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Time-varying GARCH-M models are commonly used in econometrics and financial economics. Yet
the recursive nature of the conditional variance makes exact likelihood analysis of these models
computationally infeasible. This paper outlines the issues and suggests to employ a Markov chain
Monte Carlo algorithm which allows the calculation of a classical estimator via the simulated EM
algorithm or a simulated Bayesian solution in only O(T) computational operations, where T is the
sample size. Furthermore, the theoretical dynamic properties of a time-varying GQARCH(1,1)-M
are derived. We discuss them and apply the suggested Bayesian estimation to three major stock
markets.

1. Introduction

Time series data, emerging from diverse fields appear to possess time-varying second con-
ditional moments. Furthermore, theoretical results seem to postulate quite often, specific
relationships between the second and the first conditional moment. For instance, in the stock
market context, the first conditional moment of stock market’s excess returns, given some
information set, is a possibly time-varying, linear function of volatility (see, e.g., Merton [1],
Glosten et al. [2]). These have led to modifications and extensions of the initial ARCH model
of Engle [3] and its generalization by Bollerslev [4], giving rise to a plethora of dynamic
heteroscedasticity models. These models have been employed extensively to capture the time
variation in the conditional variance of economic series, in general, and of financial time
series, in particular (see Bollerslev et al. [5] for a survey).

Although the vast majority of the research in conditional heteroscedasticity is being
processed aiming at the stylized facts of financial stock returns and of economic time series
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in general, Arvanitis and Demos [6] have shown that a family of time-varying GARCH-M
models can in fact be consistent with the sample characteristics of time series describing the
temporal evolution of velocity changes of turbulent fluid and gas molecules. Despite the
fact that the latter statistical characteristics match in a considerable degree their financial
analogues (e.g., leptokurtosis, volatility clustering, and quasi long-range dependence in
the squares are common), there are also significant differences in the behavior of the
before mentioned physical systems as opposed to financial markets (examples are the
anticorrelation effect and asymmetry of velocity changes in contrast to zero autocorrelation
and the leverage effect of financial returns) (see Barndorff-Nielsen and Shephard [7] as well
as Mantegna and Stanley [8, 9]). It was shown that the above-mentioned family of models
can even create anticorrelation in the means as far as an AR(1) time-varying parameter is
introduced.

Itis clear that from an econometric viewpoint it is important to study how to efficiently
estimate models with partially unobserved GARCH processes. In this context, our main
contribution is to show how to employ the method proposed in Fiorentini et al. [10] to achieve
MCMC likelihood-based estimation of a time-varying GARCH-M model by means of feasible
O(T) algorithms, where T is the sample size. The crucial idea is to transform the GARCH
model in a first-order Markov’s model. However, in our model, the error term enters the in-
mean equation multiplicatively and not additively as it does in the latent factor models of
Fiorentini et al. [10]. Thus, we show that their method applies to more complicated models,
as well.

We prefer to employ a GQARCH specification for the conditional variance (Engle [3]
and Sentana [11]) since it encompasses all the existing restricted quadratic variance functions
(e.g., augmented ARCH model), its properties are very similar to those of GARCH models
(e.g., stationarity conditions) but avoids some of their criticisms (e.g., very easy to generalize
to multivariate models). Moreover, many theories in finance involve an explicit tradeoff
between the risk and the expected returns. For that matter, we use an in-mean model which
is ideally suited to handling such questions in a time series context where the conditional
variance may be time varying. However, a number of studies question the existence of a
positive mean/variance ratio directly challenging the mean/variance paradigm. In Glosten et
al. [2] when they explicitly include the nominal risk free rate in the conditioning information
set, they obtain a negative ARCH-M parameter. For the above, we allow the conditional
variance to affect the mean with a possibly time varying coefficient which we assume for
simplicity that it follows an AR(1) process. Thus, our model is a time-varying GQARCH-M-
AR(1) model.

As we shall see in Section 2.1, this model is able to capture the, so-called, stylized facts
of excess stock returns. These are (i) the sample mean is positive and much smaller than
the standard deviation, that is, high coefficient of variation, (ii) the autocorrelation of excess
returns is insignificant with a possible exception of the 1st one, (iii) the distribution of returns
is nonnormal mainly due to excess kurtosis and may be asymmetry (negative), (iv) there
is strong volatility clustering, that is, significant positive autocorrelation of squared returns
even for high lags, and (v) the so-called leverage effect; that is, negative errors increase future
volatility more than positive ones of the same size.

The structure of the paper is as follows. In Section 2, we present the model and
derive the theoretical properties the GQARCH(1,1)-M-AR(1) model. Next, we review
Bayesian and classical likelihood approaches to inference for the time-varying GQARCH-
M model. We show that the key task (in both cases) is to be able to produce consistent
simulators and that the estimation problem arises from the existence of two unobserved
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processes, causing exact likelihood-based estimations computationally infeasible. Hence,
we demonstrate that the method proposed by Fiorentini et al. [10] is needed to achieve
a first-order Markov’s transformation of the model and thus, reducing the computations
from O(T?) to O(T). A comparison of the efficient (O(T) calculations) and the inefficient
(O(T?) ones) simulator is also given. An illustrative empirical application on weekly
returns from three major stock markets is presented in Section 4, and we conclude in
Section 5.

2. GQARCH(I,I)-M-AR(I) Model
The definition of our model is as follows.

Definition 2.1. The time-varying parameter GQARCH(1,1)-M-AR(1) model:

Ty = 6tht + &, €= Zthg/z, (21)
where

61} = (1 - (P>6 + (P(St—l + U, (22)

hi = w+a(e- - Y)z + Bhyq, (2.3)

zy « iid. N(0,1), uy « ii.d. N(0,1), uy, z; are independent for all #'s, and where {rt}tT:1 are
the observed excess returns, T is the sample size, {(‘_St}tT:1 is an unobserved AR(1) process
independent (with 69 = ) of {Et}thl, and {ht}tT:1 is the conditional variance (with hg equal
to the unconditional variance and ¢y = 0) which is supposed to follow a GQARCH(1,1). It is
obvious that &; is the market price of risk (see, e.g., Merton [1] Glosten at al. [2]). Let us call
¥:-1 the sequence of natural filtrations generated by the past values of {&;} and {r}.

Modelling the theoretical properties of this model has been a quite important issue.
Specifically, it would be interesting to investigate whether this model can accommodate the
main stylized facts of the financial markets. On other hand, the estimation of the model
requires its transformation into a first-order Markov’s model to implement the method of
Fiorentini et al. [10]. Let us start with the theoretical properties.

2.1. Theoretical Properties

Let us consider first the moments of the conditional variance h;, needed for the moments of
r¢. The proof of the following lemma is based on raising h; to the appropriate power, in (2.3),
and taking into account that E(zf) =3, E(z?) =15and E(zf) =105.
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Lemma 2.2. If 105a* + 60a°p + 18a?f* + 4af® + p* < 1, the first four moments of the conditional
variance of (2.3) are given by

w + ay?

E(h) = m,

2\ _ 2\ (w+ay?)(1+a+p)+4a’y?
E(ht> = <w+aY>(1—3a2—2a[5—[52)(1—a—[5)'

5\ (w+ ay2)3 +3(w + ay?) [(w + ay?) (a + B) + 4a®y?] E(hy)
E<ht> N 1— B —15a% - 922 — 3af?

. 3[(w + ay?) (3a® + p* + 2pa) + 4a’y* (3a + B)] E(h7)
1- - 15a% - 9a2p — 3ap? ’

N ) 2(w+ay2)2+4[(w+ay2) (a + B) + 6a*y?| E(hy)
E(h) = (w+ar) T qga 600 — 18222 — daff —

2
L oW rar®) (3a +p* +2pa) +8[(w+ay) (3a+f) + azYZ]azYzE(W)
1—105a* — 60a3B — 18222 — 4af® — f* :

4ot @) (e 9 a4 ) + 6 (150" 6ap )
1-105a* — 60a°f — 18022 — daf® — p* L)

(2.4)

Consequently, the moments of r; are given in the following theorem taken from
Arvanitis and Demos [6].

