

⎠
v/2

≤ c
∞∑

n=1

n∑

i=1

E
ψ(|Xni|)
ψ(an)

+ c
∞∑

n=1

⎛

⎝
n∑

j=1

E

(
Xni

an

)2
⎞

⎠
v/2

<∞.

(2.10)

Now we complete the proof of Theorem 2.1.

Corollary 2.2. Under the conditions of Theorem 2.1, then

1
an

n∑

i=1

Xni −→ 0 a.s. (2.11)

Proof of Corollary 2.2. By Theorem 2.1, the proof of Corollary 2.2 is obvious.

Remark 2.3. Corollary 2.2 not only generalizes the result of Hu and Taylor to NA random
variables, but also improves it.

Theorem 2.4. Let {Xni; i ≥ 1, n ≥ 1} be an array of rowwise LNQD random variables. Let {an}n∈N

be a sequence of positive real numbers such that 0 < an ↑ ∞. Let ψ(t) be a positive, even function such
that ψ(t)/|t| is an increasing function of |t| and ψ(t)/|t|p is a decreasing function of |t|, respectively,
that is,

ψ(t)
|t| ↑, ψ(t)|t|p ↓, as |t| ↑ (2.12)
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for some positive integer p. If 1 < p ≤ 2 and

EXni = 0,

∞∑

n=1

n∑

i=1

E
ψ(|Xni|)
ψ(an)

<∞,
(2.13)

then

∞∑

n=1

P

(∣∣∣∣∣
1
an

n∑

i=1

Xni

∣∣∣∣∣ > ε
)
<∞, for any ε > 0. (2.14)

Proof of Theorem 2.4. For any 1 ≤ k ≤ n, n ≥ 1, let

Ynk = −anI(Xnk < −an) +XnkI(|Xnk| ≤ an) + anI(Xnk > an),

Znk = Xnk − Ynk = (Xnk + an)I(Xnk < −an) + (Xnk − an)I(Xnk > an).
(2.15)

To prove (2.14), it suffices to show that

1
an

n∑

k=1

Znk −→ 0 completely, (2.16)

1
an

n∑

k=1

(Ynk − EYnk) −→ 0 completely, (2.17)

1
an

n∑

k=1

EYnk −→ 0 as n −→ ∞. (2.18)

Firstly, we prove (2.16):

∞∑

n=1

P

(
1
an

∣∣∣∣∣

n∑

k=1

Znk

∣∣∣∣∣ > ε
)

≤
∞∑

n=1

E
∣∣∑n

k=1Znk

∣∣

anε
≤ C

∞∑

n=1

n∑

k=1

E
|Xnk|I(|Xnk| > an)

an
≤ C

∞∑

n=1

n∑

i=1

E
ψ(|Xni|)
ψ(an)

<∞.

(2.19)

Secondly, we prove (2.17). By Lemma 1.7, we know that {Ynk − EYnk, 1 ≤ k ≤ n, n ≥ 1}
is an array of rowwise LNQD mean zero random variables. Let B′

n =
∑n

k=1 E(Ynk − EYnk)2.
Take x = εan, y = 2εan/v, and v ≥ 1. By Lemma 1.8, for all ε > 0,

∞∑

n=1

P

(
1
an

∣∣∣∣∣

n∑

k=1

(Ynk − EYnk)
∣∣∣∣∣ > ε

)
≤

∞∑

n=1

n∑

k=1

P

(
|Ynk − EYnk| > εan

η

)
+ C

∞∑

n=1

(
B′
n

B′
n + ε2a2n/η

)η

:= I1 + I2.
(2.20)
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From (2.12), (2.13), the Markov inequality, and Cr-inequality,

I1 =
∞∑

n=1

n∑

k=1

P

(
|Ynk − EYnk| > εan

η

)
≤ C

∞∑

n=1

n∑

k=1

E|Ynk − EYnk|p
a
p
n

≤ C
∞∑

n=1

n∑

k=1

E|Ynk|p
a
p
n

≤ C
∞∑

n=1

n∑

k=1

E
ψk(|Ynk|)
ψk(an)

≤ C
∞∑

n=1

n∑

k=1

E
ψk(|Xnk|)
ψk(an)

<∞.

(2.21)

Note that |Ynk| ≤ |Xnk|, η ≥ 1 and 1 < p ≤ 2. From (2.12), (2.13), and the Cr-inequality,

I2 ≤ C
∞∑

n=1

(
n∑

k=1

a−2n E(Ynk − EYnk)2
)η

≤ C
∞∑

n=1

(
n∑

k=1

E|Ynk|p
a
p
n

)η

≤ C
( ∞∑

n=1

n∑

k=1

E|Ynk|p
a
p
n

)η

≤ C
( ∞∑

n=1

n∑

k=1

E
ψk(|Ynk|)
ψk(an)

)η

≤ C
( ∞∑

n=1

n∑

k=1

E
ψk(|Xnk|)
ψk(an)

)η

<∞.

(2.22)

Finally, we prove (2.18). For 1 ≤ k ≤ n, n ≥ 1, EXnk = 0, then EYnk = −EZnk. From the
definition of Znk if Xnk > an, then 0 < Znk = Xnk − an < Xnk, if Xnk < −an, then Xnk < Znk =
Xnk + an < 0. So |Znk| ≤ |Xnk|I(|Xnk| > an). Consequently,

1
an

∣∣∣∣∣

n∑

k=1

EYnk

∣∣∣∣∣ =
1
an

∣∣∣∣∣

n∑

k=1

EZnk

∣∣∣∣∣ ≤
n∑

k=1

E|Znk|
an

≤
n∑

k=1

E|Xnk|I(|Xnk| > an)
an

≤
n∑

k=1

Eψk(Xnk)
ψk(an)

−→ 0 as n −→ ∞.

(2.23)

The proof is completed.

Theorem 2.5. Let {Xni; i ≥ 1, n ≥ 1} be an array of rowwise LNQD random variables. Let {an}n∈N
,

be a sequence of positive real numbers such that 0 < an ↑ ∞. Let {ψn(t)}n∈N
, be a sequence of positive

even functions and satisfy (2.12) for p > 2. Suppose that

∞∑

n=1

(
n∑

i=1

E

(
Xni

an

)2
)v/2

<∞, (2.24)

where v is a positive integer, v ≥ p, the conditions (2.13) and (2.24) imply (2.24).
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Proof of Theorem 2.5. Following the notations and the methods of the proof in Theorem 2.4,
(2.16), (2.18), and I1 < ∞ hold. So, we only need to show that I2 < ∞. Let η > v/2. By (2.24),
we have

I2 ≤
∞∑

n=1

(
n∑

k=1

a−2n E(Ynk − EYnk)2
)η

≤ C
∞∑

n=1

⎡

⎣
(

n∑

k=1

EY 2
nk

a2n

)v/2
⎤

⎦
2η/v

≤ C
⎡

⎣
∞∑

n=1

(
n∑

k=1

EX2
nk

a2n

)v/2
⎤

⎦
2η/v

<∞.

(2.25)

The proof is completed.

Corollary 2.6. Under the conditions of Theorem 2.4 or Theorem 2.5, then

1
an

n∑

i=1

Xni −→ 0 a.s. (2.26)

Remark 2.7. Because of the maximal inequality of LNQD, the result of LNQD we have
obtained generalizes and improves the result of Hu and Taylor.
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