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We study the large deviations and moderate deviations of hypothesis testing for squared radial
Ornstein-Uhleneck model. Large deviation principles for the log-likelihood ratio are obtained, by

which we give negative regions in testing squared radial Ornstein-Uhleneck model and get the
decay rates of the error probabilities.

1. Introduction

Let us consider the hypothesis testing for the following squared radial Ornstein-Uhleneck
model:

dXt = (6 + ZaXt)dt +2 \V Xtth, XO =0, (11)

where a < 0 is the unknown parameter to be tested on the basis of continuous observation of
the process {X;,t > 0} on the time interval [0,T], W is a standard Brownian motion and, § > 0
is known. We denote the distribution of the solution (1.1) by P?.

We decide the two hypothesis:

Hj:a=ay, Hi:a=0a, (1.2)
where ap, a1 < 0. The hypothesis testing is based on a partition of

) arg
Qr = : eR (1.3)
dpao FioT)
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of the outcome process on [0, T] into two (decision) regions Br and its compliment B, and
we decide that Hy is true or false according to the outcome X. € Br or X. € By.

The probability e;(T) of accepting H; when Hy is actually true is called the error
probability of the first kind. The probability e (T') of accepting Hy when Hj is actually true is
called the error probability of the second kind. That is,

el(T)=P% (Br),  ex(T)=DP2(B}). (1.4)

By the Neyman-Pearson lemma (cf. [1]), the optional decision region Br has the following

form:
! ! dp‘fl > 15
T og 25 >c e, (1.5)
0 [Fo,m

where ¥(or] is the o-algebra generated by the outcome process on [0, T].

The research of hypothesis testing problem has started in the 1930s (cf. [1]). Since the
optional decision region Br has the above form, we are interested in the calculation or
approximation of the constant ¢, and the hypothesis testing problem can be studied by large
deviations (cf. [2-6]). In those papers, some large deviation estimates of the error proba-
bilities for some i.i.d. sequences, Markov chains, stationary Gaussian processes, stationary
diffusion processes, Ornstein-Uhlenbeck processes are obtained. In this paper, we study the
large deviations and moderate deviations for the hypothesis testing problem of squared
radial Ornstein-Uhleneck model; by large deviation principle, we obtain that the decay of
the error probability of the second kind approaches to 0 or 1 exponentially fast depending on
the fixed exponent of the decay of the error probability of the first kind; we also give negative
regions and get the decay rates of the error probabilities by moderate deviation principle. The
large and moderate deviations for parameter estimators of squared radial Ornstein-Uhleneck
model were studied in [7, 8].

2. Main Results
In this section, we state our main results.

Theorem 2.1. Let a(T) be a positive function satisfying

an) _, e

T VT

— o0 asT — oo. (2.1)

For any a > 0, set

(2.2)

B L jog 2
= o
"7 ) am 8 apg

T (@ -a)5 _|%-a ﬂ}

~ 4a(T) g 20 )
Flo1]
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Then
. T 5
Jim = o 108 Py (Br) = =4,
. (2.3)
. o c\ _
Tllilgo 2T) log P, (Bf) = —co.
Theorem 2.2. If a; < a9 <0, then for each a > O, there exists a ¢(a) € R, such that
lim ~log P ( ~1 d_gl >¢a) ) =- (2.4)
fim plog P ( 108 Zpy | 24@) ) = |
@0 [Fom
and when a € (0, z4,),
timintL log 78 ( 210g 2| <ot ) <-1 @) (2.5)
T T g a T g a o - “ ! '
0 10,1
when a € (z,,,+0),
liminf=log( 1- P ( L1 dr;, <-I 2.6
1Tn11£ T og RCAW: og apo <¢(a) < Iy (é(a)), (2.6)
a0 10,1
where
_ (@ -m)’6
i 4[X1 !
a5 - o 6 a(z+ (a1 —a0)6/2) ? . < (o — a1)é (2.7)
Ly, (2) = | z+ (a1 - 0)6/2 \ 4 o - o ’ 2
+00, otherwise.
Theorem 2.3. If ag < a1 <0, then for each a > 0, there exists a 5 (a) € R, such that
lim ~log PO [ 11 dr;, > ¢ = 2.8
Jim log Py ( 7108 5 >¢(a) ) =-a, (2.8)
@0 [Fom
and when a € (0, Z,),
liminf=log PO ( =1 ar;, 1 <-I, (& 2.9
minlog P2 los e | <@ ) <- «(8@), (2.9)
(1]
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when a € (Z,,+0),