Theorem 2.3. The first two moments of the model in (2.1), (2.2), and (2.3) are given by

E(ry) = 6E(hy), E(ﬁ) - <52 + ﬁz>5(hf) +E(hy), (2.5)

whereas the skewness and kurtosis coefficients are

S(r)

Sk(rt) = Var1'5 (Tt)/

kurt(ry) = é(n), (2.6)

where

2

S(r) =6 <62 +3: ?ipz > E(1}) +36E(?) +26°E ()

~36 [<52 + %>E<h?> + E(ht)] E(hy),
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2 4
x=(6"+652Fu_ 43 Pu >E ') +362[2 - 82E(h) | E (i)
< 1-¢* (1-¢2)° <t> [ t] !

2

2 3
+6<52 + 1 ?';2>E<hf> _452<5z + 1 _(p(’;2>E<hf>E(ht)
+ {662[<52 - ?%Pz>5(h) —Z]E(h) +3}E(h§>,

(2.7)
and E(hy), E(h?), E(h?), and E(h}) are given in Lemma 2.2.
In terms of stationarity, the process {r;} is 4th-order stationary if and only if
lp| <1, 105a* +60a’p + 18a’p> + 4ap’® + p* < 1. (2.8)

These conditions are the same as in Arvanitis and Demos [6], indicating that the presence of
the asymmetry parameter, y, does not affect the stationarity conditions (see also Bollerslev
[4] and Sentana [11]). Furthermore, the 4th-order stationarity is needed as we would like
to measure the autocorrelation of the squared r¢'s (volatility clustering), as well as the
correlation of 7 and r;_1 (leverage effect). The dynamic moments of the conditional variance
and those between the conditional variance /; and the error ¢; are given in the following two
lemmas (for a proof see Appendix B).

Lemma 2.4. Under the assumption of Lemma 2.2, one has that

Cov(hy, i) = (a+ ) V(hy),

(a+p)* - AF
(a+p)-A

Cov(h k) = (a+p)[E(H} ) —E(hE, ) E(hioa)],

cOv<hf, ht,k> = Ak [E(hf’) - E<ht2>E(ht)] + BV (),

(2.9)
Cov(h2,i2,) = AV (R}) + B%::ik [E(r) - E(r) E(h)],
where A = 3a® + > + 2ap and B = 2[2a*y? + (w + ay?) (a + f)].
Lemma 2.5.
Cov(hy, ei-x) = E(hieri) = —2ay(a+ ) 'E(hy),
Cov(hihik, e-k) = E(hthiker-) = —2ay (a + ﬁ)k71E<h%—1>'

Cov <ht, stsz> = (a+ ﬂ)kV(ht) +2a(a + ﬂ)k71E<htZ>,
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Cov <ht2, st_k> = E(htzst_k> = —4ay(3a + p) Ak_1E<ht2>

2 (“+ﬂ)k_Ak 2 2(“+ﬁ)k_l_Ak71
_4ay|:<w+ay>m+2ay B A ]E(ht),

Cov (hf,gf_k> = Ak [E(hf’) —E<ht2>E(ht)] +B%V(h0 +4a(3a+p) AE(R)

(atp)" - A
(a+p)-A

Cov(htzht_k, st_k> = E(htzht_kst_k> = —day A1 [(Ba + ﬂ)E(h?) + <w + a)fz)E(htz)]

+ [ZaB + 4(20{2}/2 + <w + a)fz))Ak_l:I E<ht2>,

k-1 k-
oqyplith) -4 1E(h?>'
(2.10)

where A and B are given in Lemma 2.4.
Furthermore, from Arvanitis and Demos [6] we know that the following results hold.

Theorem 2.6. The autocovariance of returns for the model in (2.1)—(2.3) is given by

2
Yk = COV(Tt, rt—k) = 62COV(ht, I’lt_k) + 6E(ht€t_k) + ()Dk 1 (fu(Pz E(htht_k), (211)

and the covariance of squares’ levels and the autocovariance of squares are
Cov(r?,mi-x) = E(8761-« ) Cov(h, hi-y) + Cov (62, 6,1 ) E(h? ) E(hi-s)
+ E(81-x)Cov (hy, hig) + E<63>E<ht25t_k> + E(ers),
Cov(r},r2,) = E2(67)Cov (R}, 2, ) + Cov (67,62, ) E(hih?,) (2.12)
+E(87)Cov(?, ) +2E(676,« ) E(hthixerx )
+E(67)Cov(hy, b2 ) + Cov(hy el ) + 26 E(huhi-xer-x),

where all needed covariances and expectations of the right-hand sizes are given in Lemmas 2.4 and 2.5,

Cov(8,514) = Cov(5,5,) = 204525
! (2.13)

2 4
Pu Pu
C0V<6t2, 6t27k> = 4¢k6? -2 + 2% - (Pz)z.
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From the above theorems and lemmas it is obvious that our model can accommodate
all stylized facts. For example, negative asymmetry is possible; volatility clustering and the
leverage effect (negative Cov(hy, £;-k)) can be accommodated, and so forth. Furthermore, the
model can accommodate negative autocorrelations, yx, something that is not possible for
the GARCH-M model (see Fiorentini and Sentana [12]). Finally, another interesting issue
is the diffusion limit of the time-varying GQARCH-M process. As already presented by
Arvanitis [13], the weak convergence of the Time-varying GQARCH(1,1)-M coincides with
the general conclusions presented elsewhere in the literature. These are that weak limits
of the endogenous volatility models are exogenous (stochastic volatility) continuous-time
processes. Moreover, Arvanitis [13] suggests that there is a distributional relation between
the GQARCH model and the continuous-time Ornstein-Uhlenbeck models with respect to
appropriate nonnegative Levy’s processes.

Let us turn our attention to the estimation of our model. We will show that estimating
our model is a hard task and the use of well-known methods such as the EM-algorithm cannot
handle the problem due to the huge computational load that such methods require.

3. Likelihood-Inference: EM and Bayesian Approaches

The purpose of this section is the estimation of the time-varying GQARCH(1,1)-M model.
Since our model involves two unobserved components (one from the time-varying in-mean
parameter and one from the error term), the estimation method required is an EM and
more specifically a simulated EM (SEM), as the expectation terms at the E step cannot be
computed. The main modern way of carrying out likelihood inference in such situations is
via a Markov chain Monte Carlo (MCMC) algorithm (see Chib [14] for an extensive review).
This simulation procedure can be used either to carry out Bayesian inference or to classically
estimate the parameters by means of a simulated EM algorithm.

The idea behind the MCMC methods is that in order to sample a given probability
distribution, which is referred to as the target distribution, a suitable Markov chain is
constructed (using a Metropolis-Hasting (M-H) algorithm or a Gibbs sampling method)
with the property that its limiting, invariant distribution is the target distribution. In most
problems, the target distribution is absolutely continuous, and as a result the theory of
MCMC methods is based on that of the Markov chains on continuous state spaces [15]. This
means that by simulating the Markov chain a large number of times and recording its values a
sample of (correlated) draws from the target distribution can be obtained. It should be noted
that the Markov chain samplers are invariant by construction, and, therefore, the existence of
the invariant distribution does not have to be checked in any particular application of MCMC
method.

The Metropolis-Hasting algorithm (M-H) is a general MCMC method to produce
sample variates from a given multivariate distribution. It is based on a candidate generating
density that is used to supply a proposal value that is accepted with probability given as the
ratio of the target density times the ratio of the proposal density. There are a number of choices
of the proposal density (e.g., random walk M-H chain, independence M-H chain, tailored M-
H chain) and the components may be revised either in one block or in several blocks. Another
MCMC method, which is special case of the multiple block M-H method with acceptance rate
always equal to one, is called the Gibbs sampling method and was brought into statistical
prominence by Gelfand and Smith [16]. In this algorithm, the parameters are grouped into
blocks, and each block is sampled according to the full conditional distribution denoted as
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7 (¢:/Pse). By Bayes’ theorem, we have ar(¢:/¢p) o o (¢ed,i), the joint distribution of all
blocks, and so full conditional distributions are usually quite simply derived. One cycle of
the Gibbs sampling algorithm is completed by simulating {¢}"_,, where p is the number
of blocks, from the full conditional distributions, recursively updating the conditioning
variables as one moves through each distribution. Under some general conditions, it is
verified that the Markov chain generated by the M-H or the Gibbs sampling algorithm
converges to the target density as the number of iterations becomes large.