liminflog( 1-p° ( L1 dr;, & <-I, (& 2.10
iminfzlog( 1-P4 ( plog 5| <&@ ) ) <-lu ({@), (210)
X0 10,1
where
~ __(0(0—0(1)26
a; — 4“1 7
2
_ _ ®mmwm (6 m(z(m-a)6/2) L (@-m)b (2.11)
In(z) =9 z+ (a1 —ap)6/2 \ 4 a%_a% ! 2 !
+co, otherwise.

3. Moderate Deviations in Testing Squared Radial
Ornstein-Uhleneck Model

In this section, we will prove Theorem 2.1. Let us introduce the log-likelihood ratio process
of squared radial Ornstein-Uhleneck model and study the moderate deviations of the log-
likelihood ratio process.

By [7], the log-likelihood ratio process has the representation

are
apg,

1 ai—ag (f o,
log = E(al — (Xo)(Xt — 6t) — T . XSdS. (31)

Flor
The following Lemma (cf. [9]) plays an important role in this paper.

Lemma 3.1. The law of X; under P® is y(6/2,a/e**71), where y(a, b) denotes the Gamma distribu-
tion:
baxa—l

I'(a)

y(a,b)(dx) = e (dx), x>0. (3.2)

Moreover, for any 0 € R,

ES <eex,> _ (1 _ g(eZta _ 1))6/2. (3.3)

Lemma 3.2. For any closed subset F C R,

2 3.2
_ T —4az
_ wé}ﬂ> e F) <inf "0
Flo1) %0 = (al - “0) 6

(3.4)

li T log P? ! 1 dF;,
imsup—-—logP, | ——| lo
ol a2 B\ am\ %% ape
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and for any open subset G C R,
AdP° _ 2 —4a° z2
lim inf—— log P’ 1:r log —2| - (@ 4“0) TYeG ) > -inf—0%
T—w a (T) a(T) dard om ap zeG (“1 “o) 5
(3.5)
Proof. Let
a(T)y dp? (a1 — a9) 26T
Ar(y) =logE} exp{ (log 5 - . (3.6)
T APy g, 4ao
By (3.1), for any ¢ < 0, we have
a(T)yo (e — “0)2 5 T 2
AT(}/) =_ Jog +logE, expy MXr - 6T) + uf Xids
0
T —ap)’ dpy
= _a( )]/54(::1 ) +logEZ[ {.)L(XT—(ST) +uf des}:l
0
., (3.7)
a(T)yd (ai - ap) 6 i 4 U 4
=- 1oy +logE, | exp (.)L'l‘ > ) 5 6T
+<u——a0 )f des}:l
where
_a(T)y (a1 — ap) _a(My(af - af)
A= T’ u= T (38)
For T large enough, a3 — 2u > 0, we can choose ¢ = —\/a3 — 2u, then ¢ < 0 and
a(T)yb(ai —ag) ao—¢ : %~ ¢
Ar(y) =- Jag - 6T +logE, [exp{ (A = )XT}] . (3.9)
By Lemma 3.1, we have
T 5 axpg — (p
Jim ey s o] (1 #57 )oe | o

lim - —% 1o <
T 2a2(T) °®

1-=

(P<)L+ %2—_4))(@”‘”—1)) = 0.
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Therefore,
A(y) = lim ——Ar(y)
V)= a2 TV
T a(T)y6(as —a5)  ag—¢
= li - - T
7% a2(T) < 4ag 7 0
(3.11)
T ([ aMyb(ai-aj) 6T a(T)y (af - aF)
= lim - - 141+ —7-———=
T—ooa?(T) day 2 Taj
2 (.2 2\2 5
_y (a1 - x)
16 -a
Finally, the Gartner-Ellis theorem (cf. [10]) implies the conclusion of Lemma 3.2. O
Noting that
0 dapr¢
log ! = —log — , (3.12)
5 5
dPg, Flor] APy, Flor]

we also have the following result.