Within the Bayesian framework, MCMC methods have proved very popular, and the
posterior distribution of the parameters is the target density (see [17]). Another application
of the MCMC is the analysis of hidden Markov’s models where the approach relies on
augmenting the parameter space to include the unobserved states and simulate the target
distribution via the conditional distributions (this procedure is called data augmentation and
was pioneered by Tanner and Wong [18]). Kim et al. [19] discuss an MCMC algorithm of the
stochastic volatility (SV) model which is an example of a state space model in which the state
variable h; (log-volatility) appears non-linearly in the observation equation. The idea is to
approximate the model by a conditionally Gaussian state space model with the introduction
of multinomial random variables that follow a seven-point discrete distribution.

The analysis of a time-varying GQARCH-M model becomes substantially complicated
since the log-likelihood of the observed variables can no longer be written in closed form.
In this paper, we focus on both the Bayesian and the classical estimation of the model.
Unfortunately, the non-Markovian nature of the GARCH process implies that each time we
simulate one error we implicitly change all future conditional variances. As pointed out by
Shephard [20], a regrettable consequence of this path dependence in volatility is that standard
MCMC algorithms will evolve in O(T?) computational load (see [21]). Since this cost has to
be borne for each parameter value, such procedures are generally infeasible for large financial
datasets that we see in practice.

3.1. Estimation Problem: Simulated EM Algorithm

As mentioned already, the estimation problem arises because of the fact that we have two
unobserved processes. More specifically, we cannot write down the likelihood function in
closed form since we do not observe both & and &;. On the other hand, the conditional log-
likelihood function of our model assuming that 6; were observed would be the following:

2(r,6 |9, %) =Inp(r|6,9,%0) +Inp(6| ¢, Fo)

1 T 1 T (Et)z
= -T2z -3 Inh— =y 2
2;; : 2;: hy (3.1)

T 1L (6:-6(1-¢) —g6:1)°
-3in(si) -3 o~ :

wherer = (r1,...,r7), 6 =(61,...,67),andh = (hy,..., hr)".

However, the 6;’s are unobserved, and, thus, to classically estimate the model, we have
to rely on an EM algorithm [22] to obtain estimates as close to the optimum as desired. Ateach
iteration, the EM algorithm obtains ¢V, where ¢ is the parameter vector, by maximizing
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the expectation of the log-likelihood conditional on the data and the current parameter
values, thatis, E(¢(-) | t, ™, Fo) with respect to ¢ keeping ¢™ fixed.

The E step, thus, requires the expectation of the complete log-likelihood. For our
model, this is given by:

E(e(') | r,gb(n),?lO) =-TIn2r - §In<q)i> - % S E(ln h | r,(jJ("),?lO)

T 2
- %ZE(% | r,¢("),%> (3.2)
=1

T 5 —6(1-0) - 06i1)°
_%ZE<( t ( (Iz)) (P tl) |r,¢(1’l),¢0>‘
=1 ¥

u

It is obvious that we cannot compute such quantities. For that matter, we may rely on
a simulated EM where the expectation terms are replaced by averages over simulations, and
so we will have an SEM or a simulated score. The SEM log-likelihood is:

(3.3)

Consequently, we need to obtain the following quantities: (1/M) XM > In h;i), (1/M)
Zf‘flzil((eﬁ’))z/hﬁ’)), /MM s 5fl)r 1/M M 551)1' a/M M S 5;1)551)1 and
a/msM >t (6t(i))2, a/MmIM > 6t2_(il), where M is the number of simulations.

Thus, to classically estimate our model by using an SEM algorithm, the basic problem
is to sample from h | ¢,r, Fo where ¢ is the vector of the unknown parameters and also
sample from 6 | ¢, r, Fo.

In terms of identification, the model is not, up to second moment, identified (see
Corollary 1 in Sentana and Fiorentini [23]). The reason is that we can transfer unconditional
variance from the error, ¢, to the price of risk, 6;, and vice versa. One possible solution is to
fix w such that E(h;) is 1 or to set ¢, to a specific value. In fact in an earlier version of the
paper, we fixed ¢, to be 1 (see Anyfantaki and Demos [24]). Nevertheless, from a Bayesian
viewpoint, the lack of identification is not too much of a problem, as the parameters are
identified through their proper priors (see Poirier [25]).

Next, we will exploit the Bayesian estimation of the model, and, since we need to resort
to simulations, we will show that the key task is again to simulate from 6 | ¢, r, ¥o.
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3.2. Simulation-Based Bayesian Inference

In our problem, the key issue is that the likelihood function of the sample p(r | ¢, o) is
intractable which precludes the direct analysis of the posterior density p(¢ | r, o). This
problem may be overcome by focusing instead on the posterior density of the model using
Bayes’ rule:

p(¢,61r) xp(d,8)p(r| ¢, 6) xp(6]d)p(P)p(r],6), (34)
where
()b = (6/ @Y, Py, x, ﬂ/ Y, w>,' (35)

Now,

< (6:=6(1 - ) — pbi-1) > 56)

2¢7;

p(61¢) = HP( /‘P1<Pu> ll[

t=1 2.71'(p

On the other hand,

T 52
Iﬂ(rlq'b,ﬁ)=l;[10<{n1 ) l_[\/_ht ex <—2—;lt> (3.7)

is the full-information likelihood. Once we have the posterior density, we get the parameters’
marginal posterior density by integrating the posterior density. MCMC is one way of
numerical integration.

The Hammersley-Clifford theorem (see Clifford [26]) says that a joint distribution
can be characterized by its complete conditional distribution. Hence, given initial values
16:)9,90, we draw {6,}? from p({6;}V | r,¢©) and then ¢O from p(¢® | {6}",x).

Iterating these steps, we finally get ({6t}(i),¢(i))fl, and under mild conditions it is shown
that the distribution of the sequence converges to the joint posterior distribution p(¢, 6 | r).

The above simulation procedure may be carried out by first dividing the parameters
into two blocks:

1= (6,9.92),
¢ = (a,B,y,w),

(3.8)

Then the algorithm is described as follows.
(1) Initialize ¢.
(2) Draw from p(6; | 644, 1, ¢).
(3) Draw from p(¢ | 6, r) in the following blocks:

(i) draw from p(¢; | 6, r) using the Gibbs sampling. This is updated in one block;
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(ii) draw from p(¢, | r) by M-H. This is updated in a second block.
(4) Go to (2).

We review the implementation of each step.

3.2.1. Gibbs Sampling

The task of simulating from an AR model has been already discussed. Here, we will follow
the approach of Chib [27], but we do not have any MA terms which makes inference simpler.
Suppose that the prior distribution of (6, ¢2, ¢) is given by:

p(6,9%0) =p(6102)p(v2)p(p), (3.9)

which means that 6, ¢?2 is a priory independent of ¢.
Also the following holds for the prior distributions of the parameter subvector ¢;:

p(6192) ~N(6r 9302,
P((Pi) ~ IG(%, %) (3.10)
p(9) ~ N(po, 03, )1,

where I, ensures that ¢ lies outside the unit circle, IG is the inverted gamma distribution, and

the hyperparameters vy, do, 6pr, 0§pr, ®o, 05,0 have to be defined.

Now, the joint posterior is proportional to

T 1 6 —(1 - 6_ 6, 2
P<6/¢/<P,%|r,5>al_[ exp _( 1= (1-¢)6 - ¢611)

-~ 2 2¢%
=27 (3.11)

vy do
X N<6pr,¢§0§pr> x IG(;, ?) X N<(p0, (742,0>Lp.
From a Bayesian viewpoint, the right-hand side of the above equation is equal to the
“augmented” prior, that is, the prior augmented by the latent 6 (We would like to thank

the associate editor for bringing this to our attention.) We proceed to the generation of these
parameters.

Generation of 6

First we see how to generate 6. Following again Chib [27], we may write

6 =696, 6 |Fa~N((1-9)6,¢2), (3.12)
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or, otherwise,

6 = (1-9)6+v, o ~N(0,¢2). (3.13)

Under the above and using Chib’s (1993) notation, we have that the proposal distribution is
the following Gaussian distribution (see Chib [27] for a proof).

Proposition 3.1. The proposal distribution of 6 is
616,92~ N(8,9252), (3.14)

where

- {6, T
6=0§<0%+(1—(p)§6t>,

Bor

-1
~ 1 2
G§=<g+(1—q)>> .
pr

Hence, the generation of 6 is completed, and we may turn on the generation of the
other parameters.

(3.15)

Generation of >
For the generation of ¢ and using [27] notation, we have the following.

Proposition 3.2. The proposal distribution of @2 is

T —vg d0+Q+d>’ (316)

2
716,95 ~1G(+5, %L

where

Q=(6- 6Pr)205,,2,f

; i (3.17)
d= 61 -6(1-9)]"

=

t

Finally, we turn on the generation of ¢.
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Generation of ¢

For the generation of ¢, we follow again Chib [27] and write
&= (1-¢)6- 961 +v, v~N(0,92). (3.18)

We may now state the following proposition (see Chib [27] for a proof).

Proposition 3.3. The proposal distribution of ¢ is
2 2 = =2
p°16,6,¢, ~ N((p, oq,>, (3.19)

where

T
¢=3, <O];02(P0 + ;2> (611 — 6) (61 — 5)>,
=1
t (3.20)

T
5,2 = 0, + 9,7 D (611 — 6)°.
t=1

The Gibbs sampling scheme has been completed, and the next step of the algorithm
requires the generation of the conditional variance parameters via an M-H algorithm which
is now presented.

3.2.2. Metropolis-Hasting

Step (3)-(ii) is the task of simulating from the posterior of the parameters of a GQARCH-
M process. This has been already addressed by Kim et al. [19], Bauwens and Lubrano [28],
Nakatsuma [29], Ardia [30] and others.

First, we need to decide on the priors. For the parameters «, ,y, w, we use normal
densities as priors:

P(“) ~ N(/f‘a/ Za)Ia/

(3.21)
p(B) ~ N (s 3) 1y

and similarly
p(y) ~N <.“Y/ o%), (3.22)

where a = (w, a)’, I, I are the indicators ensuring the constraints &« >0, a+p <1land >0,
a + f < 1, respectively. u, 0° are the hyperparameters.
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We form the joint prior by assuming prior independence between a, §, y, and the joint
posterior is then obtained by combining the joint prior and likelihood function by Bayes’ rule:

1

\V 2.71'ht

52
exp<—2—;lt> x N (e Za) e x N (ptp, 03) 15 x N (py, 07
(3.23)

T
plapyin«]]

For the M-H algorithm, we use the following approximated GARCH model as in
Nakatsuma [29] which is derived by the well-known property of GARCH models [4]:

Etz =w+a(e1 - y)z + ﬂgtz_l +wy — Pwi_y, (3.24)

where w; = €2 — hy with w; ~ N(0,2h?).
Then the corresponding approximated likelihood is written as

. (3.25)

2
T (2~ w-alei —y)* - fel, + o)
=1

2 —
p(e*16,192) = 2hr P i

t

and the generation of «, 3,y is based on the above likelihood where we update {h;} each
time after the corresponding parameters are updated. The generation of the four variance
parameters is given.

Generation of a

For the generation of a, we first note that w; in (3.32), below, can be written as a linear func-
tion of a:

wr =& - e, (3.26)
where ¢ = [if, 2] with

2 _ 2 a2
& =& — P&y,

& =&l +PEy
, (3.27)
& = (er1-7)" + Pl
E =1+ ﬂ’[tfl-
Now, let the two following vectors be
!
Yo=[E.. . F],
(3.28)

Xa =[G 87]"
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Then the likelihood function of the approximated model is rewritten as

(3.29)

2
T 1 (Etz - Q“)
exp |-
t=14/20r (2h?) 2(2h7)

Using this we have the following proposal distribution of a (see Nakatsuma [29] or
Ardia [30] for a proof).

p(11,6,¢) =

Proposition 3.4. The proposal distribution of e is

@Y, X% ¢ e~ N(fia e ) las (3.30)

where flg = Sa(XoA™ Yo + 57 1a), Sa = (XA X +33) 7, and A = diag(2h2, ..., 2H2). I,
imposes the restriction that & > 0 and a + p < 1.
Hence a candidate a is sampled from this proposal density and accepted with probability:

a 6 * N/ 7 /6/
min{ LCTARLA L CRLZA) r),l}/ (3.31)
p(a,B,y|6,1)g(&|a*,p,y,6,1)

where a* is the previous draw.

Similar procedure is used for the generation of f and y.

Generation of p

Following Nakatsuma [29], we linearize w; by the first-order Taylor expansion

wi(p) = wi(f7) + & (F) (B~ F), (3.32)
where ¢ is the first-order derivative of w;(f) evaluated at f* the previous draw of the M-H
sampler.
Define as

re=wi(f) + & (PP, (3.33)
where g;(f*) = —¢:(f*) which is computed by the recursion:

8 =&~ W+ g, (3.34)
& =0 for t <0 [30]. Then,

wi () = 1t — g (P)P. (3.35)
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Let the following two vectors be

Yﬂ = [Tl,...,TT]/, (3 36)

Xp=[81,- 81]

Then, the likelihood function of the approximated model is rewritten as

p(16,92) = 11[ 1 exp[_{wt(ﬁ*) +&(B) (B-£)) ] (3.37)

1 /20 (2h2) 2(2h7)

We have the following proposal distribution for f (for a proof see Nakatsuma [29] or
Ardia [30]).

Proposition 3.5. The proposal distribution for f3 is

BIY,X,08, ¢2p ~ N(jip, 53 ) Iy, (3.38)

where ﬁﬂ = GE(X%A_ly‘g + (/1‘[5/0'[25)), 6"[25 = (X};A_lx‘g + (]./0"[25))71/ and A\ = d1ag(2h4, .. ,Zh%) Iﬂ
imposes the restriction that p > 0and a + f < 1.
Hence, a candidate B is sampled from this proposal density and accepted with probability:

mm{ p(Pay16,x)a(p" | ay,6,r) 1}

PPyl 6Ir>q(ﬁ | ﬂ*,a,y,é,r)'

(3.39)

Finally, we explain the generation of y.

Generation of y

As with p, we linearize w; by a first-order Taylor, expansion at a point y* the previous draw
in the M-H sampler. In this case,

re=w(y") - &(r)y" (3.40)
where g;(y*) = & (y*) which is computed by the recursion:
gt = —2a(e-1-7") + g1, (3.41)

and g = 0fort <0.
Then

wi(y) = 11— &Y. (3.42)
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Let again

Y, =[n,...,rr],

, (3.43)
Xy =[g1,---,81]

and the likelihood function of the approximated model is rewritten as

p(16,1,¢2) =11[ ! exp[—{wt(y*>_gt(y*>y*} ] (3.44)

i1 /200 (202) 2(2h7)

Thus, we have the following proposal distribution for y (for proof see Nakatsuma [29]
and Ardia [30]).

Proposition 3.6. The proposal distribution of y is
Y 1Y, X, 0, ¢oy ~ N(fiy, 62), (3.45)

where fiy = 67 (X ATy + (uy/07)), 6F = (XA Xy + (1/0‘%))71, and A = diag(2h],...,2h3). A
candidate ¥ is sampled from this proposal density and accepted with probability:

(3.46)

~, 7 6/ * ~/ 7 /61
min{ p(¥,ap | r)q(YN |Y,ap r),1}.
P(Y*/“/ﬂ | GIT)Q(Y | Y*/a’ﬁ’ﬁ’r>

The algorithm described above is a special case of a MCMC algorithm, which con-
verges as it iterates, to draws from the required density p(¢,6 | r). Posterior moments
and marginal densities can be estimated (simulation consistently) by averaging the relevant
function of interest over the sample variates. The posterior mean of ¢ is simply estimated by
the sample mean of the simulated ¢ values. These estimated values can be made arbitrarily
accurate by increasing the simulation sample size. However, it should be remembered that
sample variates from an MCMC algorithm are a high dimensional (correlated) sample from
the target density, and sometimes the serial correlation can be quite high for badly behaved
algorithms.

All that remains, therefore, is step (2). Thus, from the above, it is seen that the main
task is again as with the classical estimation of the model, to simulate from 6 | ¢, r, ¥o.