Lemma 3.3. For any closed subset F C R,

dP6 — 2 —4 3.2
lim sup ZTT log Pf] <LT <]og —'21 + mé;ﬂ> € F> < —inf - alj —,
T—ow @(T) a(T) dPp, For aj =F (02 — a2)"6

and for any open subset G C R,

liminf——log P [ —( 1 ar,
TV @[T 8w\ am \ %8 apg

_ 2 —4(1322
+ (a1 — )"6T eG ) > —inf—lz.
4oy zeG (a% _ a%) 5

Flor
(3.14)
Proof of Theorem 2.1. The first claim is a direct conclusion of Lemma 3.2. Since
T (m-a0)’6 T (u-m)
(o1~ 20)° (a1 = 20)75 — —oo0, asT — oo, (3.15)

a(T) ap " a(T) a

by Lemma 3.3, we see that the second one also holds. O
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4. Large Deviations in Testing Fractional Ornstein-Uhleneck Model

In this section, we will prove Theorems 2.2 and 2.3. We first study the large deviations of the

log-likelihood ratio process.

Lemma 4.1. Assume a; < ag < 0. Then for any closed subset F C R,

. 1 s 1, dP} .
lim sup log P, <T log — . EF )< —ir€1£ L4y (2),
[0,T]

T— o a

and for any open subset G C R,

dp?
lim inf~ log P2 <l log —=

.
Tt T %% Jpo €G ) 2 -inflx(2),
@0 10,1

where

ag — o 6 ao(z+ (a1 —ap)6/2) ? s < (g —1)6
Iny(2) =9 z+ (aq — x9)6/2 2 ! 2 !

4 “% %
+00, otherwise.

Fior] }

Proof. Let

dpr?

Ar(y) =logEj exp { ylog y P”;l

Then for ¢ < 0, we have

T
Ar(y) = logEg, eXp{)u(XT ~6T) +u fo des}
9]

dpP T
:1og]Eg[ = exp{)L(XT—(ST) +uf des}]
dp, 0

- T
=log]Eg[exp{<)L+ 0602 (P>(XT—6T) + (u— %(x3+ %(p2>j ngs}],
0

where A = (a1 — )y /2, u =y(aj —a3)/2.

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

Since a3 — 2u > 0, for y > (aj/a3 — a3), we can choose ¢ = —\/a - 2u, for each y >

(a3/a% - a?); then ¢ < 0 and

Ar(y) =-6T (l + ¥> +log IEZ [e(“(“o-tp)/Z)XT].

(4.6)
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By Lemma 3.1, we get
(4.7)

Therefore,
.1 o 2 2 2
A(]/) = TIEI:OTAT (y) = _E ([Xl — (Xo)y +ap + lXO + (tXl — (Xo)y . (48)

Since A(y) is a strictly convex differentiable function on ®4 = (a-, +o0) with

2

%
a-=—5——< 0,
%~ & (4.9)
lim A'(y) = +oo,
y—a-

where 9, is the effective domain of A, we see that A(y) is steep. Finally, by

a2 —a? 6  ao(z+ (@ —a)6/2) ? - (ap — a1)d
sup{zy - A(y)) = | =+ (@ ~@)6/2\ 3 - SR
yeR +o0, otherwise,
(4.10)

O

and Gértner-Ellis theorem, we complete the proof of this lemma.