3.2.3. MCMC Simulation of € | ¢, x, Fo

For a given set of parameter values and initial conditions, it is generally simpler to simulate
{e:} fort=1,...,T and then compute {5; }thl than to simulate {&; }tT=1 directly. For that matter,
we concentrate on simulators of ¢ given r and ¢. We set the mean and the variance of &
equal to their unconditional values, and, given that h; is a sufficient statistic for ¥;; and
the unconditional variance is a deterministic function of ¢, ¥y can be eliminated from the
information set without any information loss.
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Now sampling from p(e | r,¢) « p(r | €, ¢)p(e | ¢) is feasible by using an M-H
algorithm where we update each time only one ¢; leaving all the other unchanged [20]. In
particular, let us write the nth iteration of a Markov chain as ¢;'. Then we generate a potential
new value of the Markov chain £/ by proposing from some candidate density g(e; | &, 1, $)

where ¢!, = {ertt, .. erl e, ..., e} which we accept with probability
p(er | el r @) (e | el )
min |1, (3.47)
p(er lelr¢)g (e | er )
If it is accepted then, we set e/*! = £M" and otherwise we keep &/*! = £". Although

the proposal is much better since it is only in a single dimension, each time we consider
modifying a single error we have to compute:

P 1efng) p(rl e 0™ g )p (e 1,9 )p (v | B, 9)
p(erlenrd)  p(rlm¢)p(rl el m,¢)p(er= | 1, )

T p(rel en B )p (el K, ¢ )p(rs | 1Y)

s=t+1 p(rs | hhew !, gb) (rs | e, b, d >P< | hyt >
(3.48)
Do Yo e 1)
p(ril et i, ¢ )p (e | i, )
rp(rel e, H, @)p (e | B2, )
*
i p(re el W2, p)p(en | W, )
where fors=t+1,...,T,
hnew,t — V(Ss | 55 1,6572, . £t+1,£{1ew S;ﬁll/ . £1l1+1>/
(3.49)
Wt =v <5s|55 1 Esopr- -1 €31/ €L 1 EL 11/ . 5111+1>
while
et = . (3.50)

Nevertheless, each time we revise one g;, we have also to revise T — t conditional
variances because of the recursive nature of the GARCH model which makes k5" depend
upon & fors =t+1,...,T. And since t = 1,...,T, it is obvious that we need to calculate
T? normal densities, and so this algorithm is O(T?). And this should be done for every ¢. To
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avoid this huge computational load, we show how to use the method proposed by Fiorentini
et al. [10] and so do MCMC with only O(T) calculations. The method is described in the
following subsection.

3.3. Estimation Method Proposed: Classical and Bayesian Estimation

The method proposed by Fiorentini et al. [10] is to transform the GARCH model into a first-
order Markov’s model and so do MCMC with only O(T') calculations. Following their trans-
formation, we augment the state vector with the variables h;,; and then sample the joint
Markov process {hi1, st} | 1, ¢ € F+ where

sy =sign(e —v), (3.51)

so that s; = +1 with probability one. The mapping is one to one and has no singularities. More
specifically, if we know {h;.1} and ¢, then we know the value of

Ry —w - ﬂht
a

(e—7)" = V> 1. (3.52)

Hence the additional knowledge of the signs of (¢&; — y) would reveal the entire path of
{&+} so long as hy (which equals the unconditional value in our case) is known, and, thus, we
may now reveal also the unobserved random variable {6} | r, ¢, {he1}.

Now we have to sample from

T
P({St/ ht+1} | r, (i)) X HP(St | ht+1/ htl ¢)P(ht+1 | ht/ ¢>P(Tt | St, htl ht+1/ 4))/ (353)
t=1

where the second and the third term come from the model, and the first comes from the fact
that & | F1-1 ~ N(O, hy) but &; | {hy1}, Fi-1 takes values

E = Y:I:dt, (354)

hiy1 —w — ph
d; = v%ﬂt (3.55)

From the above, it is seen that we should first simulate {h.1} | 1, ¢ since we do not
alter the volatility process when we flip from s; = -1 to s; = 1 (implying that the signs do not
cause the volatility process), but we do alter ¢; and then simulate {s;} | {ht+1}, 1, ¢. The second
step is a Gibbs sampling scheme whose acceptance rate is always one and also conditional on
{ht+1}, 1, ¢ the elements of {s;} are independent which further simplifies the calculations. We
prefer to review first the Gibbs sampling scheme and then the simulation of the conditional
variance.

where
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3.3.1. Simulations of {s¢} | {hi1}, 1, ¢

First, we see how to sample from {s¢} | {h1},1,¢. To obtain the required conditionally
Bernoulli distribution, we establish first some notation. We have the following (see

Appendix A):
1 Y+ dy - Et|ry,hy Y — di - Etlri,hy
ct = (P + (P — 7
v Ot|ry, by A/ Ot|ry, hy A/ Ot|ry, by

(1 - ‘Pz) (re — 6hy)
@2 +1— 2

. (3.56)
Py h;
W2y +1 -2

Etlrh, = E(&r | 1, hy) = , Oty = Var(e | e, hy) =

Using the above notation, we see that the probability of drawing s; = 1 conditional on
{ht+1} is equal to the probability of drawing &; = y + d; conditional on hy.1, h, ¢, ¢, where d;
is given by (3.70), which is given by

p(st=11{h}, 1, )

p(er =y +di | hiwa, by, 1, §)

__ 1 (Y +di = ev/r > (3.57)
Ct\/vt/rt,ht(P \/ Ot/r,hy ’

Similarly for the probability of drawing s; = —1. Both of these quantities are easy to
compute; for example,

d; d; - ’
(P<y+ t 5t/n,h¢> - Lo _1(%) (3.58)
Ny 2 2 A/ Ot /11,h

and so we may simulate {s;} | {ht1},1, ¢ using a Gibbs sampling scheme. Specifically, since
conditional on {h.1},r, ¢ the elements of {s;} are independent, we actually draw from the
marginal distribution, and the acceptance rate for this algorithm is always one.

The Gibbs sampling algorithm for drawing {s¢} | {hw1},1,¢ may be described as
below.

(1) Specify an initial value s© = (S§0), ey S(TO)).
(2) Repeat fork =1,..., M.

(a) Repeat fort=0,...,T-1.
(i) Draw s® = 1 with probability,

1 +d; -
(P<Y t = Et/r b ) (3.59)
Ct~/Ot /1,y /Ot /1,y

and s = —1 with probability,

d, —
1 1 <P<Y+ ¢ Et/r,,ht>. (3.60)
Ct~/Ot/r,hy \/ Ot/r,hy

(3) Return the values {sM,...,sM)},
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3.3.2. Simulations of {hy1} | 1, ¢ (Single Move Samplers)

On the other hand, the first step involves simulating from {h;1} | 1, ¢. To avoid large de-
pendence in the chain, we use an M-H algorithm where we simulate one h;.; at a time
leaving the others unchanged [20, 31]. So if (ht1)" is the current value of the nth iteration
of a Markov chain, then we draw a candidate value of the Markov chain kj{}" by proposing
it from a candidate density (proposal density) g(hu1 | (h)},,,1,¢) where (h)),, =

{ h?*l, et R R, hf., }. We set (i)™ = (hy1)™" with acceptance probability

rMyor-

B | (), 1 ) g (s | (W),
min[l,p( f:l | ( Zl/t+1 r ‘i’)g(n:; [ ( )1/1t 1L ¢):|/ (3.61)
p(hy | (M) 1 ) g (R | (1))1, 1, ¢)
where we have used the fact that
p(hir,¢) =p((h),|x,¢)p(h| ()1 ). (3.62)

However, we may simplify further the acceptance rate. More specifically, we have that

p(hesa | (1) 1,1, @) o p(hesz | Bt @)p(hest | he, @)p (et | hesz, Bisa, @)p(1e | hest, by, ).

(3.63)
Now, since the following should hold:
hi1 > w + phy (3.64)
and similarly
hii < B (hisa - w), (3.65)

we have the support of the conditional distribution of k.1 given that h; is bounded from
below by w + ph;, and the same applies to the distribution of hy.» given hyq (lower limit
corresponds to d; = 0 and the upper limit to d;.q = 0). This means that the range of values
of hy.1 compatible with h; and h;.» in the GQARCH case is bounded from above and below;
that is:

B € [w + B, 7 (e - ). (3.66)

From the above, we understand that it makes sense to make the proposal to obey the
support of the density, and so it is seen that we can simplify the acceptance rate by setting

g(hm | (h) /ti1r U §b> = P(ht+1 | hy, ¢) (3.67)

appropriately truncated from above (since the truncation from below will automatically be
satisfied). But the above proposal density ignores the information contained in 71, and so
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according to Fiorentini et al. [10] we can achieve a substantially higher acceptance rate if we
propose from

g(ht+1 | (h)/t+1/ T, ¢) = p(ht+1 | 1, hy, (,b) (368)

A numerically efficient way to simulate hyq from p(hea | 11, by, @) is to sample an
underlying Gaussian random variable doubly truncated by using an inverse transform meth-
od. More specifically, we may draw

1-¢*)(ri— 6h 2 h?
et~ N( & v ) (r: zt), il (3.69)
puhi+1-¢ puh+1—¢?
doubly truncated so that it remains within the following bounds:
g?ew € [Y - lt, Y+ lt], (370)
where
B2 — w - pw — f*h
= |2z w = po - (3.71)
Pa
using an inverse transform method and then compute
R = w + a(er™ —y) + phy, (3.72)
which in turn implies a real value for dj\}" = \/ (hty2 — w = PHEYY) /a and so guarantees that
hie)" lies within the acceptance bounds.

The inverse transform method to draw the doubly truncated Gaussian random vari-
able first draws a uniform random number

u~Uug,1) (3.73)

and then computes the following:

y =1 = ((1=¢*) (i = 6h) / (9 + 1 - ¢%))

7= (1-u)d
\ORRE/ (3 +1 - ¢?)

(3.74)
y+1i— ((1-¢?)(re = 6hy) / (92hy +1 - ¢?))
O/ (e +1 - ¢?)

+ud
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A draw is then given by

£V = 7 (). (3.75)

However, if the bounds are close to each other (the degree of truncation is small) the
extra computations involved make this method unnecessarily slow, and so we prefer to use
the accept-reject method where we draw

(3.76)

1-¢? - 6h th
eV | re, b, ¢~ N (1= ¢") (r ) Pu
(puht +1-¢? (puht +1-¢?

and accept the draw if y—I; < £/ < y+1;, and otherwise we repeat the drawing (this method
is inefficient if the truncation lies in the tails of the distribution). It may be worth assessing
the degree of truncation first, and, depending on its tightness, choose one simulation method
or the other.

The conditional density of £]'*" will be given according to the definition of a truncated
normal distribution:

ew new 1 E?ew = €t/ hy
p(ef™ | |ep™ —y| <L, ri, hu, §) = ¢
\/Ot/1i,hy \/ Ot/ 1, hy

[q)(Y + 1 —€tr > B (D(Y —li =&, >] _1,
vt/rt hy \ Ot/1,hy

where @(+) is the cdf of the standard normal.

By using the change of variable formula, we have that the density of k)" will be

(3.77)

p(HS | B € [w+ hy, B (o = )] i i, )

new 3-78
_ t y [®<Y+lt Et/r,h,)_ ( - Et/r,ht>] ! ( )
|2ad}ev| N N .
Using Bayes theorem we have that the acceptance probability will be
i <1 p(hea | B 1, @)p(ren | B2, @) > . (3.79)
P(Tt+1 | ht+1’ ¢)P(ht+z | h?ﬂ’ Ti+1, ¢)

Since the degree of truncation is the same for old and new, the acceptance probability
will be

mir1<1, p(rea | h?+81w> e Ay > (3.80)

p(rea | By ey A
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where p(741 | hrs1) is a mixture of two univariate normal densities so

2
Tev1 | Ae1 ~ N<6ht+1/ <1?—ip2ht+1 + 1>ht+1> . (3.81)

Hence,

1 (nJr1 6ht+1)2
p(rea | hiyy) = exp<
T V27 (g3 / (1 - g2) e, + )R, 2((9u/ (L=9?)) by + DR, )7

(3.82)

and the acceptance probability becomes

3/2 n _ _ n new
min |1, < hfg‘}v> \/ ht+2 w ﬁht+1 K(htfl , (383)
k \/hi.y, — w - phYY x(hiy)

t+1

where
_ -
(Pz 7, 6hi
i —“_h 17 O
K _ (Tt+1 - 6h;+1)2 1= ()02 ht+1 +1 Y- (Pi—
() e | ou o 2P ‘Pz hi Togalm®
’ - (Pz hHl hHl 2 ( +1) h:+2 —w - ﬁht+1
) a §
2
‘Pu ;
R +1
— g2t re1 — 6hi ', —w—phi
1+exp 2 2 _ (PZ ' + ’
1-— ( t+1) 1_()02h;+1+]_
X
‘Pi b1
i + l -
exp (P t+1 B Tl — 6ht+1 ht+2 w — ﬁht+1
i (h; ) —(Pi hi . +1 &
(/)2 t+1 1- (/)2 1
(3.84)

Overall the MCMC of {h¢1} | 1, ¢ includes the following steps.

(1) Specify an initial value {h(®}.
(2) Repeat forn=1,..., M.

(a) Repeat fort=0,...,T-1.
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(i) Use an inverse transform method to simulate

1-¢*)(r - 6h 2h?
g?ew | T, ht1¢ ~N ( 2(p )(rt t), - Pu t (385)
(,ouht+1_(,02 (Puht+]-_()02
doubly truncated.
(ii) Calculate
HY = w + a(el —y)* + phy. (3.86)
Steps (2)(a)(i) and (2)(a)(ii) are equivalent to draw
(hes)™ " ~ p(his” | e, e, ) (3.87)
appropriately truncated.
(iii) Calculate
&, = min [1, pre | h?}w) it dfg@]. (3.88)
p(ria | hy) e diy
(iv) Set
) (ht+1)™" if  Unif(0,1) < a
(h)"™ = (3.89)
(hi)" otherwise

Remark 3.7. Every time we change h;.1, we calculate only one normal density since the trans-
formation is Markovian, and, sincet =0, ..., T — 1, we need O(T) calculations.

Notice that if we retain h})", then £" is retained and we will not need to simulate s;
at a later stage. In fact we only need to simulate s; at t = T since we need to know er. The
final step involves computing

(n)
(my _ Tl =€y
t+1

, t=0,....,T-1,n=1,...,M. (3.90)

Using all the above simulated values, we may now take average of simulations and
compute the quantities needed for the SEM algortihm. As for the Bayesian inference, having
completed Step (2) we may now proceed to the Gibbs sampling and M-H steps to obtain
draws from the required posterior density. Thus, the first-order Markov transformation of
the model made feasible an MCMC algorithm which allows the calculation of a classical
estimator via the simulated EM algorithm and a simulation-based Bayesian inference in O(T)
computational operations.
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3.4. A Comparison of the Simulators

In order to compare the performance of the inefficient and the efficient MCMC sampler
introduced in the previous subsection, we have generated realizations of size T = 240 for
the simple GQARCH(1,1)-M-AR(1) model with parameters 6 = 0.1, ¢ = 0.85, « = 0.084,
p = 0.688, y = 0.314 (which are centered around typical values that we tend to see in the
empirical literature). We first examine the increase in the variance of the sample mean of &;
across 500,000 simulations due to the autocorrelation in the drawings relative to an ideal but
infeasible independent sampler.

We do so by recording the inefficient ratios for the observations ¢t = 80 and t = 160
using standard spectral density techniques. In addition, we record the mean acceptance
probabilities over all observations and the average CPU time needed to simulate one
complete drawing. The behavior of the two simulators is summarized in Table1 and is
very much as one would expect. The computationally inefficient sampler shows high serial
correlation for both ¢t = 80 and t = 160 and a low acceptance rate for each individual .
Moreover, it is extremely time consuming to compute even though our sample size is fairly
small. In fact, when we increase T from 240 to 2400, and 24000 the average CPU time increases
by a factor of 100 and 10000, respectively, as opposed to 10 and 100 for the other one (the
efficient), which makes it impossible to implement in most cases of practical interest. On the
other hand, the single-move efficient sampler produces results much faster, with a reasonably
high acceptance rate but more autocorrelation in the drawings for ¢ = 160.