Similarly, when ay < a1 < 0, we have

AW) = Jim 285 () =-3 (@ -ay +ao+ @+ @ -a)y).  @1)

Since A(y) is a strictly convex differentiable function on 9, = (-oo, a,) with

a3
a, = ——— (4.12)
X~ @

>0,

and lim, ,, A'(y) = +co, we can see that A(y) is steep. By Gartner-Ellis theorem, we also

have the following result.
Lemma 4.2. Assume ay < ay < 0. Then for any closed subset F C R,

eFI) < —ingj;o(z), (4.13)
Fio1] =

6
a

. 1 1
lim sup - log P2 <T log 2o
ap

T—oo
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and for any open subset G C R,

liminf=log P° ( ~1 AP
mintrlosFu { 7108 5ps

€ G> > —inf fuo(z),
zeG
Flo1]

where

ay - a? <6 _ap(z+ (m —(Jco)t‘i/2)>2 . (a0 — )0

Tao(z) =19 z+ ((a1 —a9)6/2) 4 tx%—a%
+00, otherwise.
Note that
log are ~ log arg
6 - Ip6
dp"‘o FloT) dP"‘l Fro1]

Then we have the following Lemma.

Lemma 4.3. Assume ay < ag < 0. Then for any closed subset F C R,

T— o ay

1msup — 10g — 108 € —Inf L4,(Z2),
1 “ 1 dP6 For z€F

and for any open subset G C R,

thllor:fT log P, <T log P

€ G> > —inf I, (2),
zeG
Flo1

where

2

I (z) =4 z+ (a1 - ag)6/2 \ 4 2 — a2

o - o <6_a1(z+(a1—a0)6/2)>2 . (@-a)s

+00, otherwise.

Lemma 4.4. Assume ag < ay < 0. Then for any closed subset F C R,

. 1 1. dp :
lim sup = log P <T log —= . € F> < —inf I, (2),
[01]

T— o ay

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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and for any open subset G C R,

dpe
dprg,

oo 1 s 1
thllor:fT log P, <T log

e G> > ~inf I, (2), (4.21)
Fio,r] =

where

i - (5 mE+@-w52)\  __ (@w-m)s
Ia] (Z) = z+ ([Xl - lX0)6/2 2 2 ! 2 ! (422)

4 a -
+00, otherwise.

By the expression of 1y,(z), I, (2), fuo (z), and fal (z), the following lemma is.

Lemma 4.5. (i)

_ (a0 - 061)25

la(®) =0 iff 2 = 1>,
, (4.23)
B . _ (1 — )6
Ia] (Z) - 0 ljjc zlll - 40[1 4
forall z < (g —a1)6/2,
L (2) = I (2) + 2 (4.24)
(ii)
7 o (a0 — a1)26
Ta(2) =0 iff 20y = >,
) (4.25)
= _ e~ __(C(1—0£0)5
I (z) =0 iff Z4 = ST
forall z > (ag — a1)6/2,
Iy (2) =1, (2) + 2. (4.26)

Proof of Theorems 2.2 and 2.3. Since the proofs of the two theorems are similar, we only prove
Theorem 2.2. Since I,,(z) is increasing on (zg,, (@ — a1)6/2) and I, (z4,) = 0, Therefore, for
a >0, by Lemma 4.1, we can choose a ¢(a) € (zq,, (a0 — 21)6/2)) such that

> §(a)> =—a. (4.27)
From

a@o

1 s( 1. dpd
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It is clear that ¢(a) is increasing for a > 0, and by Lemma 4.5, we get I (za,) = 24,
which implies ¢(zq,) = za,. Hence for a € (0, z,,), we have ¢(a) € (0, z4,), and since I, (z) is
nonincreasing for z < ¢(a), therefore we get

1o, ({(a)) = inf{l, (2) : z < é(a)}. (4.28)

Similarly, for a € (z4,+o0), we have ¢(a) € (zq, (@0 — a1)6/2), and since I, (z) is non-
decreasing for z > ¢(a), therefore we get

I, (§(a)) = inf{ly (2) : 2 2 §(a)}, (4.29)

which complete the proof of Theorem 2.2. O
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