4. Empirical Application: Bayesian Estimation of
Weekly Excess Returns from Three Major Stock Markets:
Dow-Jones, FTSE, and Nikkei

In this section we apply the procedures described above to weekly excess returns from three
major stock markets: Dow-Jones, FTSE, and Nikkei for the period of the last week of 1979:8 to
the second to the last week of 2008:5 (1,500 observations). To guarantee 0 < f<1-a <1and
to ensure that w > 0 we also used some accept-reject method for the Bayesian inference. This
means that, when drawing from the posterior (as well as from the prior), we had to ensure
thata,f>0,a+pf <1land w > 0.

In order to implement our proposed Bayesian approach, we first have to specify the
hyperparameters that characterize the prior distributions of the parameters. In this respect,
our aim is to employ informative priors that would be in accordance with the “received
wisdom.” In particular, for all data sets, we set the prior mean for f equal to 0.7, and for
a, w, and y we decided to set their prior means equal to 0.15, 0.4, and 0.0, respectively. We
had also to decide on the prior mean of . We set its prior mean equal to 0.05, for all markets.
These prior means imply an annual excess return of around 4%, which is a typical value for
annualized stock excess returns. Finally, we set the prior mean of ¢ equal to 0.75, of ¢? equal
to 0.01, and the hyperparameters vy and d, equal to 1550 and 3, respectively, for all three
datasets, something which is consistent with the “common wisdom” of high autocorrelation
of the price of risk. We employ a rather vague prior and set its prior variance equal to 10,000
for all datasets.

We ran a chain for 200,000 simulations for the three datasets and decided to use every
tenth point, instead of all points, in the sample path to avoid strong serial correlation. The
posterior statistics for the Dow-Jones, FTSE, and Nikkey are reported in Table 2. Inefficiency
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Table 1: Comparison between the efficient and inefficient MCMC simulator.

MAP IR Time (CPU effort)
t =280 t =160 T =240 T = 2400 T = 24000
Inefficient 0.16338 45.1748 47.3602 0.031250 4.046875 382.05532
Single-move 0.60585 8.74229 110.245 0.001000 0.015625 0.1083750

Note: MAP denotes mean acceptance probability over the whole sample, while IR refers to inefficiency ratio of the MCMC
drawings at observations 80 and 160. Time refers to the total CPU time (in seconds) taken to simulate one complete
drawing.

Table 2: Bayesian inference results.

Dow-Jones PM PSD Pos Pmin Pmax IF

o) 0.052 0.041 0.054 -0.048 0.103 3.001
) 0.812 0.082 0.854 —-0.992 0.999 2.115
@2 0.010 0.034 0.013 0.002 0.018 1.509
w 0.405 0.071 0.461 0.004 0.816 2.367
a 0.152 0.040 0.291 0.001 0.873 1.048
p 0.651 0.168 0.629 0.003 0.984 2.994
y 0.392 0.112 0.393 —-0.681 0.418 5.108
FTSE PM PSD dos Pmin Pmax IF

o 0.059 0.036 0.059 —-0.051 0.395 3.111
@ 0.811 0.096 0.839 -0.809 0.999 2.154
02 0.009 0.029 0.012 0.005 0.017 1.995
w 0.205 0.087 0.398 0.003 0.995 1.457
a 0.140 0.055 0.187 0.001 0.931 3.458
p 0.682 0.153 0.701 0.001 0.988 2.721
Y 0.374 0.102 0.381 -0.615 0.401 1.254
Nikkei PM PSD Pos Pmin Pmax IF

o 0.068 0.051 0.068 -0.064 0.211 2.998
) 0.809 0.090 0.837 -0.831 0.999 1.211
@2 0.010 0.031 0.010 0.004 0.019 2.001
w 0.195 0.079 0.228 0.004 0.501 2.789
a 0.149 0.052 0.197 0.001 0.893 3.974
p 0.634 0.119 0.645 0.006 0.989 1.988
y 0.408 0.123 0.409 -0.587 0.487 4.007

Note: PM denotes posterior mean, PSD posterior standard deviation, ¢ posterior median, ¢min posterior minimum, pmax
posterior maximum, and IF inefficiency factor.

factors are calculated using a Parzen window equal to 0.1T (where, recall, T is the number
of observations) and indicate that the M-H sampling algorithm has converged and well
behaved (This is also justified by the ACFs of the draws. However, they are not presented
for space considerations and are available upon request.) With the exception of the constants
6 and the ¢y’s, there is low uncertainty with the estimation of the parameters. The estimated
persistence, a + f, for all three markets is close to 0.8 with the highest being the one of
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FTSE (0.822), indicating that the half life of a shock is around 3.5. The estimated asymmetry
parameters are round 0.4 with “#-statistics” higher than 3.2, indicating that the leverage effect
is important in all three markets. In a nut shell, all estimated parameters have plausible
values, which are in accordance with previous results in the literature.

We have also performed a sensitivity analysis to our choice of priors. In particular, we
have halved and doubled the dispersion of the prior distributions around their respective
means. Figures 1, 2, and 3 show the kernel density estimates for all parameters for all
datasets for the posterior distributions for the three cases: when the variances are 10,000
(baseline posterior), when the variances are halved (small variance posterior), and when the
variances are doubled (large variance posterior). We used a canonical Epanechnikov kernel,
and the optimal bandwidth was determined automatically by the data. The results which are
reported in Figures 1, 2, and 3 indicate that the choice of priors does not unduly influence our
conclusions.

Finally, treating the estimated posterior means as the “true” parameters, we can em-
ploy the formulae of Section 2.1 and compare the moments implied by the estimates and the
sample ones. One fact is immediately obvious. All order autocorrelations of excess returns
implied by the estimates are positive but small, with the 1st one being around 0.04, which is
in accordance with the (ii) stylized fact (see Section 1). However, for all the three markets,
the sample skewness coefficients are negative, ranging from —0.89 (FTSE) to —0.12 (Nikkey),
whereas the implied ones are all positive, ranging from 0.036 (FTSE) to 0.042 (Dow-Jones).
Nevertheless, the model is matching all the other stylized facts satisfactorily, that is, the
estimated parameter values accommodate high coefficient of variation, leptokurtosis as well
the volatility clustering and leverage effect.

5. Conclusions

In this paper, we derive exact likelihood-based estimators for our time-varying
GQARCH(1,1)-M model. Since in general the expression for the likelihood function is
unknown, we resort to simulation methods. In this context, we show that MCMC likelihood-
based estimation of such a model can in fact be handled by means of feasible O(T') algorithms.
Our samplers involve two main steps. First we augment the state vector to achieve a first-
order Markovian process in an analogous manner to the way in which GARCH models
are simulated in practice. Then, we discuss how to simulate first the conditional variance
and then the sign given these simulated series so that the unobserved in mean process is
revealed as a residual term. We also develop simulation-based Bayesian inference procedures
by combining within a Gibbs sampler the MCMC simulators. Furthermore, we derive the
theoretical properties of this model, as far as moments and dynamic moments are concerned.

In order to investigate the practical performance of the proposed procedure, we
estimate within a Bayesian context our time-varying GQARCH(1,1)-M-AR(1) model for
weekly excess stock returns from the Dow-Jones, Nikkei, and FTSE index. With the exception
of the returns’ skewness, the suggested likelihood-based estimation method and our model
is producing satisfactory results, as far as a comparison between sample and theoretical
moments is concerned.

Although we have developed the method within the context of an AR(1) price of
risk, it applies much more widely. For example, we could assume that the market price of
risk is a Bernoulli process or a Markov’s switching process. A Bernoulli’s distributed price
of risk would allow a negative third moment by appropriately choosing the two values of
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the in-mean process. However, this would make all computations much more complicated.
In an earlier version of the paper, we assumed that the market price of risk follows a normal
distribution, and we applied both the classical and the Bayesian procedure to three stock
markets (where we decided to set the posterior means as initial values for the simulated
EM algorithm). The results suggested that the Bayesian and the classical procedures are quite
in agreement (see Anyfantaki and Demos [24]).

Finally, it is known that (e.g., [32, pages 84 and 85]) the EM algorithm slows down
significantly in the neighborhood of the optimum. As a result, after some initial EM iterations,
it is tempting to switch to a derivative-based optimization routine, which is more likely to
quickly converge to the maximum. EM-type arguments can be used to facilitate this switch
by allowing the computation of the score. In particular, it is easy to see that

E<alnp(5 |1, ¢, Fo)

ad) | r, 4)(11)/ ¢0> = 0/ (51)

so it is clear that the score can be obtained as the expected value given r, ¢, ¥ of the sum
of the unobservable scores corresponding to Inp(r | 6, ¢, Fo) and Inp(6 | ¢, Fo). This could
be very useful for the classical estimation procedure, not presented here, as even though our
algorithm is an O(T) one, it is still rather slow. We leave these issues for further research.

Appendices
A. Proof of (3.69) and (3.82)

Proof of Equation (3.69). This is easily derived using the fact that

Ty = 6tht + &, (A].)

where

2
T | ht ~ N<6ht, < Pu I’lt + 1>ht>, (AZ)
1-¢?

and, consequently,

hy hy

“Vim~nN ; 2 (A3)
n) ' 6hi) \ b (2 mr1)n ) ) '
1-¢?
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and, thus; from the definition of the bivariate normal,

ooNg
E(gt | 1, hy) = (1-¢?)(r; - 6hy)

Zh+1— g2
et ? (A4)
()02;12
Var(g; | re, hy) = zuit
(Puht +1- ()02
Consequently,
1-¢?)(r;—6h 2h?
g |1, h, §~N ( 2('0 ) t), 5 s . (A.5)
il +1—-¢> prh+1 -2
O

Proof of Equation (3.82). We have that

1 r1e1 - 6HL,, )
P(rt+1 | h;_l) = - eXp< ( t+1 tJ;l) - >,

V27 (43 / (1 - ¢2) i, + )R, 2((pu/ (1= 9?)) iy + DB,
(A.6)
and, thus,
p(ra | HEe) (03 (=92, + D,
pralhin) (2 (1= ) + 1)hce
exp< (ra-6hiy)* (ri = 62" >
2((¢i/ (1= 9?))hiy + iy 2((9i/ (1= @) hisy + gy
(A7)
Also,
W, —w-ph
dig =\ ©w P (A.8)
(24
and so

d;_l B h:+2 —w- ﬁh:ﬂ (A 9)
Y
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Moreover,

new
t+2 —w- ﬂht+1

(1 4 )(rm— O

((PZ hhew 41 — (PZ)

t+1

2 1,new2
ht+1

Zhnew 1 = ? (‘Puh?flerl (PZ)
t+1 Puln ' rew
2 1 new 2 t+2 —w- ﬂ 2 M P
_(%hm t1-¢%)
’ 2202 1 ¢ )(ml—ﬁhi‘flw
ca . (Pl +1-¢%) |

t+1
(pahi, +1-¢)
a 2(Puhr2

t+1

exp

(1-¢ )(ml 6hi,1)
2h:+1+1 ()02)

C:+1 [ [ t+2 —w- ﬂh N ]

W\l + 1= g
" " t+2 —w- ﬂhtﬂ
(<P2h1+1 +1-¢h)| "
A v (1 P )(ml L)
o zh:ﬂ +1- (Pz) B
(A.10)
And the result comes straightforward. O
B. Dynamic Moments of the Conditional Variance
We have
Cov(hy, hy—x) = aCov (5?_1, ht,k> —2ayCov (g1, h—i) + pCov (hi_1, hi_x)
= (a+P)Cov(hir, hik) = -~ = (a + p) V(hy),
E(hueix) = aE (e 461k ) = 2ayE(er1r-k) + BE(hi181-4) (B1)
= (a+P)E(hirek) == (a+ ﬁ)k_lE(ht—kHEt—k)
= 2ay(a+p) k_lE(hH),
since
E(higr) = (ast 1 Zayst 1+ Phie 1)
(B.2)

= -2ayE <5t2—1> = —2ayE(ht,1).
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Also,

Cov(h2, hi-i) = ACov(h2y, huk ) + BCov (i, hu )
- A2C0v<ht2_2, ht,k) + ABCov(hy_s, hi_x) + BCov(hi_1, hi_x)
== AICov (K2 i) + AS2BCoV (e o, i i)

+-+++ ABCov (hi_s, hi_) + BCov(hi_1, hi_x) (B.3)

(a+p) - Ak
(a+p)-A
(a+p)* - AF
(a+p)-A

ARCov (K2, hik) + (a+ B)B V(hy)

= AF[E(R,) - E(12)E(h)] + BV (),

as

Cov(h}, hir) = A[E(h},) = E(h2,)E(hi)| + BV (hioa), (B.4)

where A = 3a? + f* + 2af and B = 2[2a%y? + (w + ay?) (a + B)].
Furthermore,

E(heir) = AE(R2 &1k ) + BE(hi161-4)
= A2E<hf_25t,k> + ABE (i) + BE(hi1€1-x)
== AE(K ek ) - 2ayB[AR T+t A+ B) 4 (a+ ) B

= —day(3a + ﬁ)Ak‘1E<ht271>

k 4k k=1 4k-1
- 4ay[<w + ay2> (a{:ﬁ# +2a%y? (a +ap) — A ]E(htl)/

(a+p)-A (a+p)-A
(B.5)
as
E(htzst_1> = —4ay(Ba + ﬁ)E(ht{l) - 4<w + a)fz)a}fE(ht_l). (B.6)
Also we have that
Cov(hy k2 ,) = (a+B)Cov(his, 2 )
(B.7)

= (@ )" [B(n) - E() B0,
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as
Cov(hy k) = (a+ ) [E(h},) — E(hLy ) E(hia))|.
Now,

Cov (k2 ) = ACov (k2 k2 ) + BCov (hyt, hE )

= A2Cov(h?,, 12 ) + ABCov (ki B2, ) + BCov (hy1, hE,)

== ARICOV (R 4y 12 ) + AFUBCOV (i, B2, )
4o+ ABCov (hyo, 2 ) + BCov (hya, 2, )

(a+p)* - AF

= ARV (1) + Bm

() -1 ) ]
as
Cov(h, i) = AV(K2,) + B[E(k.,) - E(KL, ) E(hi1)]
Further,
Cov(hy el ) = (a+B)Cov(hir el )
= (a+B) " Cov(hika,ely)
= (a+§)"V(hor) +2a(a+ ) E(H),
as
Cov(hyel,) = al2E(h}) + V(hia)| + BV (i)
= (@+B)V (1) + 2aE(h}).
Further

Cov (hf, Ef_k> = ACOV<ht2_1, Ef_k> + BCov (hH, gtz_k>
= ACov(ht{z, Ef_k> + ABCov <ht,2, Ef_k> + BCov <ht,1, Ef_k>
=...= Ak_1C0v<hffk+1,£t27k> + AF2BCov <ht*k+1"€t2—k>

+..-+ ABCov (ht_z, stsz> + BCov <ht—1/ Etz,k>

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)
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+p) - A
(a+p)-A

a
= Ak‘lCov<ht27k+1, stsz> +B(a+p) ( V(hi_1)

a+p k—l_Ak—l X
+ 208 (+a+)ﬁ>—A E(r)

- AE(,) - E(12. ) EGh ] + BB A

(a +ﬁ) _A V(ht—l)

+4a(3a+B) AE(K),)

+ [ZaB (avp)” - A + 4(2112}’2 + (w + a}’2>>Ak1] E<ht2>,

@) - A
(B.13)
as
Cov(ht,et,) = A[E(h},) ~ E(hE )E(h1)] + 4a(3a+ B)E(h] ;)
(B.14)
+ 4<2a2y2 + <w + a}fz))E(htz) + BV (h).
Further,
E(hihixeri) = (a+ B)E(hirhixeri) = - = (@ + ) E(hrgsi hi—kér-r)
(B.15)
= 2ay(a+ ﬁ)k_1E<ht271>,
as
E(hihy1g11) = -2ayE(H., ). (B.16)
Finally,
E <h%ht—k5t—k> = AE <hf_1 ht—k&—k) + BE(hi—1hy-kcé1-k)
=...= AME <ht2,k+1 ht—k£t—k> + A" 2BE (hi_gs1hi—x€r-x)
+---+ ABE(hi2h;_r&t-k) + BE(hi_1hs_k&1-k) (B.17)

= —day A¥! [(Ba + ﬂ)E(hL) + <w + a)fz)E(htzfl)]

k-1 k-1
-A
- 2ayB (a+p) E(htz_1>,




38 Journal of Probability and Statistics

as

E(hfht_lst_1> = —4day(Ba + ﬁ)E(hf_1> — 4<w + a)fZ)ayE(ht{l). (B.18)
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